
XII

Baryon properties

An important sector of hadron phenomenology is associated with the electroweak
interactions. Baryons provide a particularly rich source of information, with data on
vector and axial-vector couplings, magnetic moments, and charge radii. In
Sect. XII–1, we describe the procedure for computing matrix elements in the con-
stituent quark model, and then turn to a variety of applications in the succeeding
sections.1

XII–1 Matrix-element computations

Much of the application of the quark model to physical systems involves the calcu-
lation of matrix elements. The subject divides naturally into two parts. On the one
hand, many quantities of interest follow from just the flavor and spin content of the
hadronic states. On the other, it is often necessary to have a detailed picture of
the quark spatial wavefunction.

Flavor and spin matrix elements

For the first of these, the quark model is particularly appealing because of the intu-
itive physical picture which it provides. For example, consider the quark content of
the proton state vector, which we reproduce here from Table XI–2,

|p↑〉 = 1√
18
εijk[(u†

i↓d
†
j↑ − u†

i↑d
†
j↓)u

†
k↑] |0〉. (1.1)

The first two quarks form a spin-zero, isospin-zero pair with the net spin and
isospin of the proton being given by the final quark. The prefactor of 1/

√
18

ensures that the state vector has unit normalization. Calculation reveals that one-
third of the magnitude of this normalization factor comes from the u↑u↓d↑ term

1 The reader can also consult the Nc →∞ studies as described in [DaJM 94, Je 98].
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XII–1 Matrix-element computations 331

Table XII–1. Some baryon octet expectation values.

p n 
 �+ �0 �− !0 !−

〈Q〉 1 0 0 1 0 −1 0 −1
〈Qσz〉 1 −2/3 −1/3 1 1/3a −1/3 −2/3 −1/3
〈λ3σz〉 5/3 −5/3 2/

√
6 4/3 0 −4/3 −1/3 1/3

aThe off-diagonal transition �0 → 
 has |〈Qσz〉| = 1/
√

3.

and two-thirds from the u↑u↑d↓ term, i.e. one concludes that ‘the proton is twice
as likely to be found in the configuration with the u-quark spins aligned than
anti-aligned’,

Prob. =
{

2/3 (u↑u↑d↓),
1/3 (u↑u↓d↑).

(1.2)

The ‘six parts in eighteen’ of the u↑u↓d↑ configuration arises entirely from the six
ways that color can be distributed among three distinct entities. The configuration
u↑u↑d↓ is twice as large due to the presence of two u↑ states. Similar kinds of
inferences can be drawn for the remaining baryon state vectors in Table XI–2.

We can proceed analogously in deriving and interpreting various matrix-element
relationships. It is instructive to work at first in the limit of SU(3) invariance
because more predictions become available. The effect of symmetry breaking is
addressed in Sect. XII–2. Let us consider matrix elements, taken between mem-
bers of the spin one-half baryon octet, of the operators

squared charge-radius :
∫
d3x r2ψ†Qψ ∝ 〈Q〉,

axial-vector current :
∫
d3x ψ†γ3γ5λ3ψ ∝ 〈λ3σz〉,

magnetic moment :
∫
d3x

1

2
(r× ψ†αQψ)3 ∝ 〈Qσz〉. (1.3)

Along with the definition of each operator is indicated the flavor–spin attribute
of an individual quark which is being averaged over. For example, a magnetic
moment is sensitive to the combination Qσz of each quark within the baryon.
Matrix elements will then be products of such averages times quark wavefunction
overlap integrals. The flavor–spin averages for the baryon octet are displayed in
Table XII–1.

To see how these values are arrived at, let us compute the value 5/3 obtained for
the proton axial-vector matrix element. For the configuration u↑u↑d↓, which occurs
with a probability of 2/3, the average value of λ3σz equals (1+ 1+ 1)× 2/3 = 2,
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332 Baryon properties

whereas for the configuration u↑u↓d↑ one finds (1−1−1)×1/3 = −1/3. Together
they sum to the value 5/3.

Overlaps of spatial wavefunctions

The spatial description of quark wavefunctions is less well understood than the
spin/flavor aspect of the phenomenology.2 The most extensive studies of the spa-
tial wavefunctions are associated with matrix elements of currents. Because these
are bilinear in quark fields and because of the wavefunction normalization con-
dition, the magnitudes of these amplitudes are constrained to be nearly correct.
Dimensional matrix elements are primarily governed by the radius of the bound
state. As long as the proper value is fed into the calculation, the scale should come
out right.

As noted in Sect. XI–1, a relativistic quark moving in a spin-independent central
potential has a ground-state wavefunction of the form

ψ(x)

∣∣∣∣
gnd

=
(
i u(r) χ


(r)σ · x̂ χ
)
e−iEt , (1.4)

where u, 
 signify ‘upper’ and ‘lower’ components. For the bag model, these radial
wavefunctions are just spherical Bessel functions. This form also appears in some
relativistic harmonic oscillator models, which use a central potential. To charac-
terize different types of relativistic behavior, it is worthwhile to express matrix
elements in terms of u and 
 without specifying them in detail. The normalization
condition for the spatial wavefunction is then∫

d3x ψ†(x)ψ(x) =
∫
d3x (u2(r)+ 
2(r)) = 1. (1.5)

In the nonrelativistic regime, the lower component vanishes (
 = 0).
Let us consider the size of the lower components which occur in various

approaches. In the bag model one obtains for massless quarks the integrated value∫
d3x 
2(r) � 0.26. (1.6)

Relativistic effects are often included in potential models by working in momentum
space and employing the spinor appropriate for a quark q in momentum
eigenstate p,

2 Even the experimental value of the proton charge radius rE is in question. The historical approach, to
measure the differential cross section in elastic electron–proton scattering at low Q2, gives rE = 0.879(8) fm
and rE = 0.875(11) fm [Zh et al. 11] in recent experiments. By contrast, measurement of the
2SF=0

1/2 − 2PF=1
3/2 energy difference in muonic hydrogen [An et al. 13] yields (using a consistent definition

of charge radius) rE = 0.84087(39) fm, which is at 7σ variance relative to the scattering value.
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u(p) = √E +mq

⎛⎜⎜⎝ χ

σ · p
E +mq

χ

⎞⎟⎟⎠ . (1.7)

In this case the relevant prescription is∫
d3x 
2(r)→

〈
p2

2E(E +mq)

〉
, (1.8)

where the averaging is taken over the momentum-space wavefunction of the par-
ticular model. Using the uncertainty principle relation of Eq. (XI–1.14) to estimate
〈p2〉, we find typical values〈

p2

2E(E +mq)

〉
� 0.13 → 0.20 (1.9)

for a confinement scale of 1 fm. Larger effects are found in the harmonic-oscillator
model if one uses the value α2 = 0.17 GeV2 (see Fig. XI–2). Generally, the lower
component is found to be significant but not dominant in quark wavefunctions.

Connection to momentum eigenstates

In all cases except for the nonrelativistic version of the harmonic oscillator model,
one cannot explicitly separate out the center-of-mass motion. The result of a quark
model description of a bound state is a configuration localized in coordinate space,
i.e., a position eigenstate. However, the analysis of scattering and decay deals with
the plane waves of momentum eigenstates.

The basic assumption made in all quark models is that the bound state with a
given set of quantum numbers is related to only those momentum eigenstates of
the same type. If we denote |H(x)〉 as a unit-normalized hadron state centered
about point x and |H(p)〉 as a plane-wave state, then we have

|H(x)〉 =
∫

d3p ϕ(p)eip·x |H(p)〉. (1.10)

We shall give a prescription for obtaining a functional form for ϕ(p) shortly. Let
us normalize the plane-wave states for both mesons and baryons as

〈H(p′)|H(p)〉 = 2ωp(2π)
3δ(3)(p′ − p). (1.11)

The constraint of unit normalization then implies∫
d3p 2ωp(2π)

3 |ϕ(p)|2 = 1. (1.12)
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334 Baryon properties

We can employ the above wavepacket description to derive a general procedure
within the quark model for calculating matrix elements [DoJ 80]. Many matrix
elements of interest involve a local operator O evaluated between initial and final
single-hadron states. Let us characterize the magnitude of the matrix element in
terms of a constant g. Then, for baryons in the momentum basis, the spatial depen-
dence is given by

〈B ′(p′) |O(x)|B(p)〉 = g u(p′)�Ou(p) ei(p
′−p)·x, (1.13)

where �O is a Dirac matrix appropriate for the operator O. By comparison, one
obtains in any bound-state quark model (QM) calculation a spatial dependence
whose specific form is model-dependent,

QM〈B ′ |O(x)|B〉QM = f (x). (1.14)

Hereafter, let us center all quark model states at the origin. The method of
wavepackets then implies

QM〈B ′|
∫
d3x O(x)|B〉QM = g

∫
d3x

∫
d3p′d3p ϕ∗(p′)ϕ(p)

× u(p′)�Ou(p)ei(p′−p)·x

= g

∫
d3p (2π)3 |ϕ(p)|2 u(p)�Ou(p). (1.15)

For sufficiently heavy bound states the fluctuation in squared momentum 〈p2〉 is
small, and one may expand about |p| = 0,

u(p)�Ou(p) = u(0)�Ou(0)+O
(〈p2〉/m2

B

)
. (1.16)

A common approach consists of keeping only the leading term to obtain

g

2mB

u(0)�Ou(0) = QM〈B ′|
∫
d3x O(x) |B〉QM. (1.17)

It is interesting to note that this relation, often thought of as fundamental, is in fact
only an approximation.

