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On the Bernstein Problem in the
Three-dimensional Heisenberg Group

Josef F. Dorfmeister, Jun-ichi Inoguchi, and Shimpei Kobayashi

Abstract. In this note we present a simple alternative proof for the Bernstein problem in the three-
dimensional Heisenberg group Nil3 by using the loop group technique. We clarify the geomet-
ric meaning of the two-parameter ambiguity of entire minimal graphs with prescribed Abresch-
Rosenberg diòerential.

Introduction

_e Bernstein problem is one of the traditional problems of global diòerential geome-
try. _e original result due to Bernstein asserts that every entireminimal graph in Eu-
clidean three-space R3(x1 , x2 , x3) is a plane. In other words, Bernstein’s result shows
that the only global solution on the (x1 , x2)-plane to the so-called minimal surface
equation

{1 + ( fx1)
2
} fx2x2 − 2 fx1 fx2 fx1x2 + {1 + ( fx2)

2
} fx1x1 = 0

is a linear function of x1 and x2.
_e Bernstein problem has been generalized to a problem basically asking for a

classiûcation of all entireminimal graphs. On the other hand,when the ambient space
is not the Euclidean three-space, the Bernstein problem o�en needs to be amended.
For instance, in Minkowski three-space L3 equipped with the natural Lorentzmetric
dx2

1 + dx
2
2 − dx

2
3 , there are many entire (timelike) minimal graphs over the timelike

planeL2 = R2(x2 , x3); see, for example, [7]. Next,we focus on the three-dimensional
Heisenberg group Nil3, which is one of the model spaces of _urston geometries [8].
_e space Nil3 is realized as Cartesian three-space R3(x1 , x2 , x3) equipped with the
Riemannian metric

dx2
1 + dx

2
2 + {dx3 +

1
2
(x2dx1 − x1dx2)}

2

and a nilpotent Lie group structure; see, for example, [4]. _e Riemannian metric
is invariant under the nilpotent Lie group structure and has a 4-dimensional isom-
etry group. _e identity component of the isometry group is a semi-direct product
Nil3 ⋉ SO2.

It has been known for a long time that nontrivial entire minimal graphs exist in
Nil3; see, for example, [5]. _erefore, in Nil3 the Bernstein problem has been phrased
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more speciûcally as the problem to construct entireminimal graphs over the natural
(x1 , x2)-plane with a prescribed holomorphic quadratic diòerential.

Under this formulation, Fernández andMira [6] studied the Bernstein problem in
Nil3. _ey proved in a fairly indirectway that for a prescribed holomorphic quadratic
diòerential Q dz2 over the complex planeCwith Q ≠ 0 or the unit discD, there exists
a two-parameter family of entireminimal vertical graphs whose Abresch–Rosenberg
diòerential is Q dz2. _eir proof relies ûrst on the Lawson-type correspondence (of-
ten called sister correspondence) between minimal surfaces in Nil3 and surfaces of
constant mean curvature (CMC in short) with mean curvature H = 1/2 in the prod-
uct space H2 × R, where H2 denotes the hyperbolic two-space. Secondly, they use
the correspondence between harmonic maps into H2 and CMC surfaces with mean
curvature H = 1/2 in the product spaceH2 ×R. Finally, they use a result ofWan and
Au [9, 10] solving the Bernstein problem for spacelike CMC surfaces in L3 and use
that the Gauss map of those surfaces is also harmonic into H2.

In this paperwe give amuch simpler proof of the solution to the Bernstein problem
in Nil3 by virtue of the generalizedWeierstrass type representation established in our
previouswork [4]. _e advantage of our approach is thatwe can give a direct relation
betweenminimal graphs inNil3 and spacelike CMC surfacewithmean curvatureH =

1/2 graphs in L3 (_eorem 1.7). _is relation enables us to give a simple alternative
proof of Fernández andMira’s theorem (_eorem 1.8).

Ournew proof also providesnew insights. In fact it clariûes the geometricmeaning
of the two-parameter ambiguity of entire minimal graphs with prescribed Abresch–
Rosenberg diòerential. While it is quite clear that the two-parameter family is related
to the boosts in SU1,1, our argument also shows how the corresponding family of sur-
faces varies in Nil3.

