On two linear vector spaces associated with a vector in an L,
By Yuxe-Caow Woxg.
(Received 4th February, 1940. Read 2nd March, 1940.)

Let v, be a vector (i.e. a vector field) in an affinely connected
space L,, V, the symbol of covariant differentiation, and r the rank
of the matrix || V, v, |, then there exist two sets of n — r independent

vectors ¢« and j* (tk=n—r 41, ...., n) which satisfy respectively
x x

the equations

(].) 7;'( VK?))\ = 0,

(1) Vo, =0.

We denote by E,_, and E,_, the local linear vector spaces of n —r
dimensions spanned by i and j* and defined at every point of L,.

Evidently any vector in E,_, is a solution of (1) and any vector in
E,_, is a solution of (1').
For the vector v, = ov, where ¢ is a scalar (i.e. a scalar function)

we have the corresponding 'E,_,, 'E,_, defined by

(2) iV, v, =0,
(2%) FV'va=0,
r’ being the rank of |V, ’»,||. The purpose of this note is to show

that the nature of the relation between the two pairs of local
linear vector spaces E,_, and 'E,_,, E,_, and 'E,_,, is completely
characterised by the ranks r, ry, r,, rg3 of the matrices

AN
i Vi ]1ogo

Vx Uy, — U

(3) M=| V.o, M= V.logo, 1,

) M2= “ va)\: 'U)\l ’ M3=

The matrices M, M, and the determinant of M; have appeared in
Eisenhart’s investigation on the transversals of parallelism of a given
vector, where he considered! the aggregate of the vectors i* in the
spaces 'E,_, for all possible scalars o.

1 Eisenhart, Non-Riemannian Geometry (New York, 1927), 38-43.
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We shall now investigate how the nature of the relation between
'E,_,and E,_, at any point is dependent on the values of the r’s at
that point. Let us first consider the vectors common to ‘E,_, and
E,_,. Equation (2) when written out is

(4) * V.o, = — 0, (¢ V, logo).
z x
Putting 7= = c 1%, where ¢ are n — r parameters, we get
z
4
(5) ctV,logo=0.
x

Comparison of (5) with (1) shows that (5) is identically satisfied or

gives a linear homogeneous relation between the p according as =7
or r;==r. In the former case every vector in E,_, is also a vector in
‘E,_,; in the latter case 'E,_, has an E,_,_; in common with &, _,.
Hence 'E,_, contwins E,_, or has an E,_,_, in common with E,_,
according us ry = r or r; 3= 1.

We shall now consider those vectors of 'E,_, not contained in
E,_,. If (4) has a solution for ¢ not lying in E,_,, then iV, logo
does not vanish, as is seen from (4). If we put

(6) u< = #/(5* V, log o),
equation (4) becomes
(7) u* V,('v)\ = — V).

Therefore in order that such an * may exist it is necessary that ro =r.

We now suppose that 7, =r. Then the solution for u* of (7) contains

n — r parameters'. In fact if %~ is a particular solution, the general
0

solution is
z

(8) uc = u" + a1~
0 z
z

where « are n — r parameters. Comparing (6) and (8) we have

(9) (i Vy log o) = u* + a i~,
0 z
from which it follows that
(10) u* Vxlogo—|-;z"‘ V.logo=1.
0 z

This is the necessary and sufficient condition for the existence of an
i< corresponding to a solution u* of (7).

1 Bocher, Introduction to Higher Algebra (New York, 1907), 43-46.
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If ry = r (= ry), then ¢« V, logo = 0 and equation (10) becomes
(11) u V,]logo =1.
0

Remembering that u* is a solution of (7) we see that (11) is satisfied
0
or not according as r3=r; or r3=Fr,. In the former case, i.e.

z
r = r; = r3= 73, no restriction is imposed on a and therefore r'=r — 1

and ‘E,_, is spanned by w< and Z,_,; in the latter case, i.e.
0

r =1, = r;=3=r;, there is no ¢ in 'E,_, outside E,_, and therefore
' =r and 'E, _, coincides with E,_,.

If ryZ=7(=r,), let a be a set of particular solutions for ; of
. 0

{10). Then if ¢ is any set of parameters satisfying (5), the general
solutions of (10) and (4) are respectively :

x xr z
a=a+c,
0
z Z;
(12) 1= u* +ar +coe,
0 (UF7 z

@
after omitting a scalar factor. Remembering that when the ¢ satisfy (5)
T
¢ 7« span the common E,_, ; of 'E,_, and E,_,, we see from (12)
x

z
that » = r and 'E, _, is spanned by the vector 4* + a ¢~ and E,_,_,.
0 0 =z

Hence the nature of the 'E,_, of 'v= o v~ is completely character-
ised by the numbers 7, 7q, 75, 73.

Proceeding in an analogous manner we can start with equations
(1) and (2’) and classify the nature of the "By_y according to r, rq,
rs, r3. We shall not enter into detail but write down the corre-
sponding equations which appear in the discussion. They are

(4" P Veoy= —(j*0) Vilogo,
(5" zj'\ v, =0,

(6) " = ),

(7) ur Vv, = — V. loga,

(8" ux___gx_l_zzx’

(9) PGB = W+ agh,
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T
(10%) 'zg"v,\ Fajru, =1,
x
(lll) u"'v)\= 1:
0
. z x
(12" PA=uwr 4 a4
0 0=z T

The four matrices (3) appear in the order M, M,, M,, M; instead of
M, M,, My, M,.
Summing up these results we have
TaeoreM. The nature of the 'E,_, and 'E,_, of "v* = gv* is com-
pletely characterised by the ranks r, ry, ro, r3 of the matrices (3). More
precisely,
() if r=ry3=rs, then ¥ =r and 'E,_, coincides with E,_, while
'B,_, has an En_,_l i common with E_n_,;
(ii) ¢fr=Fr, ro, then v’ =r+1 and 'E,_, and 'E,_» are contained in
E,._, and B, _, respectively;
Gil) if r=r,=ry=ry, then ¥ =r—1 and 'B,_, and 'E,_, contain
E,_, and E,_, respectively;
(iv) of r=ri=rory, then v =r and 'E,_, and 'E,_, coincide with
E,_,and E, _, respectively;
(v) if r=reFry, then v =r and 'E,_, has an E,_,_, in common

with B,_, while 'E,_, coincides with E,,_,.

King’s COLLEGE,
LoxNpox.
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