As an example, let us perform the complete quark model procedure for the
neutron–proton axial-vector current matrix element. We begin by defining as usual

〈p(p2, s2)
∣∣Aμ(x)∣∣ n(p1, s1)〉 = gAu(p2, s2)γμγ5u(p1, s1)e

i(p2−p1)·x + · · · .
(1.18)

For spin-up nucleons the choice μ = 3 gives

u(0,↑)γ3γ5u(0,↑) = 2mN, (1.19)
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yielding for Eq. (1.18) the basic formula,

gA = QM〈p↑|
∫
d3x u(x)γ3γ5d(x) |n↑〉QM. (1.20)

The field operator for any quark q is expanded as in Eq. (XI–1.1),

qα(x) =
∑
n,s

[
ψn,s(x)e

−iωntqn,α(s)+ ψn,s(x)eiωntq†
n,α(s)

]
. (1.21)

Substituting, we have

gA = QM〈p↑|
∫
d3x ψ0,s′(x) γ3γ5ψ0,s(x) u

†
α(s)dα(s

′)|n↑〉QM, (1.22)

where only the n = 0 ground-state mode contributes. At this stage, one can factor-
ize the spin and space components by using the general ground-state wavefunction
of Eq. (1.4). This leads to∫

d3x ψ0,sγ3γ5ψ0,s′ =
∫
d3x χ†

s (u
2σ3 − 
2r̂3σ · r̂)χs′

= σ ss
′

3

∫
d3x (u2 − 1

3

2), (1.23)

and thus

gA =
∫
d3x

(
u2 − 1

3

2

)
QM〈p↑

∣∣∣u†(s, α)σ ss
′

3 d(s ′, α)
∣∣∣ n↑〉QM. (1.24)

Finally, upon dealing with the spin dependence in Eq. (1.24), we obtain

gA = 5

3

∫
d3x

(
u2 − 1

3

2

)
= 5

3

(
1− 4

3

∫
d3x 
2

)
. (1.25)

Any nonrelativistic quark model, having zero lower components, would simply
yield gA = 5/3. If one desires to make relativistic corrections to such a model,
the result can be inferred from the above general formula with the appropriate
substitution of Eq. (1.8). Clearly, the procedure just given can be extended to matrix
elements of any physical observable.

The wavepacket formalism also allows for the estimation of the ‘center-of-mass’
correction. This arises from the 〈p2〉 modifications to Eq. (1.16). For the axial cur-
rent, the zero-momentum relation in Eq. (1.19) is extended for nonzero momentum
to

u2(p,↑)γ3γ5u1(p,↑)
2E

= 1− p2

3m1m2

(
1

4
+ 3

8

m2

m1
+ 3

8

m1

m2

)
+O(p4), (1.26)
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336 Baryon properties

where an average over the direction of p has been performed. This expression
generalizes Eq. (1.25) to

gA

[
1− 〈p2〉np

3mnmp

(
1

4
+ 3

8

mp

mn

+ 3

8

mn

mp

)]
= 5

3

∫
d3x

(
u2 − 1

3

2

)
, (1.27)

where 〈p2〉np � 0.5 GeV2 is a typical bag model value.
It is possible to argue that in the transition from the current quarks of the QCD

lagrangian to the constituent quarks of the quark model, the couplings to currents
should be modified. For example, one might suspect that the coupling of a con-
stituent quark to the axial current occurs not with strength unity, but with a strength
g
(q)

A such that the nonrelativistic expectation is not g1= 5/3 but rather g1= 5g(q)A /3.
The choice g(q)A � 3/4 would then yield the experimental value. This is not unrea-
sonable but, if fully adopted, leads to a lack of predictivity. In such a picture, not
only can the magnetic moments and weak couplings be renormalized, but also the
spin and flavor structures. That is, in the ‘dressing’ process which a constituent
quark undergoes, there could be ‘sea’ quarks, such that the constituent u quark
could have gluonic, d-quark, or s-quark content. Likewise, some of the spin of
the constituent quarks could be carried by gluons. One is then at a loss to know
how to calculate matrix elements of currents. In practice, however, the naive quark
model, with no rescaling of gA or of the magnetic moment, does a reasonable job of
describing current matrix elements. It is then of interest to study both the structure
and limitations of this simple approach.

Calculations in the Skyrme model

There are several differences between taking matrix elements in the quark model
and in the Skyrme model [Sk 62]. To begin, in the quark model a current is
expressed in terms of a bilinear covariant in the quark fields (cf. Eq. (1.3)), whereas
in the Skyrme model the representation of a current is rather different. As an
example, application of either Noether’s theorem or the external source method
of Sect. IV–6 identifies the SU(2) vector and axial-vector currents to be(

Jv
a

)a
μ
= iF 2

π

4
Tr
(
τ a(∂μU U † ± ∂μU † U)

)
− i

16e2

[
Tr
([
τ a, ∂νU U †

] [
∂μU U †, ∂νU U †

])
±Tr

([
τ a, ∂νU

† U
] [
∂μU

† U, ∂νU † U
])]

, (1.28)

where U = A(t)U0A
−1(t) is the quantized skyrmion form and A(t) is an SU(2)

matrix. We shall neglect derivatives of A(t), as the quantization hypothesis corre-
sponds to slow rotations. This leads to a result similar in form to Eq. (1.28), but
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with U → U0 and τ a → A−1(t)τ aA(t). The answer may be simplified by use of
the explicit form of U0 appearing in Eq. (XI–4.15).

Let us use Eq. (1.28) to compute the spatial integral of the axial current. After
some algebra, we obtain a product of spatial and internal factors,∫

d3x (JA)
a
j = −G5 Tr (τ aAτ jA−1),

G5 = − π

3e2

∫ ∞

0
dr̃ r̃2

[
F ′ + sin 2F

r̃
+ 4 sin 2F

r̃
(F ′)2

+8 sin2 F

r̃2
F ′ + 4 sin2 F sin 2F

r̃3

]
, (1.29)

where a is the isospin component and j is the Lorentz component. This is now
suitable for taking matrix elements, such as

〈p↑|
∫
d3x (JA)

a
j |p↑〉 =

∫
d3x

∫
d�3 〈p↑|A〉 (JA)aj 〈A|p↑〉

= G5

∫
d�3 D

( 1
2 )∗
− 1

2 ,
1
2
(A)Tr (τ aAτ jA−1)D

( 1
2 )

− 1
2 ,

1
2
(A),

(1.30)

where we have used the completeness relation of Eq. (XI–4.42). Upon expressing
the trace in Eq. (1.30) as a rotation matrix, Tr (τ kAτ lA−1)/2 = D

(1)
kl , we can

determine the group integration in Eq. (1.30) in terms of SU(2) Clebsch–Gordan
coefficients,∫

d�3 D
(T ′′)∗
mn (A)D

(T ′)
kl (A)D

(T )
ij (A) = (−)2(T ′−T+m) 2π2

2T ′′ + 1
CT ′T T ′′
kim CT ′T T ′′

ljn .

(1.31)

Alternatively, one can work directly with the collective coordinates, e.g., with the
aid of Eqs. (XI–4.41–4.44) we obtain for a = j = 3

−2G5

π2

∫
d�3 (a1 − ia2)(a

2
0 + a2

3 − a2
1 − a2

2)(a1 + ia2) = 2

3
G5. (1.32)

Before one can infer a Skyrme model prediction for gA from this calculation,
there is a subtlety not present for the quark calculation, which must be addressed.
Due to the original chirally invariant lagrangian, the Skyrme model is unique among
phenomenological models in being completely compatible with the constraints of
chiral symmetry. As a consequence, the near-static axial-vector matrix element is
constrained to obey

qj 〈p(p′)|(JA)3j |p(p)〉 = 0, (q = p − p′) (1.33a)

https://doi.org/10.1017/9781009291033.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.013


338 Baryon properties

and hence must be of the form [AdNW 83],

〈p(p′)|(JA)3j |p(p)〉 = 2mpgA

(
δjk − qjqk

|q|2
)
〈σk〉. (1.33b)

The term containing |q|−2 arises from the pion pole, as will be discussed in
Sect. XII–3 in connection with the Goldberger–Treiman relation. An angular aver-
age of Eq. (1.33b) then yields 2gA/3, which from comparison with Eq. (1.32)
implies gA = G5. Thus in the Skyrme model, the axial-vector coupling constant
equals the radial integral in Eq. (1.29) which defines G5. Use of the profile given
in Sect. XI–4 leads to the prediction gA = 0.61, which is about only one-half
the experimental value and constitutes a well-known deficiency of skyrmion phe-
nomenology. Presumably, consideration of a more general chiral lagrangian could
modify this result by including higher derivative components in the weak current.

Pions may be added to the Skyrme description through introduction of the matrix
ξ described in App. B–4 [Sc 84],

U = ξA(t)U0A
−1(t)ξ, ξ = exp [iτ · π/(2Fπ)] . (1.34)

If currents are formed using this ansatz, some terms occur without derivatives on
the pion field, while others contain one or more factors of ∂μπ . Since ∂μπ gives rise
to a momentum factor qμπ when matrix elements are taken and soft-pion theorems
deal with the limit qμπ → 0, the lowest-order soft-pion contribution will consist
of keeping only terms without derivatives. Thus in the process νμ + N → N +
π +μ the final-state pion is produced by a hadronic weak current and the soft-pion
theorem relates the N → Nπ matrix element to the N → N current form factors.
Expanding the currents to first order in the pion field yields(

Jv
a

)a
μ
= iFπ

2

[
Tr
(
τ aA−1

(
∂μU

†
0 U0 ± ∂μU0 U

†
0

)
A
)

− iπ
b

2Fπ
Tr
(
[τ a, τ b]A−1

(
∂μU

†
0 U0 ∓ ∂μU0 U

†
0

)
A
)
+ · · ·

]
, (1.35)

where for notational simplicity we have displayed only the first term in the current.
Note the sign flip in the second line. This form is in accord with the soft-pion
theorem (see App. B–3)

lim
qλπ→0

〈N ′(p′)πb(qπ)|
(
Jv

a

)a
μ
|N(p)〉 = − i

Fπ
〈N ′(p′)|

[
Qb

5,
(
Jv

a

)a
μ

]
|N(p)〉

= −ε
abc

Fπ
〈N ′(p′)|

(
Jv

a

)c
μ
|N(p)〉, (1.36)

where the current commutation rules of App. B–3 have been used.
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XII–2 Electroweak matrix elements

The static properties of baryons can be determined from their coupling to the weak
and electromagnetic currents. In this section, we shall describe these features in
terms of the quark model.