1 Bernstein Problem

We discuss the Bernstein problem in Nil3, that is, the classiûcation of entireminimal
vertical graphs in Nil3. We only consider vertical graphs; therefore,wewill sometimes
omit the word “vertical”. From now on, we denote the coordinates of Nil3 or L3 by
(x1 , x2 , x3).

1.1 Completeness

_e basic result used in this paper is _eorem A.3. It provides the direct relation
between minimal surfaces in Nil3 and spacelike CMC surfaces in L3. _is close rela-
tionship is also underlined by a simple relation between the corresponding metrics.

Lemma 1.1 Let f λ and f λL3
be an associated family of minimal surfaces in Nil3 and

an associated family of spacelike CMC surfaces with mean curvature H = 1/2 in L3 cor-
related and deûned as in _eorem A.3, respectively. Denote themetric of f λ by eudzdz
and themetric of f λL3

by euL3 dzdz. Moreover, let ϕλ
3dz be the coeõcient of e3 in

( f λ)−1 f λz dz =
3

∑
i=1

(ϕλ
i dz)e i .
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_en the following relation holds:

euL3 + 4∣ϕλ
3 ∣

2
= eu .

Proof It is known that the conformal factors eu and euL3 can be computed explicitly
in terms of spinors (see [4, Section 3.1], Remark A.4, and [2]):

eu = 4( ∣ψλ
1 ∣

2
+ ∣ψλ

2 ∣
2)

2
, euL3 = 4( ∣ψλ

1 ∣
2
− ∣ψλ

2 ∣
2)

2
,

where ψλ
j ( j = 1, 2) is a family of spinors for the associated family f λ . Since ϕλ

3 =

2ψλ
1 ψλ

2 , the claim follows.

Remark 1.2 It is known that themetrics euL3 dzdz of an associated family of space-
like CMC surfaces f λL3

are independent of λ; that is, on a simply connected domain,
any two members of the associated family { f λL3

}λ∈S1 are isometric. In fact themetric
can be computed by the support h(dz)1/2(dz)1/2 (see AppendixA for the deûnition),
as

(1.1) h2dzdz = euL3 dzdz.

However, the metrics eudzdz of an associated family of minimal surface f λ depend
on λ; that is, any two members of the associated family { f λ}λ∈S1 are, in general, non-
isometric.

Using the relation above, we have the following theorem.

_eorem 1.3 Let f λ and f λL3
be an associated family ofminimal surfaces in Nil3 and

an associated family of spacelike CMC surfaces with mean curvature H = 1/2 in L3
correlated and deûned as in _eorem A.3, respectively. Assume that onemember of the
associated family { f λL3

}λ∈S1 is closed with respect to the Euclidean topology. _en each
member of the associated family { f λ}λ∈S1 is a complete, entire graph.

Proof We denote the spacelike CMC surface in L3, which is closed with respect to
the Euclidean topology, by f ∗L3

= f λL3
∣λ∗∈S1 . From the assumption and by [3, p. 415],we

conclude that f ∗L3
is complete. Moreover, from [9, Proposition 2], f ∗L3

is also an entire
graph. Since the metric is invariant within the associated family { f λL3

}λ∈S1 (see Re-
mark 1.2), each member of the associated family of spacelike CMC surfaces { f λL3

}λ∈S1

is also complete. _en from Lemma 1.1, we have that each member of the associated
family ofminimal surfaces { f λ}λ∈S1 is complete.

Let us look more closely at the correspondence between f λL3
and f λ . From for-

mulas (A.4) and (A.5) we infer by inspection that f λ and f λL3
share the same x1-,

x2-components.

1.2 Rigid Motions

It is known that the isometry group ofL3 is the six-dimensional Lie group that is gen-
erated by a one-parameter family of rotations around the x3-axis (the timelike axis),
a two-parameter family of boosts, and three families of translations. In contrast, the
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isometry group ofNil3 is only four-dimensional and is generated by a one-parameter
family of rotations around x3-axis and three families of translations in Nil3.
A comparison of the two Sym formulas in_eoremA.3 indicates that isometries of

Minkowski space will not necessarily become isometries ofNil3. _e precise relation
will bemade clear in the next lemma.