Magnetic moments

The generic quark model assumption for the magnetic moment is that the individual
quarks couple independently to a photon probe. For ground-state baryons where all
the quarks move in relative S waves, the magnetic moment is thus the vector sum
of the quark magnetic moments,

μbaryon =
3∑
i=1

μiσ i , (2.1)

where σ i is the Pauli matrix representing the spin state of the ith quark andμi is the
magnitude of the quark magnetic moment.3 Since the light hadrons contain three
quark flavors, the most general fitting procedure to the moments of the baryon octet
will involve the magnetic moments μu,μd, μs .

It is straightforward to infer baryon magnetic-moment predictions in the quark
model directly from the state vectors of Table XI–2. For example, we have seen that
the proton occurs in the two configurations u↑u↑d↓ and u↑u↓d↑ with probabilities
2/3 and 1/3, respectively. This can be used to carry out the construction defined
by Eq. (2.1) as follows:

μp = 2

3
μ(u↑u↑d↓) + 1

3
μ(u↑u↓d↑)

= 2

3
[2μ(u↑)+ μ(d↓)] + 1

3
[μ(u↓)+ μ(u↑)+ μ(d↑)] = 4

3
μu − 1

3
μd, (2.2)

and similarly for the other baryons. Experimental and quark model values are dis-
played in Table XII–2.

It is of interest to see how well the assumption of SU(3) symmetry fares. In
the limit of degenerate quark mass (denoted by a superbar), the quark magnetic
moments are proportional to the quark electric charges,

μ̄d = μ̄s = −1

2
μ̄u (SU(3) limit), (2.3a)

3 When referring to the ‘magnetic moment’ of a quantum system, one means the maximum component
along a quantization axis (often chosen as the 3-axis). Thus, the magnetic moment is sensitive to the third
component of quark spin as weighted by the quark magnetic moment.
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Table XII–2. Baryon magnetic moments.

Mode Experimenta Quark model Fit Ab Fit Bc

μp 2.792847386(63) 4μu−μd
3 2.79 2.79

μn −1.91304275(45) 4μd−μu
3 −1.86 −1.91

μ
 −0.613(4) μs −0.93 −0.61
μ�+ 2.458(10) 4μu−μs

3 2.79 2.67
|μ�0
| 1.61(8) |μu−μd |√

3
1.61 1.63

μ�− −1.160(25) 4μd−μs
3 −0.93 −1.09

μ!0 −1.250(14) 4μs−μu
3 −1.86 −1.44

μ!− −0.651(3) 4μs−μd
3 −0.93 −0.49

aExpressed in units of the nucleon magneton μN = e�/2Mp.
bSU(3) symmetric fit.
cμu, μd, μs taken as independent parameters.

while isospin symmetry would imply

μ̄d = −1

2
μ̄u (SU(2) limit). (2.3b)

If we determine the one free parameter by fitting to the very precisely known proton
moment, we obtain the SU(3) symmetric Fit A shown in Table XII–2. More gener-
ally, allowing μu,μd, μs to differ and determining them from the proton, neutron,
and lambda moments yields

μu = 1.85 μN, μd = −0.972 μN, μs = −0.613 μN, (2.4)

and leads to the improved (but not perfect) agreement of Fit B in Table XII–2.
We see from Eq. (2.4) that the main effect of SU(3) breaking is to substantially
reduce the magnetic moment of the strange quark relative to that of the down quark.
The deviation of μd/μu from the isospin expectation of μd/μu = −1/2 is smaller
and perhaps not significant. Observe that the famous prediction of the SU(2) limit,
μn/μp = −2/3, is very nearly satisfied.

The magnetic moment as derived from the multipole expansion of the electric
current is defined by

μ = 1

2

∫
d3x r× Jem(x). (2.5)

It follows from this expression that the contribution of a nonrelativistic quark ‘q’
to the hadronic magnetic moment is just the Dirac result,

μq = Q

2Mq

, (2.6)
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where Mq is the quark’s constituent mass and Q is its charge. We can use this
together with Eq. (2.4) to determine the constituent quark masses, with the result

Mu � Md � 320 MeV, Ms � 510 MeV. (2.7)

As we shall see in Sect. XIII–1, these masses are comparable to those extracted
from mass spectra of the light hadrons.

One can also construct models involving relativistic quarks. For these, the
magnetic-moment contribution of an individual quark becomes

μ = 2Q

3
σ

∫
d3x r u(r) 
(r). (2.8)

Note the absence of an explicit dependence on quark mass. This is compensated by
some appropriate dimensional quantity. The inverse radius R−1 plays this role in
the bag model, and other determinations of R allow for a prediction of the hadronic
magnetic moment. For example, the bag model defined by taking zero quark mass
(corresponding to the ultrarelativistic limit) and R = 1 fm yields the value μp �
2.5 in a treatment which takes center-of-mass corrections into account [DoJ 80].
Although this specific value is somewhat too small, it is fair to say that quark
models give a reasonable first approximation to baryon magnetic moments.

Semileptonic matrix elements

The most general form for the hadronic weak current in the transition B1 → B2
ν̄


is

〈B2(p2)|J (wk)
μ |B1(p1)〉

= ū(p2)

[
f1(q

2)γμ − if2(q
2)

m1 +m2
σμνq

ν + f3(q
2)

m1 +m2
qμ

+ g1(q
2)γμγ5 − ig2(q

2)

m1 +m2
σμνq

νγ5 + g3(q
2)

m1 +m2
qμγ5

]
u(p1), (2.9)

where the {fi} and {gi} form factors correspond respectively to the vector and
axial-vector current matrix elements, and q = p1 − p2 is the momentum trans-
fer.4 The form factors are all functions of q2 and the phases are chosen so that each
form factor is real-valued if time-reversal invariance is respected. In practice, the
form factors accompanying the two terms with the kinematical factor qμ are dif-
ficult to observe because each such contribution is multiplied by a (small) lepton
mass upon being contracted with a leptonic weak current. Thus, we shall drop these
until Sect. XII–4.
4 Given the context of application, there should be no confusion between the QCD strong coupling constant g3

and the axial-vector form factor g3(q
2).
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As regards the remaining form factors, we have already presented the ingredients
for performing a quark model analysis (see also [DoGH 86b]). Using the n → p

transition as a prototype, we have

f
np

1 = 〈p↑|
∫
d3x ūγ 0d |n↑〉 =

∫
d3x (uuud + 
u
d) = 1 , (2.10a)

f
np

1 + f np2

mp +mn

= 〈p↑|
∫
d3x

1

2
[r× (ūγ d)]3 |n↑〉

= 1

3

∫
d3x r(uu
d + ud
u) = 1

2

(
1

2Mu

+ 1

2Md

)
, (2.10b)

g
np

1 = 〈p↑|
∫
d3x ūγ3γ5d |n↑〉 = 5

3

∫
d3x (uuud − 1

3

u
d), (2.10c)

g
np

2

mn +mp

+
(

1

2mn

− 1

2mp

)
g
np

1 + gnp3

2
= 〈p↑| − i

∫
d3x zūγ 0γ5d |n↑〉

= 1

3

∫
d3x z(ud
u − uu
d) = 1

2

(
1

2Md

− 1

2Mu

)
. (2.10d)

In each case, we first give the defining relation, then the general Dirac wavefunc-
tion (cf. Eq. (1.4)) and, finally, the nonrelativistic quark model limit. The vanish-
ing of gnp2 in the limit of exact isospin symmetry is a consequence of G-parity
(cf. Sect. V–3)).

Predictions for the other baryonic transitions are governed by SU(3) invariance,
amended by small departures from SU(3) invariance as suggested by the quark
model, i.e., s → u transitions are similar to those of d → u as given above, but with
the down-quark mass and wavefunction replaced by those of the strange quark.
SU(3) breaking in the form factors arises from this difference in the wavefunction.
As a quark gets heavier, its wavefunction is more concentrated near the origin
and the lower component becomes less important. The form factors of the matrix
element 〈Bb|Jμc |Ba〉 evaluated in the SU(3) limit at q2 = 0 give for the vector
current,

f1(0) = ifabc, f2(0) = ifabcf + dabcd,
f = 1

2
(μp + μn − 1), d = −3

2
μn,

(2.11a)

with f/d = 0.29, and for the axial-vector current,

g1(0) = ifabcF + dabcD, (2.11b)

with F +D = g
np

1 = gA = 1.27. In the above, the indices a, b, c = 1, . . . , 8 label
the SU(3) of flavor, with c = (1 + i2) for �S = 0 and c = 4 + i5 for �S = 1.
There is no SU(3) parameterization for the g2 form factor because it vanishes in the
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SU(3) limit. An important result specific to the quark model is D/(D+F) = 3/5
for the SU(3) structure of the axial-current {g1} form factors.
SU(3) breaking in the {f1} form factors is required by the Ademollo–Gatto the-

orem to occur only beginning at second order (see Sect. VIII–1). In practice, the
quark model prediction for SU(3) breaking yields an extremely small effect. This
is not true for the {f2} form factors of weak magnetism, where inclusion of the
strange-quark mass lowers all s → u transitions by 20% compared to the d → u

transition. The wavefunction overlaps in g1 lead to a slight increase in the strength
of the s → u transition compared to d → u because of the reduced lower compo-
nent of the s quark. For g2, a nonzero but highly model-dependent value is gener-
ated, typically of order |g2/g1| � 0.3.

XII–3 Symmetry properties and masses

In our discussion of baryon properties, we have first discussed quark models
because they are generally simple and have predictive power. However, effective
field theory methods are also useful when applied to the study of baryons.5 We
shall combine the two descriptions in this section.