Lemma 1.4 Let f λL3
and f̃ λL3

be two associated family of spacelike CMC surfaces with
mean curvatureH = 1/2 inL3 deûned by the Sym-formula in_eoremA.3 for some ex-
tended frames F λ and F̃ λ , respectively and set fL3 = f

λ
L3
∣λ=1 and f̃L3 = f̃

λ
L3
∣λ=1. Moreover,

let f λ and f̃ λ denote the two associated families ofminimal surfaces inNil3 deûned from
the same extended frames F λ and F̃ λ , respectively and set f = f λ ∣λ=1 and f̃ = f̃ λ ∣λ=1.
Assume that fL3 and f̃L3 are isometric by some rigid motion in L3. _en the following
statements hold:
(i) If fL3 and f̃L3 are isometric by a rotation around the x3-axis (the timelike axis),

then f and f̃ are isometric by the rotation around the x3-axis (the same angle)
and some translation.

(ii) If fL3 and f̃L3 are isometric by a translation, then f and f̃ are isometric by some
translation (not necessarily the same translation).

(iii) If fL3 and f̃L3 are isometric by a boost, then f and f̃ are, in general, not isometric.

Proof Since fL3(= f
λ
L3
∣λ=1) and f̃L3(= f̃

λ
L3
∣λ=1) are isometric by a rigidmotion in L3,

the isometry between these two surfaces li�s to the level of frames F = F λ ∣λ=1 and
F̃ = F̃ λ ∣λ=1 as F̃ = MFk, where M is a z-independent SU1,1-valued matrix and k is a
U1-valuedmatrix. A�er introducing the loop parameter, we obtain the relation

F̃ λ
= MλF λk.

Note that Mλ is a (ΛSU1,1)σ -valuedmatrix and satisûes Mλ ∣λ=1 = M. _en it is easy
to see that f̃ λL3

and f λL3
satisfy the relation

(1.2) f̃ λL3
= Mλ f λL3

(Mλ
)
−1
− iλ(∂λMλ

)(Mλ
)
−1 .

Now a straightforward computation shows that the corresponding two minimal sur-
faces f λ and f̃ λ have the following relation:

(1.3) f̃ λ = (Ad(Mλ
)( f λL3

) − Xλ)
o

−
1
2
{ Ad(Mλ

)(iλ∂λ f λL3
) + [Xλ , Ad(Mλ

)( f λL3
)] − Y λ}

d
,

where we set

(1.4) Xλ
= iλ(∂λMλ

)(Mλ
)
−1 , Y λ

= iλ(∂λXλ
),

and the superscripts “o” and “d” denote the oò-diagonal and diagonal part, respec-
tively. For simplicity of notationwe do not distinguish here f λ in Nil3 and f̂ λ in su1,1.

We note that for each ûxed λ ∈ S1, the ûrst part of the right-hand side in (1.2) de-
scribes a Lorentz transformation and the second part of the right-hand side in (1.2)
describes a translation. We now consider each of the three types of generators sepa-
rately.
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(1) First, suppose that f̃L3 and fL3 are isometric by a rotation around the x3-axis
(the timelike axis). Since the original transformation M was a rotation, it follows that

M(= Mλ
∣λ=1) = diag(e iθ , e−iθ

), ∂λMλ
∣λ=1 = 0.

Here 2θ is the angle of rotation. A straightforward computation shows that f and
f̃ satisfy the equation f̃ = Ad(M)( f ) + 1

2Y
d , where the translation term Y can be

computed as
Y = Y λ

∣λ=1 = −λ2
(∂2

λM
λ
)(Mλ

)
−1
∣λ=1 .

_erefore, this one-parameter family consists of isometricminimal surfaces in Nil3.
(2) Next suppose that fL3 and f̃L3 are isometric by some translation. Since the

original transformation M was a translation, it follows

M(= Mλ
∣λ=1) = id, (∂λMλ

)∣λ=1 ≠ 0.

Substituting λ = 1 into (1.3) we see immediately that f and f̃ satisfy the relation f̃ =
f + A, where A = A(x1 , x2) is given by

A = −Xo
−

1
2
([X , fL3] − Y)

d
,

where X = Xλ ∣λ=1 and Y = Y λ ∣λ=1 for Xλ and Y λ in (1.4). It is clear that Y is inde-
pendent of x1 and x2, the coordinates for f , but x1 and x2 enter the commutator. An
explicit computation, using the basis {E1 ,E2 ,E3} given in [4, (6.1)] and the transfor-
mation formula stated in [4, Appendix B], now shows that f̃ can be obtained from
f by a translation in Nil3 (with a constant vector, whose coeõcients basically are the
components of Xo and of Y d ).