Effective lagrangians for baryons

We begin by writing effective lagrangians which include baryon fields, using the
procedure described in App. B–4. The lowest-order SU(2)-invariant lagrangian
describing the nucleon and its pionic couplings has the form

LN = N̄
(
i /D − gA /Aγ5 −m0

)
N

− Z0

2
N̄
(
ξm̂ξ + ξ †m̂ξ †

)
N − Z1

2
N̄N Tr

(
m̂U + U †m̂

)
,

Dμ ≡ ∂μ + iV μ, ξ ≡ exp [iτ · π/(2Fπ)] , U ≡ ξξ,

V μ ≡ − i
2

(
ξ †∂μξ + ξ∂μξ †

)
, Aμ ≡ − i

2

(
ξ †∂μξ − ξ∂μξ †

)
, (3.1)

where N = (p
n

)
is the nucleon field, m̂ is the mass matrix for current quarks (with

mu = md ≡ m̂), Z0 and Z1 are arbitrary constants which parameterize terms pro-
portional to the quark mass matrix, and the constant gA is the nucleon axial-vector
coupling constant gA � 1.27 (cf. Prob. XII–1). The mass parameter m0 represents
the nucleon mass in the SU(2) chiral limit.

5 There is also an effective field theory treatment of the few nucleon case [We 90, Va 08, EpM 12] which helps
understand nuclei in a systematic manner.
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For the full SU(3) octet of baryons, the analog of ‘N’ is

B = 1√
2

8∑
a=1

λaBa =

⎛⎜⎜⎜⎝
�0√

2
+ 
√

6
�+ p

�− −�0√
2
+ 
√

6
n

!− !0 − 2
√
6

⎞⎟⎟⎟⎠ , (3.2)

where the phases have been adjusted to match our quark model phase convention
of Eq. (XI–1.8). The SU(3) version of Eq. (3.1) becomes

LB = Tr
(
B̄ (i /D − m̄0)B − D

(
B̄γ μγ5{Aμ,B}

) − F
(
B̄γ μγ5[Aμ,B]

))
− Z0

2
Tr
(
dm
(
B̄{ξmξ + ξ †mξ †, B}) + fm

(
B̄
[
ξmξ + ξ †mξ †, B

]))
− Z1

2
Tr (B̄B)Tr (mU + U †m), (3.3)

where the covariant derivative is now DμB ≡ ∂μB + i[V μ,B], ξ is the SU(3)
generalization of the quantity in Eq. (3.1) with τ replaced by λ, m is the diagonal
SU(3) quark mass matrix,

m = (m̂, m̂, ms

)
diag =

1

3
(2m̂+ms)1+ 1√

3
(m̂−ms)λ8, (3.4)

and m̄0 is the degenerate baryon mass in the SU(3) chiral limit. Consistency of the
SU(2) and SU(3) lagrangians requires

D + F = gA, dm + fm = 1,

m0 = m̄0 + Z1ms − Z0ms(fm − dm). (3.5)

The description thus far is based on symmetry. It includes quark mass, but not
higher powers of derivatives.

Baryon mass splittings and quark masses

The various parameters (m̂,ms, Z0 etc.) appearing in the chiral lagrangians of
Eqs. (3.1), (3.3) can be determined from baryon mass and scattering data. In the
nonstrange sector, the nucleon mass is given in the notation of Eq. (3.1) as

mN = m0 + (Z0 + 2Z1)m̂. (3.6)

To isolate the effect of the nonstrange quark mass m̂ and of the constants Z0, Z1, it
will prove useful to define a quantity σ ,

σ = mN −m0 = m̂
〈N |uu+ dd|N〉

2mN

= m̂ (Z0 + 2Z1). (3.7)
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Shortly, we shall see how this quantity can be determined from pion–nucleon scat-
tering data.

However, let us first consider the baryonic mass splittings generated by the
mass difference ms − m̂. Upon using Eq. (3.3) to obtain expressions for the baryon
masses and working with isospin-averaged masses, it is possible by adopting the
numerical values

Z0(ms − m̂) = 132 MeV, dm/fm = −0.31, (3.8)

to obtain the following good fit:

m� −mN = (fm − dm)Z0(ms − m̂) = 251 MeV (expt. : 254.2 MeV),

m� −m
 = −4

3
dmZ0(ms − m̂) = 79 MeV (expt. : 77.5 Mev),

m! −mN = 2fmZ0(ms − m̂) = 383 MeV (expt. : 379.2 MeV).

(3.9)

Observe that these mass splittings depend on Z0 but not on Z1. The three relations
of Eq. (3.9) imply the Gell-Mann–Okubo formula [Ge 61, Ok 62],

m� −mN = 1

2
(m! −mN)+ 3

4
(m� −m
)

(Expt. : 254 MeV = 248 MeV), (3.10)

which displays an impressive level of agreement (� 3%) with experimental values.
The above analysis, based on a chiral lagrangian, can be enhanced by using ideas

taken from the quark model. In the limit of noninteracting quarks, the quark model
yields for a general spatial wavefunction,6

m
 −mN = m� −mN = m! −m� = (ms − m̂)
∫
d3x (u2 − 
2). (3.11)

However, observe that m� = m
 (corresponding in the chiral lagrangian descrip-
tion to dm = 0) for noninteracting quarks. Of course, the actual 
 and � baryons
are not degenerate, so additional physics is required. A quark model source of the

−� mass splitting lies in the hyperfine interaction of Eq. (XI–2.14),

H
(baryon)
hyp = 1

2

∑
i<j

H̄ij si · sj δ(3)(r), (3.12)

where the prefactor of 1/2 is associated with the color dependence of Eq. (XI–2.4).
Matrix elements of this operator give rise to the additive mass contributions,

6 One could equivalently use the language of the potential model, where these baryon mass splittings arise
from the constituent quark mass difference Ms − M̂ .
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mN = · · · − 3

8
Hnn, m
 = · · · − 3

8
Hnn,

m� = · · · + 1

8
Hnn − 1

2
Hns, m! = · · · − 1

2
Hns + 1

8
Hss,

(3.13)

where H̄ij and Hij are related by Hij ≡ H̄ij |�(0)|2 and the subscripts ‘n’, ‘s’
denote an interaction involving a nonstrange quark and a strange quark respec-
tively. For Hnn �= Hns, the � and 
 will not be degenerate. Treating both quark
mass splittings and hyperfine effects as first-order perturbations (e.g. Hss −Hns =
Hns −Hnn), one obtains quark model mass relations

m
 −mN = (ms − m̂)
∫
d3x (u2 − 
2),

m� −m
 = 1

2
(Hnn −Hns),

m! −mN = 1

4
(Hnn −Hns)+ 2(ms − m̂)

∫
d3x (u2 − 
2) (3.14)

in accord with the sum rule of Eq. (3.10). These formulae can provide an estimate
of quark mass. For the usual range of quark model wavefunctions (encompassing
both bag and potential descriptions), the overlap integral has magnitude∫

d3x (u2 − 
2) � 1

2
→ 3

4
. (3.15)

To the extent that this estimate is valid, it produces the values

ms − m̂ � 230 → 350 MeV, m̂ � 11 → 14 MeV, (3.16)

where the chiral symmetry mass ratio of Eq. (VII–1.15a) has been used to obtain
m̂. In general, quoting absolute values of quark masses is dangerous as one must
specify how the operator qq, which occurs in the mass term mqqq, has been
renormalized. It is all too common in the literature to ignore this point by using
ms − m̂ = m
 − mN . The values quoted here are actually current-quark mass
differences, renormalized at a hadronic scale using quark model matrix elements.

The parameter Z1 which appears in the SU(3) lagrangian of Eq. (3.3) is difficult
to constrain in a quark model. For example, one might consider the matrix element

〈N |msss|N〉
2mN

= ms (Z1 − Z0(fm − dm)) . (3.17)

The most naive assumption, that 〈N |msss|N〉 vanishes, would imply Z1 = Z0

(fm − dm) � 1.9Z0. However, one may legitimately question whether such an
assumption is reasonable. We shall return to the issue of the ‘strangeness content’
of the nucleon later in this section.
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Goldberger–Treiman relation

Moving from the study of baryon masses to the topic of interactions, let us consider
the coupling of pions and nucleons. The SU(2) lagrangian of Eq. (3.1), expanded
to order π2, becomes

LN = N̄(i/∂ −mN)N + gA

Fπ
N̄γ μγ5

τ

2
N · ∂μπ

− 1

4F 2
π

N̄γ μτ · π × ∂μπ N + 1

2F 2
π

π2N̄Nσ + · · · , (3.18)

where σ is defined in Eq. (3.7). The second term describes the NNπ vertex. Upon
using Eq. (3.18) to compute the pion emission amplitude N → Nπi and compar-
ing with the Lorentz invariant form

MN→Nπi = −igπNNu(p′)γ5τ
iu(p), (3.19)

one immediately obtains the Goldberger–Treiman relation [GoT 58],

gπNN = gAmN

Fπ
. (3.20)

Inserting the experimental value, g2
πNN/4π � 13.8, for the πNN coupling con-

stant, one finds the Goldberger–Treiman relation to be satisfied to about 2.5%.
There also exist important implications for the g3 term in the general expression

given in Eq. (2.9) for the axial-current matrix element. In forming the n→ p axial
matrix element, one encounters a direct γμγ5 contribution and also a pion-pole term
which corresponds to pion propagation from the n→ pπ− emission vertex to the
axial current. Making use of Eq. (3.20) and Prob. XII–1, we have

〈p(p′)|A+μ |n(p)〉 = u(p′)

[
gAγμγ5 − gA√

2Fπ
/qγ5

√
2Fπqμ

q2 −m2
π

]
u(p)

= u(p′)
[
gAγμγ5 + 2mNgA

q2 −m2
π

qμγ5

]
u(p). (3.21)

where q = p − p′. It is this induced pseudoscalar modification which allows the
axial current to be conserved in the chiral limit m2

π → 0,

−i∂μ〈p(p′)|A+μ |n(p)〉 = 2mNgA

[
1− q2

q2 −m2
π

]
u(p′)γ5u(p)

= −2mNgAm
2
π

q2 −m2
π

u(p′)γ5u(p). (3.22)

Note that for nonzero pion mass, the above is consistent with the PCAC relation of
Eq. (B–3.7),

Fπm
2
ππ

k = ∂μAkμ, (3.23)
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as both sides have the same matrix element,

−i〈p(p′) ∣∣Fπm2
ππ

+(0)
∣∣ n(p)〉 = i

√
2 gπNNu(p′)γ5u(p)

i

q2 −m2
π

√
2Fπm

2
π

= −2mNgAm
2
π

q2 −m2
π

u(p′)γ5u(p). (3.24)

The pion-pole contribution of the axial-vector current-matrix element has been
probed in nuclear muon capture, as will be described in Sect. XII–4.