(3) Let us ûnally consider the transformations M given by boosts in L3. _ese
transformations form a two-parameter family. Since the original transformation was
a boost, it follows that

(1.5) M = Mλ
∣λ=1 = (

α β
β α

) , ∂λMλ
∣λ=1 = 0.

Here, α ∈ R, β ∈ C and α2 − ∣β∣2 = 1 and we obtain

f̃ = (Ad(M)( fL3))
o
−

1
2
(Ad(M)(iλ∂λ f λL3

∣λ=1) − Y)
d
,

where Y = Y λ ∣λ=1 for Y λ in (1.4). Now it follows by a straightforward computation
that

(1.6) f̃ =
⎛

⎝

(α2 + ∣β∣2)r + αβs − αβs −2αβp + α2q − β2q
2αβp + α2q − β

2
q −(α2 + ∣β∣2)r − αβs + αβs

⎞

⎠
+

1
2
Y d ,

where p, r ∈ iR and q, s ∈ C are functions deûned by

(1.7) f λL3
∣λ=1 = (

p q
q −p) , −

1
2
iλ(∂λ f λL3

)∣λ=1 = (
r s
s −r) .

Note that the components of theminimal surface f in the basis {E1 ,E2 ,E3} are given
by

(x1 , x2 , x3) = (2 Im q,−2Re q,−2 Im r).
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_us, from (1.6) and the action of the isometry group of Nil3 as described in (A.1), it
is easy to see that f and f̃ are in general not isometric; see Remark 1.5 in detail.

Remark 1.5 In Lemma 1.4(iii), from (1.6) and the action of the isometry group
of Nil3, we see that the f and f̃ are isometric in Nil3 if and only if there exist some
θ ∈ R, (a1 , a2 , a3) ∈ R3 such that the following two equations hold:

(α2
+ ∣β∣2)x3 − 4α Im(βs) − Y 11

= ax1 + bx2 + x3 + a3 ,

−4αβp + i(β2
+ α2

)x1 + (β2
− α2

)x2 = e iθ(ix1 − x2) + ia1 − a2 ,

where Y d = diag(iY 11 ,−iY 11), a = 1
2 (a1 sin θ − a2 cos θ), b = 1

2 (a1 sin θ + a2 cos θ),
and p and s are purely imaginary and complex valued functions, respectively, deûned
in (1.7). From these two equations, it is easy to see that they are satisûed for very
special minimal surfaces f only.

Remark 1.6 A�er ûxing base points, the Sym-formula establishes a one-to-one rela-
tion between spacelikeCMCwithmean curvatureH = 1/2 surfaces inL3 andminimal
surfaces in Nil3. Clearly, the Poincaré group SU1,1 ⋉L3 acts on the family of spacelike
CMC surfaces in L3. If we ûx base points, we eliminate the action of the translation
part of the Poincaré group, reducing the action to the Lorentz group SU1,1.

Via the Sym formula, the Poincaré group also acts on the family of minimal sur-
faces in Nil3. Since we ûx base points, we can also eliminate the translation part of
the isometry group of Nil3. So generically, the dimension of the family of minimal
surfaces should be three. But from Lemma 1.4, identifying minimal surfaces that are
isometric by rotations, we see that two is the highest dimension of any orbit. _ese
orbits are realized by the action of boosts. From (1.5), the set of boostsB can be com-
puted as

B = {X tX ∣ X ∈ SU1,1}.

From this, it is clear that B is the symmetric space SU1,1/U1.

1.3 Bernstein Problem

Wewill ûnally present a short alternative proof of the Bernstein problem inNil3 using
the loop groupmethod. _eheart of theproof is the following simple relation between
spacelike CMC graphs in L3 andminimal graphs in Nil3.

_eorem 1.7 Every entire, complete, spacelike CMC graph inL3 withmean curvature
H = 1/2 and the Hopf diòerential QL3dz

2 induces, via the Sym-formula (applied to its
associated family), an entire, complete,minimal graph in Nil3 with Abresch–Rosenberg
diòerential −QL3dz

2.
Conversely, every entire, complete,minimal graph in Nil3 is obtained in this way.

Proof Let gL3 be an entire complete spacelike CMC graph with mean curvature
H = 1/2 over the (x1 , x2)-plane in L3 whose Hopf diòerential is QL3dz