The nucleon sigma term

One of the features immediately apparent from the effective lagrangian of Eq. (3.1)
is that all the couplings of pions to nucleons, with the exception of the quark mass
terms, are derivative couplings. Before turning to the sigma term, which appears
in the nonderivative sector, let us briefly consider the expansion in powers of the
number of derivatives for pion-nucleon scattering. Recall for pion–pion scattering
(cf. Sect. VI–4), there were no large masses and the chiral expansion was expressed
in terms of m2

π or E2
π . However, correction terms in the chiral expansion for nucle-

ons will enter at relatively low energies since a term like 2p · q � 2mpEπ can
get large quickly (it is linear in the energy and has a large coefficient, e.g., Eπ =
250 MeV gives 2mpEπ = (700 MeV)2). To combat this difficulty, additional (but
still general) inputs such as analyticity and crossing symmetry are often invoked.
Fortified with these theoretical constraints, one then matches intermediate-energy
data to the low-energy chiral parameterizations. The low-energy chiral results
thereby obtained appear to be well satisfied [Hö 83, GaSS 88].

The nonderivative pion–nucleon coupling coming from the quark mass terms in
Eq. (3.1) is of particular interest. To determine this contribution from experiment,
one must be able to suppress the various derivative couplings. Thus, if one extra-
polated in the chiral limit to zero four-momentum, the derivative couplings would
vanish. Not surprisingly then, a soft-pion analysis reveals that the nonderivative
coupling can be isolated by extrapolating the isospin-even πN scattering amplitude
with the Born term subtracted (called D̄+ in the literature) to the so-called ‘Cheng–
Dashen point’ t = m2

π , s = m2
N [ChD 71]. It is conventional to multiply the

extrapolated amplitude by F 2
π and thus define a quantity �,

� ≡ F 2
π D̄

+
CD. (3.25)

To lowest order in the chiral expansion, the measured quantity � is just the matrix
element σ defined in Eq. (3.7),

� = σ = m̂
〈N |uu+ dd|N〉

2mN

. (3.26)
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It is this isospin-even scattering amplitude D̄+ which provides a unique window
on the nonstrange quark mass m̂. Because � is proportional to the small mass m̂,
it is difficult to determine this quantity precisely, and considerable effort has gone
into its extraction. The Cheng–Dashen point lies outside the physical kinematic
region, and extrapolation from the experimental region must be done carefully with
dispersion relations. A recent estimate is [AlCO 13]

� = 59± 7MeV. (3.27)

The result σ = � − 15 MeV has been obtained from studies of higher-order chiral
corrections, implying

σ � 44 MeV (3.28)

as the measure of light-quark mass [GaLS 91].

Strangeness in the nucleon

In light of the above discussion, it is tempting to interpret various contributions to
the nucleon mass by making use of the energy-momentum trace. Recall the trace
anomaly of Eq. (III–4.16),

θμμ =
βQCD

2g3
Fa
μνF

aμν +muuu+mddd +msss. (3.29)

Taking the nucleon matrix element gives

mN =
〈N ∣∣θμμ ∣∣N〉

2mN

= m0 + σ,

m0 = (2mN)
−1〈N

∣∣∣∣βQCD2g3
Fa
μνF

aμν +msss

∣∣∣∣N〉 � 894± 8 MeV,

σ = m̂
〈N |uu+ dd|N〉

2mN

� 44 MeV. (3.30)

This result is already quite interesting in that the largest contributions, the gluon
and strange-quark terms in m0, appear to be ‘nonvalence’. At this stage, the sepa-
ration is essentially model-independent.

One can explore the ‘strangeness content of the nucleon’ by using an SU(3)
analysis of hyperon masses. Thus, we introduce a mass-splitting operator, which
transforms as the eighth component of an octet,

Lm-s = 1

3
(m̂−ms)(uu+ dd − 2ss). (3.31)
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Since the hyperon mass splittings are governed by this octet operator, we find

δs ≡ 〈p
∣∣(ms − m̂)(uu+ dd − 2ss)

∣∣p〉
2mp

= 3

2
(m! −mN) = 574 MeV. (3.32a)

When scaled by the quark mass ratio m̂/ms , Eq. (3.32a) becomes

δ ≡ m̂
〈N ∣∣uu+ dd − 2ss

∣∣N〉
2mN

= 3

2

m2
π

m2
K −m2

π

(m! −m
) � 25 MeV (35 MeV), (3.32b)

where the figure in parentheses includes higher-order chiral corrections [Ga 87].
Comparison of δ and σ immediately indicates that they are compatible only if the
strange-quark matrix element does not vanish. Indeed, one requires

〈N |ss|N〉
〈N ∣∣uu+ dd + ss∣∣N〉 � 0.18 (0.09). (3.33)

This gives for the constant Z1 of Eq. (3.1) the value Z1 � 3.9Z0 (2.9Z0) to be
contrasted with the estimate which follows Eq. (3.17). At the same time, one can
separate out the following matrix elements

(2mN)
−1〈N

∣∣∣∣βQCD2g3
Fa
μνF

aμν

∣∣∣∣N〉 � 634 MeV (764 MeV),

(2mN)
−1〈N |msss|N〉 � 260 MeV (130 MeV), (3.34)

where figures in brackets use the corresponding bracketed quantity in Eq. (3.32b).
Note the surprisingly large effect of the strange quarks. These results are contro-
versial because they draw a counter-intuitive conclusion from the use of SU(3)
symmetry. However, even with SU(3) breaking, the difference between σ and the
SU(3) value of δ is large enough that some ss contribution is likely to be required.

This analysis does not go well with the naive interpretation of the quark model
as embodied, for example, in the proton-state vector formula which began this
chapter. However, it is possibly compatible with a more sophisticated interpretation
of the constituent quarks which enter into quark models. In the process of forming
a constituent quark, the quark is ‘dressed’ by gluonic and even ss quark fields. It
is no longer the naive object that occurs in the QCD lagrangian. It is this dressed
object which may then easily generate gluonic and perhaps strange quark matrix
elements. Recall that even the vacuum state has gluonic and quark matrix elements.
Similar explanations exist in bag and Skyrme models [DoN 86]. This issue remains
unresolved at present.

Based on the possible existence of a substantial nonzero value for the scalar
density matrix element 〈N |s̄s|N〉, a major program was launched to investigate
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the possibility for a similar nonzero value for the strange vector-current matrix
element 〈N |s̄γμs|N〉 which can be characterized in terms of charge and magnetic
form factors F s

1 (q
2), F s

2 (q
2) via

〈N |s̄γμs|N〉 = ū(p′)
[
γμF

s
1 (q

2)− i

2mN

σμνq
νF s

2 (q
2)

]
u(p). (3.35)

The form factor F s
1 (q

2) obeys F s
1 (0) = 0, whereas F s

2 (q
2) has no such constraint.7

In order to determine the size of the ūγμu, d̄γμd, s̄γμs contributions to the cor-
responding nucleon matrix elements, three experimental inputs are required. Two
of these come from well-known electromagnetic form factors of the proton and
neutron. The third can be found by performing parity-violating electron-scattering
experiments from the proton, by measuring the difference in the cross sections for
the scattering of electrons with left- and right-handed helicities. This is sensitive to
the strange-quark current because the electromagnetic current and the neutral weak
current involve strange quarks with different strengths. In this case there exists an
interference between the electromagnetic (γ -exchange) and weak (Z0-exchange)
contributions and the resultant asymmetry will have the form

ALR = dσR − dσL
dσR + dσl ∼

Gq2

4π
√

2α
(ME +MM + · · · ) , (3.36)

where ME, MM involve the interference of the electromagnetic and electric, mag-
netic weak form factors and the ellipses indicate a small piece involving the vec-
tor electron coupling and the axial current. In this asymmetry, the electron side
involves an axial current while the nucleon side involves a vector current. This
asymmetry has been studied as a function of q2 in a series of experiments at elec-
tron laboratories at MIT-Bates, at Jefferson Laboratory, and at the Mainz microtron.
The result is that no signal for a strange vector-current matrix element has been
seen and limits have been placed on the strange form factors. Numerically, strange
quarks contribute less than 5% of the mean square charge radius and less than 10%
of the magnetic moment of the proton. Reviews of this body of work can be found
in [ArM 12] and [BeH 01].

Quarks and nucleon spin structure

The constituent quark model provides a simple picture of the contents of baryons as
systems composed of three constituent quarks and nothing else. A rigorous descrip-
tion using the quark and gluon degrees of freedom which appear in the fundamental

7 The condition on Fs1 (0) is a consequence of current conservation. Equivalently, taking μ = 0 in Eq. (3.35)

and integrating over the proton volume, one encounters the strangeness ‘charge’ S ≡ ∫ d3x s†(x)s(x) and
S|N〉 = 0 since the nucleon carries no net strangeness.
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lagrangian is in general more complex, but it is often nevertheless instructive to
explore the constituent picture of a given observable. An interesting example is the
spin structure of the nucleon.

For any Lorentz invariant theory, Noether’s theorem requires that there exist
an angular momentum tensor Mμαβ which is conserved (∂μMμαβ = 0) and which
gives rise to three angular momentum charges associated with rotational invariance,

J αβ ≡
∫
d3x M0αβ(x). (3.37)

In the rest frame of a particle, the {J αβ} are related to the three components of
angular momenta via

J i = 1

2
εijkJ jk. (3.38)

For the example of a free fermion, the above quantities take the form

Mμαβ = iψ̄γ μ
(
xα∂β − xβ∂α)ψ + 1

2
ψ̄γ μσαβψ, (3.39)

up to total derivatives which do not contribute to the charges, and

J =
∫
d3x

[
−iψ† (x× ∂) ψ + 1

2
ψ̄γ γ5ψ

]
≡ L+ S. (3.40)

The two contributions in Eq. (3.40) may be labeled the orbital and spin components
of the angular momentum.