2. Let F λ be
the extended frame of gL3 , deûned by (A.3), and apply the Sym-formulas of _eo-
rem A.3 to obtain f λL3

and f λ from the same extended frame F λ . Note that f λL3
and
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f λ deûne an associated family of spacelike CMC surfaces in L3 andminimal surfaces
in Nil3, respectively. Moreover, fL3 = f λL3

∣λ=1 and gL3 are isometric by some rigid
motion in L3, by the fundamental theorem of surface theory (themean curvature H,
the Hopf diòerential QL3dz

2 and the metric euL3 dzdz are the same), thus fL3 is also
a entire, complete, spacelike CMC graph, [9, Proposition 1]. From formulas (A.4)
and (A.5) we infer by inspection that f λ and f λL3

share the same x1-, x2-components.
_us f = f λ ∣λ=1 is an entire minimal graph as well. Moreover, from _eorem 1.3 we
obtain that f (= f λ ∣λ=1) is complete, and by Remark A.4 we know that the Abresch–
Rosenberg diòerential is −QL3dz

2.
To verify the second statement, let f be an entire, complete,minimal graph in Nil3

whose Abresch–Rosenberg diòerential is Q dz2 and let F λ be the extended frame of f
and f λ its associated family from the extended frame F λ . _enwe have f = f λ ∣λ=1 up
to translation in Nil3. Moreover, let f λL3

be the spacelike CMC surface in L3 deûned
by the same extended frame F λ in (A.4). Note that the Hopf diòerential of f λL3

is
Qλ

L3
dz2 = −λ−2Q dz2. Since f and f λL3

∣λ=1 have the same x1-,x2-components, the latter
surface is an entire CMC graph inL3, and thus by [3, p. 415], the proof is complete.

Using_eorem 1.7, it is easy to give the proof of the solution to the Bernstein prob-
lem.

_eorem 1.8 Let Q dz2 be a holomorphic quadratic diòerential on D or M = C with
Q /≡ 0. _en the following statements hold∶
(i) _ere exists a two-parameter family of entire, complete, minimal graphs in Nil3,

whose Abresch–Rosenberg diòerential is Q dz2.
(ii) Any two members of this two-parameter family are generically non-congruent.
(iii) Eachmember of this two-parameter family is induced via the Sym-formula by (the

associated family of) an entire, complete, spacelike CMC graph inL3 with theHopf
diòerential −Q dz2.

Proof Firstwe note that it is known that for a given holomorphic quadratic diòeren-
tial QL3dz

2 onD orC, there exists a unique entire complete spacelike CMC graph gL3

over the (x1 , x2)-plane in L3 whoseHopf diòerential is QL3dz
2 [9,10]. Here “unique”

means that any other such spacelike CMC graph whose Hopf diòerential is QL3dz
2

is isometric to gL3 by an isometry of L3. We normalize themean curvature of gL3 as
H = 1/2 and set QL3dz

2 = −Q dz2, where Q dz2 is the quadratic diòerential satisfy-
ing the condition in the theorem. Let F λ be the extended frame of gL3 and apply the
Sym formulas of _eorem A.3 to obtain f λL3

and f λ from the same extended frame
F λ . From _eorem 1.7 we know that fL3 = f

λ
L3
∣λ=1 and f = f λ ∣λ=1 are complete entire

graphs. From the construction it is clear that f is a minimal surface. Moreover, the
Abresch–Rosenberg diòerential of f is Q dz2.

We now consider a spacelike CMC surface g̃L3 isometric to gL3 in L3. _en as ex-
plained in the proof of Lemma 1.4, the extended frame F̃ λ of g̃L3 satisûes F̃ λ = MλF λk
for some z-independent (ΛSU1,1)σ -valued matrix Mλ and a U1-valued matrix k, in
particular independent of λ. For the associated family f̃ λL3

of g̃L3 which is deûned by
the Sym formula (A.4) from the extended frame F̃ λ , we see that f̃L3 = f̃ λL3

∣λ=1 and
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g̃L3 are isometric. _us fL3 and f̃L3 are isometric, and again from [9, Proposition 1]
we obtain that f̃L3 is an entire, complete, spacelike CMC graph. Let f̃ λ be the corre-
sponding associated family of minimal surfaces in Nil3 which is deûned by the Sym
formula (A.5) from the extended frame F̃ λ . _en using the argument in _eorem 1.7,
we see that f̃ = f̃ λ ∣λ=1 is an entire, complete minimal graph in Nil3. Note that the
Abresch–Rosenberg diòerential of f̃ is also Q dz2.