The quarks in the Noether current are lagrangian (current) quarks, not con-
stituent quarks. Nevertheless, in the spirit of the quark model let us apply Eq. (3.40)
to the quarks in a spin-up proton. As expressed in terms of upper (u) and lower (
)
components (cf. Eq. (XI–1.13)), the orbital and spin contributions are found to be

〈L〉 = 2

3

∫
d3x 
2〈σ 〉, 〈S〉 =

∫
d3x

(
u2 − 1

3

2

) 〈σ 〉
2
. (3.41)

Aside from the factor 1/2 occurring in σ/2, the quark spin contribution to S is just
the axial-vector matrix element of Eq. (1.24), whereas the orbital angular momen-
tum contains just the lower component 
 because the x× ∂ operator has a nonzero
effect only when acting on the σ · x̂ factor in the lower component of Eq. (XI–1.13).
Observe that the orbital angular momentum is nonvanishing and proportional to the
quark spin. The spin and orbital portions for the individual u, d flavors are easily
computed to yield

〈S(u)z 〉 =
2

3

∫
d3x

(
u2 − 1

3

2

)
,

〈L(u)z 〉 =
8

9

∫
d3x 
2,

〈S(d)z 〉 = −
1

6

∫
d3x

(
u2 − 1

3

2

)
,

〈L(d)z 〉 = −
2

9

∫
d3x 
2.

(3.42)
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A first lesson is that, despite the spin wavefunction of the protons being written
entirely in terms of quarks as in Table XI–2, the quark spin averages of Eq. (3.42)
do not add up to yield the proton spin. The sum is reduced from the anticipated
value of 1/2 by the lower component 
 in the Dirac spinor. It is the total angular
momentum J which has the expected result,

〈J〉 = 1

2
〈σ 〉, (3.43)

but the total is split up between the orbital and spin components. The bag model,
for example, yields

〈S〉 � 0.65 〈J〉, (3.44)

so about 35% of the nucleon spin arises from orbital angular momentum.
Of course, QCD is a full interacting theory and the discussion of the angular

momenta of the quarks and the gluons cannot be fully separated because these
fields interact with each other. The total angular momentum can be decomposed
into several terms, including the interactions between the fields [JaM 90]. These
can be grouped in various ways. In the current quark–gluon description, it is com-
mon to write

1

2
= 1

2
Sq + Lq + Jg, (3.45)

where Sq, Lq are the spin and angular momentum components carried by the
quarks and Jg is that carried by the gluons. Thus, we have

Jq =
∫
d3x

[
ψ† �

2
ψ + ψ† x× (−iD)ψ

]
,

Jg =
∫
d3x x× (E× B), (3.46)

where � is the usual Dirac spin matrix and Dμψ = [∂μ + igAμ]ψ is the covariant
derivative of ψ and therefore, in this definition, the quark angular momentum has
a gluonic component [JiTH 96].

Polarized deep-inelastic electron scattering from the nucleon can measure spin
effects of the quarks. The study of spin dependent deep inelastic scattering involves
the antisymmetric component of the nucleon tensor,8 which can be written in the
form

W [μν] = 1

4π

∫
d4x e−q·x〈p, s|[J em

μ (x), J em
ν (0)]|p, s〉

= −iεμναβqα
[
G1(ν,Q

2) · s
β

m2
N

+G2(ν,Q
2) · mNνs

β − s · qpβ
m4
N

]
, (3.47)

8 More details can be found in the review [Ba 05].
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where ν = p · q/mN and Q2 = −q2. The scaling behavior of the two structure
functions is

g1(x,Q
2) = ν

mN

G1(ν,Q
2), g2(x,Q

2) =
(
ν

mN

)2

G2(ν,Q
2), (3.48)

where x = Q2/2mNν is the Bjorken scaling variable. In the parton model, neglect-
ing QCD renormalization, one determines∫ 1

0
dx g

p

1 (x,Q
2) = 1

2

∑
q

e2
q�q =

1

12
g
(3)
A + 1

36
g
(8)
A + 1

9
g
(0)
A , (3.49)

where g(3)A , g
(8)
A , g

(0)
A are the isovector, SU (3) octet, and flavor-singlet axial charges

respectively. The axial charges are written in terms of their quark spin content as

2mNsμ�q = 〈p, s|q̄γμγ5q|p, s〉, (3.50)

with

�q =
∫ 1

0
dx (q↑(x)− q↓(x)), (3.51)

where qs(x) is the parton distribution function carrying spin s. In terms of the light
quarks we have then

g
(3)
A = �u−�d, g

(8)
A = �u+�d − 2�s, g

(0)
A = �u+�d +�s. (3.52)

The first two of these are well defined from the study of hyperon beta decay,

g
(3)
A = F +D = 1.27± 0.003 (from neutron beta decay) ,

g
(8)
A = 3F −D = 0.58± 0.03 (from semileptonic hyperon decay) . (3.53)

The first of these is directly measured and the second comes from an SU(3) rotation
from the values that are obtained in an SU(3) fit to �S = 1 hyperon decay. Such
a partonic analysis leads to a decomposition, �u = 0.84 ± 0.01 ± 0.02,�d =
−0.43 ± 0.01 ± 0.02 and �s = −0.08 ± 0.01 ± 0.02, where these numbers are
from recent COMPASS data [Qu 12]. The sum of these, �u + �d + �s ∼ 0.33,
is about half of what would be expected for the nucleon spin in the naive quark
model, Eq. (3.44), and of course the quark model predicts that the �s should be
zero.

However, there is reason for caution in this interpretation. The singlet axial
current,

J 0
μ = ūγμγ5u+ d̄γμγ5d + s̄γμγ5s, (3.54)

whose matrix element is said to be represented by �u +�d +�s, is anomalous,
as seen in Sect. III–3. This has important consequences [AlR 88, Sh 08]. While
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the axial currents which transform as SU(3) octets have only finite multiplica-
tive renormalization, the singlet current mixes with gluonic fields under radia-
tive corrections. Different renormalization schemes yield different mixtures of the
quark and gluon components [Sh 08]. Moreover, the quark component is not scale-
independent; there is renormalization group running as a function of Q2. Note that
the other currents do not suffer from these problems. In particular, the Bjorken
sum rule [Bj 66] involves the difference of the proton and neutron matrix elements,
which then cancels out the isosinglet contributions, such that the first moment is
independent of Q2, ∫ 1

0
dx g

p−n
1 (x,Q2) = 1

6
g
(3)
A . (3.55)

This sum rule yields a value g(3)A = 1.28± 0.07± 0.01, which agrees well with the
number g(3)A = 1.270± 0.003 measured in neutron beta decay. The anomaly in the
singlet current complicates the discussion of the quark contribution to the proton
spin.

The partonic analysis of the quark spins has led to further studies. Attempts at
the experimental study of the gluonic contributions has revealed only a small con-
tribution to the nucleon spin [AiBHM 13]. There may be the possibility of studying
the angular-momentum components through the concept of generalized parton dis-
tributions [Ji 94]. However, the experimental determination of these generalized
parton distributions is yet to be achieved.

XII–4 Nuclear weak processes

One area in which the structure of the weak hadronic current has received a great
deal of attention is that of nuclear beta decay and muon capture. Although in
some sense this represents simply a nuclear modification of the basic weak tran-
sitions n → p + e− + ν̄e, p → n + e+ + νe, the use of nuclei allows spe-
cific features to be accented by the choice of levels possessing particular spins
and/or parities [Ho 89]. Here, we shall confine our attention to allowed decays
(�J = 0,±1, no parity change) and will emphasize those aspects which stress
the structure of the weak current rather than that of the nucleus itself. In particular,
nuclear beta decay provides the best determination of Vud, while muon capture pro-
vides the only measurement of the pseudoscalar axial weak form factor predicted
by chiral symmetry.

Measurement of Vud

There are many occurrences in nuclei of an isotriplet of JP = 0+ states. Exam-
ples are found with A = 10, 14, 26, 34, 42, . . . . Because Coulombic effects raise
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the mass of the proton-rich I3=1 state with respect to that with I3=0, the positron
emission processN1(Iz = 1)→ N2(Iz = 0)+e++νe can occur. These transitions
are particularly clean theoretically, and this is the reason why they are important.
Since the transition is 0+ → 0+, only the vector current is involved, and because
of the lack of spin there can be no weak magnetic form factor. The vector-current
matrix element involves but a single form factor a(q2),

〈N2(p2)|Vμ|N1(p1)〉 = a(q2)(p1 + p2)μ. (4.1)

This form factor is known at q2 = 0 because the charged vector weak current Vμ
is just the isospin rotation of the electromagnetic current,

[I−, J μem] = d̄γ μu. (4.2)

This relation is often called the conserved vector current hypothesis or CVC, and
requires for each of the 0+ → 0+ transitions,

a(0) = √2. (4.3)

What is generally quoted for such decays is the F t1/2 value, essentially the half-
life t1/2 multiplied by the (kinematic) phase space factor f plus various radiative
and Coulomb corrections [WiM 72]. Theoretically, one expects a universal form

F t1/2 = 2π3 ln 2

G2
μm

5
e|Vud|2a2(0)

(
1− α

2π
(4 ln(MZ/mN)+ · · · )

)
, (4.4)

which should be identical for each isotriplet transition. Gμ is the weak decay con-
stant measured in muon decay while the logarithmic correction arises from ‘hard’-
photon corrections, as discussed in Chap. VII. The ‘soft’-photon piece as well as
finite-size and Coulombic corrections are contained in the phase space factor F .
Much careful experimental and theoretical study has been given to this problem,
and the current situation is summarized in Table XII–3 where the experimental
F t1/2 values are tabulated. A fit to these and additional Fermi decays produces
the value F t1/2 = 3072.08 ± 0.79 s with chi-squared per degree of freedom
χ2/ν = 0.28. This excellent agreement over a wide range of Z values is evidence
that soft-photon corrections are under control.