We now apply Lemma 1.4. If the isometry fL3 and f̃L3 is of case (i) or (ii), then
f̃ (= f̃ λ ∣λ=1) is congruent to f (= f λ ∣λ=1). However, if the isometry of fL3 and f̃L3 is
of case (iii), then f̃ is in general non-congruent to f . In particular, in Lemma 1.4(iii)
corresponds to a two-parameter family of boosts inL3. _erefore, for an entire, com-
plete, spacelike CMC surface, there exists a two-parameter family of non-congruent
completeminimal graphs in Nil3 which have the same Abresch–Rosenberg diòeren-
tial Qdz2.

1.4 The Two-parameter of Ambiguity and the Associated Family

From_eorem1.8,we have the geometricmeaning of the two-parameter ambiguity of
entireminimal graphs. We also have the associated family of entireminimal graphs.

Remark 1.9 In [6], the two-parameter familyof an entire, complete,minimal graphs
in Nil3 was obtained by the choice of the initial condition for a nonlinear partial dif-
ferential equation. _e solution corresponds to ϕ3; that is, the e3-component of f −1 fz
and the initial condition is the initial value ϕ3(z∗) for some base point z∗ in C or D.
In our setting, this freedom naturally appears as the two-parameter family of boosts
in L3. As we see from the proof of _eorem 1.8, two minimal surfaces f λ and f̃ λ

satisfy the relation (1.3). Set

Mλ
∣λ=1 = (

α β
β α

) ∈ SU1,1 , ( f λ)−1 f λz ∣λ=1 =
3

∑
k=1

ϕk ek , ( f̃ λ)−1 f̃ λz ∣λ=1 =
3

∑
k=1

ϕ̃k ek ,

where α is real. _en a straightforward computation (using the proof of [4, _eo-
rem 6.1]) shows

ϕ̃3 = (α2
+ ∣β∣2)ϕ3 + 2i Re(αβ)ϕ1 + 2i Im(αβ)ϕ2 .

From this expression, it is clear that our two-parameter family of boosts induces a
freedom of the initial condition of ϕ3 that is naturally parametrized by C.

Corollary 1.10 _e associated family of every entire, complete,minimal graph inNil3
with a given Abresch–Rosenberg diòerential Q dz2 is a family of entire, complete, min-
imal graphs in Nil3 with the Abresch–Rosenberg diòerential λ−2Qdz2 (λ ∈ S1). More-
over, within a given associated family, completeminimal graphs have the same support
h (dz)1/2(dz)1/2.

Proof From the proof of _eorem 1.8, it is clear that for an entire minimal graph
f λ ∣λ=1 all members of its associated family of minimal surfaces have the Abresch–
Rosenberg diòerential λ−2Qdz2 (λ ∈ S1) and the same support h (dz)1/2(dz)1/2. To
prove that the minimal surfaces in the associated family are graphs, we consider the
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spacelike CMC surfaces f λL3
given in the proof of _eorem 1.8. _en, since f λL3

∣λ=1
is entire, it is complete [3, p. 415] and thus the spacelike CMC surfaces f λL3

in the
associated family are also complete. _ey are in fact isometric to f λL3

∣λ=1. Note that
the completemetric is given by h2 dzdz; see (1.1). _erefore, by [9, Proposition 1], all
f λL3

are entire graphs, and thus the corresponding minimal surfaces f λ in Nil3 are also
entire graphs. _e completeness of the associated family follows from Lemma 1.1.

Remark 1.11 (Canonical examples) In [6], all entire, complete, minimal vertical
graphs are called the canonical examples.

Appendix A Basic Results

A.1 Isometry Group

_e identity component Iso○(Nil3) of the isometry group of Nil3 is the semi-direct
product Nil3 ⋉SO2. Ifwe identifyNil3 withC×R and SO2 with U1, respectively, then
the action of Nil3 ⋉ SO2(≅ (C ×R) ⋉U1) is given by

(A.1) ((α = a1 + ia2 , a3), e iθ) ⋅ (z = x1 + ix2 , x3) =

( e iθz + α, x3 +
1
2 Im(αe iθz) + a3) ,

where θ , a3 , x3 ∈ R and α, z ∈ C. Here (x1 , x2 , x3) is a coordinate system of Nil3, θ is
a rotation angle, and (a1 , a2 , a3) is a translation vector.

A.2 Basic Notation

Let f ∶M → Nil3 be a conformal immersion of aRiemann surfaceM intoNil3. Denote
the natural orthonormal basis of the Lie algebra of Nil3 by {e1 , e2 , e3}; see [4, (2.1)].
_en theMaurer-Cartan form f −1d f = ( f −1 fz)dz + ( f −1 fz)dz can be expanded as

f −1 fz =
3

∑
k=1

ϕk ek and f −1 fz = f −1 fz =
3

∑
k=1

ϕk ek .

Here, z = x + iy are conformal coordinates, z = x − iy is its complex conjugate.
_e subscripts z and z denote the partial diòerentiations with respect to z and z,
respectively. Moreover, ϕk is a complex-valued function and ϕk is the its complex
conjugate function. Since f is a conformal, ϕk(k = 1, 2, 3) satisfy ∑3

k=1 ϕ
2
k = 0 and

∑
3
k=1 ∣ϕk ∣

2 = 1
2 e

u ≠ 0. We note that the inducedmetric of f is given by ds2 = eudzdz.
_en using the generating spinors ψ1 and ψ2, the ûrst equation can be solved by

ϕ1 = (ψ2)
2
− ψ2

1 , ϕ2 = i((ψ2)
2
+ ψ2

1 ), ϕ3 = 2ψ1ψ2 .

_en the condition ∑3
k=1 ∣ϕk ∣

2 = eu/2 is equivalent to eu = 4(∣ψ1∣
2 + ∣ψ2∣

2)2. Let N
be the positively oriented unit normal vector ûeld along f . We deûne the support
h(dz)1/2(dz)1/2 by h = ⟨ f −1L, e3⟩, where L = eu/2N . _en it is easy to compute h
by the generating spinors ψ1 and ψ2: h = 2(∣ψ1∣

2 − ∣ψ2∣
2). Moreover, let ew/2 and

Q dz2 = 4B dz2 be the Dirac potential and the Abresch–Rosenberg diòerential [1],
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given by

ew/2 = U = V = −
H
2
eu/2 +

i
4
h and B =

2H + i
4

(⟨ fzz ,N⟩ +
ϕ2

3

2H + i
) ,

respectively. It is known that the vector of generating spinors ψ̃ = (ψ1 ,ψ2) satisûes
the so-called “linear spinor system” [4]:

ψ̃z = ψ̃Ũ , ψ̃z = ψ̃Ṽ ,

where

Ũ = (
1
2wz +

1
2Hze−w/2+u/2 −ew/2

Be−w/2 0
) , Ṽ = (

0 −Be−w/2

ew/2 1
2wz +

1
2Hze−w/2+u/2) .

Wenote that the second columnof the ûrst equation and the ûrst columnof the second
equation together are the nonlinear Dirac equations; that is,

∂zψ2 = −Uψ1 , ∂zψ1 = Vψ2 ,

where U = V = ew/2.

A.3 Flat Connections

From now on we assume that the unit normal f −1N is upward; that is, the e3-com-
ponent of f −1N is positive. Since f −1N is upward, there is a stereographic projection
π of the unit normal f −1N from the south pole to the unit disk in C. We denote the
map π ○ f −1N by g and call g the normal Gauss map. _en it is easy to see that g
can be represented by the generating spinors as g = ψ2

ψ1
. We now deûne the family of

Maurer–Cartan forms αλ as αλ = Ũ λdz + Ṽ λdz with

Ũ λ
= (

1
4wz +

1
2Hze−w/2+u/2 −λ−1ew/2

λ−1Be−w/2 − 1
4wz

) ,

Ṽ = (
− 1

4wz −λBe−w/2

λew/2 1
4wz +

1
2Hze−w/2+u/2) .

(A.2)

_en minimal surfaces in Nil3 are characterized in terms of the normal Gauss map as
follows.

_eorem A.1 ([4, _eorem 5.3]) Let f ∶D → Nil3 be a conformal immersion of a
simply connected domain D that is nowhere vertical and let αλ be the 1-form deûned
in (A.2). Moreover, assume that the unit normal f −1N is upward. _en the following
statements are equivalent:
(i) f is aminimal surface.
(ii) d + αλ is a family of �at connections on D × SU1,1.
(iii) _e normal Gauss map g for f is a non-conformal harmonicmap into the hyper-

bolic two-spaceH2.