Comparison of the experimental F t1/2 value with the theoretical expression
given in Eq. (4.4) yields the determination

Vud = 0.97425(22), (4.5)

which makes Vud the most precisely measured component of the CKM matrix.
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Table XII–3. Energy release and F t1/2 values for
0+ → 0+ Fermi decays [HaT 09].

Nucleus E0(KeV) F t1/2 (s)
10C 885.87(11) 3076.7(4.6)
14O 1809.24(23) 3071.5(3.3)
26mAl 3210.66(06) 3072.4(1.4)
34Cl 4469.64(23) 3070.2(2.1)
38mK 5022.40(11) 3072.5(2.4)
42Sc 5404.28(30) 3072.4(2.7)
46V 6030.49(16) 3073.3(2.7)
50Mn 6612.45(07) 3070.9(2.8)
54Co 7222.37(28) 3069.9(3.2)

The pseudoscalar axial form factor

Chiral symmetry predicts a rather striking result for the form factor g3(q
2) of

Eq. (2.9), namely that it is determined by the pion pole with a coupling fixed by
the PCAC condition. One cannot detect this term in either neutron or nuclear beta
decay because when the full matrix element is taken, one obtains

g3

2mN

v(pν)qμγ μ(1+ γ5)u(pe) = g3me

2mN

v(pν)(1− γ5)u(pe), (4.6)

which is proportional to the electron mass and is thus too small to be seen (effects
in the spectra are O(m2

e/mNEe) � 1). However, in the muon capture process
μ−p→ νμn, the corresponding effect is O(mμ/mN) ∼ 10%. Thus, muon capture
is a feasible arena in which to study the chiral symmetry prediction [CzM 07]. The
drawback in this case is that typically one has available from experiment only a
single number, the capture rate. In order to interpret such experiments, one needs
to know the value of each nuclear form factor at q2 � −0.9 m2

μ, which intro-
duces some uncertainty since these quantities are determined in beta decay only
at q2 � 0. Nevertheless, predicted and experimental capture rates are generally in
good agreement provided one assumes (i) the q2 � 0 value of form factors from
the analogous beta decay, (ii) q2 dependence of form factors from CVC and elec-
tron scattering results, (iii) the CVC value for the weak magnetic term f2, and (iv)
the PCAC value of Eq. (3.21) for g3. The results are summarized in Table XII–4.
Obviously, agreement is good except for 6Li, for which the origin of the discrep-
ancy is unknown, although it has been speculated that perhaps the spin mixture is
not statistical. Also, in the case of 3He there remains a small disagreement between
the elementary particle model (EPM) and impulse approximation (IA) predictions
for the capture rate.
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Table XII–4. Muon capture rates.

Reaction Theory (103 s−1) Experiment (103 s−1)

μ− + p→ νμ + n 0.712± 0.005a 0.715± 0.005± 0.005a

μ− + 3He → νμ + 3H 1.537± 0.022EPM 1.496± 0.004
1.506± 0.015IA

μ− + 6Li → νμ + 6He 0.98± 0.15 1.60
+0.33
−0.12

μ− + 12C → νμ + 12B 7.01± 0.16 6.75
+0.3
−0.75

aSμ−p = 0.

Before proceeding, we should emphasize one relevant point. When PCAC is
applied, it is for the nucleon

2mNg1(q
2)− q2

2mN

g3(q
2) = 2FπgπNN(q

2)

(
1− q2

m2
π

)−1

. (4.7)

Then, at q2 = 0, we have

1.27 = g1(0) � FπgπNN(m
2
π)

mN

= 1.30, (4.8)

which is the Goldberger–Treiman relation. On the other hand, taking similar q2

dependence for g1(q
2) and gπNN(q2), we find

mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 2mNmμ

m2
π + 0.9m2

μ

− 1

3
r2
AmμmN � 6.45. (4.9)

PCAC is generally applied in nuclei in the context of a simple impulse approxi-
mation, and it is this version of PCAC which is tested by the muon capture rates
listed in Table XII–4. The direct application of PCAC in nuclei cannot generally
be utilized since the pion couplings are unknown.

In the case of muon capture on 12C, additional experimental data are available.
One class of experiment involves measurement of the polarization of the recoiling
12B nucleus. Combining this measurement with that of the total capture rate yields
a separate test of CVC as well as of PCAC. The results,

f
expt
2

f CVC2

= 1.00± 0.05,
mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 8.0± 3.0, (4.10)

are in good agreement with both symmetry assumptions.
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In addition, one can measure the average and longitudinal recoil polarizations in
the 12C muon capture, yielding a value for the induced pseudoscalar coupling,

mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 9.0± 1.7, (4.11)

which is again in good agreement with PCAC.
The most precise value comes from the recent measurement of the singlet-muon

capture rate in hydrogen, which yields

mμ

2mN

g3(−0.9m2
μ)

g1(−0.9m2
μ)
= 5.75± 0.95, (4.12)

which is excellent agreement with PCAC.

XII–5 Hyperon semileptonic decay

The goals in studying hyperon semileptonic processes are to confirm the value of
Vus obtained in kaon decay and to use the form factors to better understand hadronic
structure. These two goals are interconnected. In earlier days when data were not
very precise, fits to hyperon decays were made under the assumption of perfect
SU(3) invariance in order to extract Vus. Presently, the experiments are precise
enough that exact SU(3) no longer provides an acceptable fit. The desire to learn
about Vus is thus impacted by the need to understand the SU(3) breaking.

We have already described in Sect. XII–1 the physics ingredients which lead to
SU(3) breaking within a simple quark description. These include recoil or center-
of-mass corrections, wavefunction mismatch (in which a normalization condition
realized in the symmetry limit no longer holds), and generation of the axial form
factor g2. For hyperons, because of the presence of the axial current, SU(3) break-
ing can occur in first order. This means that hyperon decays are more difficult to
use for determining Vus than are kaon decays, where the Ademollo–Gatto theo-
rem reduces the amount of symmetry breaking. Thus, at the moment it is probably
best to use the value of Vus determined from kaon decay, and require that hyperon
decays yield a consistent value.

The clearest evidence on SU(3) breaking comes from the �− → 
 + e− +
ν̄e rate. Since this is a �S = 0 process, Vus does not enter and, in addition, the
vector current matrix element must vanish. Thus, the rate is determined by the
axial-current contribution alone, for which the theoretical prediction is

g�
−


1 = ρ

√
2

3

D

D + F g
np

1 , (5.1)
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where ρ is a SU(3) breaking factor due to the center-of-mass effect. A bag-model
estimate yields ρ = 0.939. Taking ρ = 1, the best SU(3) symmetric fit to all the
data [CaSW 03] would require D/(D + F) = 0.635 ± 0.006, and hence g�

−

1 =

0.658 if SU(3) were exact. On the other hand, the data on �− → 
eν̄e requires
g�

−

1 = 0.591 ± 0.014, which implies the correction ρ = 0.931 ± 0.022. There

seems to be no way to avoid this need for SU(3) breaking.
The full pattern of SU(3) breaking is more difficult to uncover. One problem is

experimental. When the g1 values are extracted from the data, they have generally
been analyzed under the assumptions that the f1 and f2 form factors have exactly
their SU(3) values and that g2 = 0. If these assumptions are not correct, then the
values cited in [RPP 12] do not reflect the true g1 but rather some combination
of g1, f1, f2, and g2. The correlation with g2 is particularly strong. Thus, quoted
values of g1 must be treated with caution.

The present status of these decays is reviewed in [CaSW 03]. The data can be fit
well either by the center-of-mass correction described above, with g2 = 0, or by
the full corrections including wavefunction mismatch, with g2/g1 = 0.20 ± 0.07
in 
→ p+ e+ ν̄e. Without an independent measurement of g2 one cannot decide
between these. We note, however, that either option yields a value of Vus consistent
with that found in kaon decays,

Vus = 0.2250± 0.0027. (5.2)

XII–6 Nonleptonic decay

The dominant decays of hyperons are the nonleptonic B → B ′π modes. Because
of the spin of the baryons and the many decay modes available, the nonleptonic
hyperon decays present a richer opportunity for study than do the nonleptonic kaon
decays.

Phenomenology

The B → B ′π matrix elements can be written in the form

MB→B ′π = ū(p′) [A+ Bγ5] u(p), (6.1)

with parity-violating (A) and parity-conserving (B) amplitudes. Watson’s theorem
implies that if CP is conserved, the phase of these amplitudes is given by the strong
B ′π scattering phase shifts in the final-state S wave (for A) or P wave (for B), i.e.,

A = A0 exp (iδSB ′π), B = B0 exp (iδPB ′π), (6.2)
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with A0, B0 real. Aside from the πN system, these phase shifts are not known
precisely, but are estimated to be � 10◦ in magnitude. The decay rate is expressed
in terms of the partial wave amplitudes by

�B→B ′π = |q|(E
′ +mB ′)

4πmB

(|A|2 + |B̄|2) , (6.3)

where q is the pion momentum in the parent rest frame and we define B̄ ≡ (E′ −
mB ′/E

′ +mB ′)
1/2B. Additional observables are the decay distribution W(θ),

W(θ) = 1+ αPB · p̂B ′, α = 2Re (A∗ B̄)
|A|2 + |B̄|2 , (6.4)

and the polarization 〈PB ′ 〉 of the final-state baryon,

〈PB ′ 〉 =
(
α + PB · p̂B ′

)
p̂B ′ + β

(
PB × p̂B ′

)+ γ [p̂B ′ × (PB × p̂B ′
)]

W(θ)
,

β = 2Im(A∗ B̄)
|A|2 + |B̄|2 , γ = |A|

2 − |B̄|2
|A|2 + |B̄|2 = ±

√
1− α2 − β2, (6.5)

where PB is the polarization of B and p̂B ′ is a unit vector in the direction of motion
of B ′. Experimental studies of these distributions lead to the amplitudes listed in
Table XII–5.