Denote by σ the involution corresponding to the Riemmanian symmetric space
H2 = SU1,1/U1 and (ΛSU1,1)σ the twisted loop group of SU1,1 twisted by σ .
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Deûnition A.2 ([4, Deûnition 1]) Let f be a minimal surface in Nil3 and F λ a
(ΛSU1,1)σ -valued solution to the equation (F λ)−1dF λ = αλ such that

(A.3) F λ
∣λ=1 =

1
√

∣ψ1∣2 − ∣ψ2∣2
(

√
i
−1
ψ1

√
i
−1
ψ2√

i ψ2
√

i ψ1
) .

_en F is called an extended frame of theminimal surface f .

A.4 Sym-formula

Identifying the basis {E1 ,E2 ,E3} of su1,1 in [4, (6.1)] with the basis {e1 , e2 , e3} of nil3
in [4, (2.1)], we obtain the Sym-formula, [4, Section 6.1]. In what follows we will take
derivatives for functions of λ. Note that for λ = e iθ ∈ S1, we have ∂θ = iλ∂λ .

_eorem A.3 ([4,_eorem 6.1]) For the extended frame F λ of someminimal surface
f , deûnemaps f λL3

and N λ
L3

respectively by

(A.4) f λL3
= −iλ(∂λF λ

)(F λ
)
−1
− N λ

L3
and N λ

L3
=

i
2
Ad(F λ

) ( 1 0
0 −1 ) .

Moreover, deûne amap f λ ∶D→ Nil3 by f λ ∶= Ξnil ○ f̂ λ with

(A.5) f̂ λ = ( f λL3
)
o
−

i
2
λ(∂λ f λL3

)
d ,

where the superscripts “o” and “d” denote the oò-diagonal and diagonal parts, respec-
tively. _en, for each λ ∈ S1, the following statements hold∶
(i) _e map f λL3

is a spacelike CMC surface with mean curvature H = 1/2 in L3 and
N λ

L3
is the timelike unit normal vector of f λL3

.
(ii) _emap f λ is aminimal surface in Nil3 and N λ

L3
is the normal Gauss map of f λ .

In particular, f λ ∣λ=1 gives the original minimal surface f up to translation.

Remark A.4
(i) It is known that the Maurer-Cartan form αλ = Ũ λdz + Ṽ λdz in (A.2) with

H = 0 and λ = 1 is the Maurer-Cartan form of a spacelike CMC surface with mean
curvature H = 1/2, the Hopf diòerential QL3dz

2 = −4B dz2 and the metric h2dzdz,
see [2, Lemma 3.1].1 Any (ΛSU1,1)σ -valued solution F λ of (F λ)−1dF λ = αλ is called
the extended frame of a spacelike CMC surface in L3.

(ii) _e Hopf diòerential of the spacelike CMC surface f λL3
in _eorem A.3 can

be computed as Qλ
L3
dz2 = −4λ−2B dz2, where Qλ dz2 = 4λ−2Bdz2 is the Abresch-

Rosenberg diòerential of theminimal surface f λ in Nil3.
(iii) Note that in _eorem A.3 the choice of coordinates is free. We will therefore

apply this result to graph coordinates as well as to conformal coordinates without
further mentioning.

1 _emean curvature and the Hopf diòerential for spacelike surfaces in Minkowski space could be
deûned diòerently from the deûnition in Euclidean space; _e second fundamental form II and the
mean curvature H could be changed to −II and −H, respectively, that is, in the above case the mean
curvature and the Hopf diòerential would then become H = −1/2 and QL3 dz

2 = 4B dz2 , respectively.
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In the following corollary, we compute the Abresch–Rosenberg diòerential Bdz2

for the 1-parameter family f λ in_eoremA.3, and it implies that the family f λ actually
deûnes the associated family.

Corollary A.5 Let f λ be the family of minimal surfaces in Nil3 deûned by (A.5).
_en f λ preserves the mean curvature (= 0) and the support. Moreover, the Abresch-
Rosenberg diòerential Qλdz2 for f λ is given by Qλdz2 = 4λ−2Bdz2, where Q dz2 =

4B dz2 is the Abresch–Rosenberg diòerential for f λ ∣λ=1. _erefore, { f λ}λ∈S1 is the asso-
ciated family of theminimal surface f λ ∣λ=1.
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