The nonleptonic amplitudes may be decomposed into isospin components in a
notation where superscripts refer to �I = 1/2, 3/2,

A
→pπ− = √2A(1)
 − A(3)
 ,
A
→nπ0 = −A(1)
 −√2A(3)
 ,

A!0→
π0 = −A(1)! −√2A(3)! ,

A!−→
π− =
√

2A(1)! − A(3)! ,

A�−→nπ− = A
(1)
� + A(3)� ,

A�+→nπ+ = 1

3
A
(1)
� − 2

3
A
(3)
� +X�,

√
2A�+→pπ0 = −2

3
A
(1)
� + 4

3
A
(3)
� +X�,

(6.6)

and X� is of mixed symmetry. Similar relations hold for the B amplitudes. From
the entries in Table XII–5 it is not hard to see that the �I = 1/2 rule, described
previously for kaon decays, is also present here. Table XII–6 illustrates that the
dominance of �I = 1/2 amplitudes compared to those with �I = 3/2 holds
in the six possible tests in S-wave and P -wave hyperon decay, at about the same
level (several per cent) as occurs in kaon decay.9 Thus, the �I = 1/2 rule is
not an accident of kaon physics, but is rather a universal feature of nonleptonic
decays. This makes the failure to clearly understand it all the more frustrating.

9 For P waves, the observed smallness of B�−→nπ− indicates that B(1)� is small, presumably accidentally so.

In this case the measure of �I = 3/2 to �I = 1/2 effects is given by B(3)� /X� .
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Table XII–5. Hyperon decay amplitudes.a

A amplitudes B amplitudes

Mode Expt. Thy.b Expt. Thy.


→ pπ− 3.25 3.38 22.1 23.0

→ nπ0 −2.37 −2.39 −15.8 −16.0
�+ → nπ+ 0.13 0.00 42.2 4.3
�+ → pπ0 −3.27 −3.18 26.6 10.0
�− → nπ− 4.27 4.50 −1.44 −10.0
!0 → 
π0 3.43 3.14 −12.3 3.3
!− → 
π− −4.51 −4.45 16.6 −4.7

aIn units of 10−7.
bLowest-order chiral fit.

The assumption that the dominant�I = 1/2 hamiltonian is a member of an SU(3)
octet leads to an additional formula, called the Lee-Sugawara relation,

√
3A�+→pπ0 = 2A!−→
π− + A
→pπ−, (6.7)

which also is well satisfied by the data. In this case, the corresponding formula for
the B amplitudes is not a symmetry prediction [MaRR 69], although for unknown
reasons it is in qualitative accord there also.

Lowest-order chiral analysis

Chiral symmetry provides a description of hyperon nonleptonic decay, which is
of mixed success when truncated at lowest order in the energy expansion. Given
our comments on the convergence of the energy expansion for baryons made in
Sect. XII–3, the need for corrections to the lowest-order results is not surprising.
We shall present the lowest-order analysis here, as it forms the starting point for
most theoretical analyses.

Recalling from Sect. IV–7 the procedure for adding baryons to the chiral anal-
ysis, one finds that the two following nonderivative lagrangians have the chiral
(8L, 1R) transformation property:

Table XII–6. Ratio of �I = 3/2, 1/2 amplitudes.

S wave P wave


 0.014 0.006
� −0.017 −0.047
! 0.034 0.023
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B B

ππ

+
B'' B'' B'B'

Hw Hw

Fig. XII–1 P-wave hyperon decay amplitudes.

L(S)W = D Tr
(
B̄{ξ †λ6ξ, B}

)+ F Tr
(
B̄
[
ξ †λ6ξ, B

])
,

L(P )W = D5 Tr
(
B̄γ5{ξ †λ6ξ, B}

)+ F5 Tr
(
B̄γ5

[
ξ †λ6ξ, B

])
, (6.8)

where ξ, B are defined in Eqs. (3.1), (3.2) respectively. However, the operator L(P )W

must vanish, as it has the wrong transformation property under CP [LeS 64]. That
is, a CP transformation implies

B → (
iγ2B̄

)T
, ξ → (

ξ †
)T
, (6.9)

and including the anticommutation of B and B̄, L(S)W is seen to return to itself,
but L(P )W changes sign and hence must vanish. This leaves L(S)W as the only allowed
chiral lagrangian at lowest order. Observe that L(S)W lacks a γ5 factor. Thus, its B →
B ′π matrix elements will be parity-violating, leading to only A amplitudes. The
parity-conserving B amplitudes in B → B ′π are produced through pole diagrams
as in Fig. XII–1, and are proportional to the parity-conserving B → B ′ matrix
elements of L(S)W .

The counting of powers of energy (momentum transfer) in the energy expansion
goes as follows. Both the B → B ′ transition and theA amplitudes in B → B ′π are
obtained as matrix elements of L(S)W , which is zeroth order in the energy. The pole
diagrams are likewise of zeroth order in the energy, being the product of the L(S)W
vertex (O(1)), a baryon propagator (O(q−1)) and an NNπ vertex (O(q)). Since
the kinematic part of the pole diagrams, u′γ5u ∼ σ · q, is of first order in q, the B
amplitudes themselves are of order B ∼ q−1 ∼ 1/�m for the baryon pole. Kaon
poles and higher-order chiral lagrangians enter at next order, i.e., having one power
of the momentum transfer.

The lowest-order chiral SU(3) analysis provides a fit to the data in terms of two
parameters, called F and D,

iA
→nπ0 = − 1

2Fπ
(3F +D),

iA�+→nπ+ = 0,

iA�+→pπ0 =
√

6

2Fπ
(D − F),

iA!0→
π0 = 1

2Fπ
(3F −D),

(6.10)

with other amplitudes being predicted by the �I = 1/2 rule. Use of the numerical
values
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D

F
= −0.42,

F

2Fπ
= 0.92× 10−7, (6.11)

leads to the excellent fit of the S-wave amplitudes seen in Table XII–5. Note that
this form has one less free parameter than the general SU(3) structure [MaRR 69].
Thus, the prediction of chiral symmetry that A�+→nπ+ � 0 is independent of the
D/F ratio (up to �I = 3/2 effects), and represents a successful explanation of the
smallness of this amplitude.

In principle, theA amplitudes, together with the strongBB ′π vertices, determine
the baryon pole contributions to the B amplitudes. These are then parametrized by
the same d/f ratio as in the axial current,10 e.g.,

M�+→�+π0 = 2f

Fπ
ūγμγ5u q

μ = g�
+�+

A

Fπ
ūγμγ5u q

μ

= 2gπNN
2mN

f

f + d ūγμγ5u q
μ . (6.12)

Using this parameterization for the pole diagrams, one finds contributions such as

B�+→pπ0 = −mN +m�

2mNFπ
· (d − f )M�+p

m� −mN

. (6.13)

Taking d + f = 1.27, d/f = 1.8, one obtains from relations like this the disap-
pointing P -wave predictions quoted in Table XII–5. This failure to simultaneously
fit the S waves and P waves is a deficiency of the lowest-order chiral analysis. Per-
haps this is not too surprising, as the chiral expansion converges slower in baryons
than in mesons [BoH 99]. At the next order in the energy expansion, the chiral
analysis contains enough free parameters to accommodate the data, but is not pre-
dictive. Lattice studies are just beginning to explore this topic [BeBPS 05].

Problems

(1) The axial-vector coupling

Consider the effective lagrangian in Eq. (3.1) for nucleons and pions. For com-
bined left-handed and right-handed transformations of the fields, we have

U → LUR†, ξ → LξV † = V ξR†, N → VN,

where L[R] are the spacetime independent SU(2) matrices corresponding to
global transformations in SU(2)L[SU(2)R] and V = V (π(x)) is an SU(2)

10 This statement is the SU(3) generalization of the Goldberger–Treiman relation, Eqs. (3.20), (3.24).
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matrix describing a vectorial transformation of the nucleons. For the lagrangian
of Eq. (3.1), use Noether’s theorem to generate the SU(2) axial-vector current,

Ajμ =
gA

4
ψ̄γμγ5

(
ξλjξ † + ξ †λjξ

)
ψ,

where ξ is the ‘square root’ of U (cf. Eq. (3.1)), and thereby show that the
axial-vector coupling constant for beta decay is given by g1 = gA.

(2) CP violation and nonleptonic hyperon decay
Although the �S = 1 hamiltonian of the Standard Model contains a CP-
violating component, there is no practical way to see this in any single hyperon
decay mode. Rather, one must compare the decays of hyperons with those of
antihyperons [DoHP 86]. In the presence of CP violation, there are two sources
of phases in the weak matrix elements, e.g., for the 
 decay modes,

A
→pπ− = A1 e
iϕS1 eiδ

S
1 + A3 e

iϕS3 eiδ
S
3 ,

B
→pπ− = B1 e
iϕP1 eiδ

P
1 + B3 e

iϕP3 eiδ
p
3 ,

where the isospin (I ) subscripts ‘1, 3’ stand for �I = 1/2, 3/2, the angular
momentum (J ) superscripts ‘S, P ’ stand for S waves or P waves, AI are real
amplitudes, δJI are strong final-state phases, and ϕJI are the weak CP-violating
phases. Observe that there are three small parameters in these amplitudes – the
weak phases ϕJI , the strong phases δJI � 10◦, and the ratio of �I = 3/2 to
�I = 1/2 effects. To leading order in these quantities, show that one has the
CP-odd observables,

β + β
α − α = sin

(
ϕS1 − ϕP1

)
,
α + α
α − α = − sin

(
ϕS1 − ϕP1

)
sin
(
δS1 − δP1

)
,

�pπ− − �pπ+
�pπ− + �pπ+

= −2
A1A3 sin(δS1 − δS3 ) sin(ϕS1 − ϕS3 )

|A1|2 + |B1|2

− 2
B̄1B̄3 sin(δP1 − δP3 ) sin(ϕP1 − ϕP3 )

|A1|2 + |B̄1|2
.

A hierarchy is apparent in these three signals. The β + β asymmetry requires
only the weak phase, the α + α asymmetry requires both the weak and final-
state phases, while � − � has both phases plus a �I = 3/2 suppression.
Present experiments are not sufficiently sensitive to test for CP violation in
these observables at the required accuracy.
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