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COMPLETE DECOMPOSABILITY IN THE EXTERIOR 
ALGEBRA OF A FREE MODULE 

M. BORATYNSKI, E. D. DAVIS AND A. V. GERAMITA 

Recall the classical criterion for the complete decomposability of exterior 
vectors: the completely decomposable vectors in ApRn, R a field, are precisely 
the "Plùcker vectors ," i.e. those whose coordinates (relative to the s tandard 
bases for ApRn) satisfy the Plùcker equations. For R an arbi t rary commuta t ive 
ring, completely decomposable exterior vectors are still Plûcker vectors, bu t the 
converse is not generally true. Rings for which the converse is t rue (for all 
1 S p S n) are called Towber rings. Noetherian Towber rings are regular and, 
in fact, are characterized by the property tha t every Plùcker vector in A2RA is 
completely decomposable. (See [10] for these two results as well as for the 
above mentioned facts.) The present note develops a new characterization of 
Towber rings, combining it with results of Kleiner [9] and Estes-Matijevic [5] 
in (1) below. 

Notation. In the sequel R is always a noetherian ring, all modules are finitely 
generated and all projective modules are of constant rank. Recall t ha t 

SKo(R) = Ker(K0(R) -> Pic R) induced by [P] - » [ A r k P P ] . 

A projective module P is oriented provided tha t Ark PP c^. R. The condition 
' 'every Plùcker vector in ApRn is completely decomposable" is abbreviated 
Tp

n. Given a module M, v(M) is defined by: M is generated by v(M) elements, 
bu t not by fewer. 

1. Implications of 7Y. 

(1) T H E O R E M . For regular R, the following are equivalent: 
(a) R is a Towber ring. 
(b) For all n, every vector in AnRn+l is completely decomposable. 
(c) Every vector in A2R3 is completely decomposable. 
(d) Every maximal ideal of R is generated by two elements, and stably-free 

projective R-modules are free. 
(e) à\m(R) S 2, every projective R-module is stably isomorphic to the direct 

sum of a free module and an invertible ideal (i.e. SK0(R) = 0) and stably-free 
projective R-modules are free. 

(f) dim(i^) ^ 2 and all oriented projective R-modules are free. 
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Remarks, (a) <=> (b) was conjectured in [11] and proved in [9] ; thus (a) <=> (c) 
affirms an even stronger result, obtained independently in [5]. We'll see how the 
Estes-Matijevic result gives a proof of (c) =» (a) independent of the Kleiner 
result; but , we'll also see—(8) belowT—how to prove (c) => (a) by using the 
Kleiner result and [10]. 

The proof of (1) is contained in (2) - (7) as follows: Since every exterior 
vector in AnRn+1 is a Plucker vector (see e.g. [10]) we have (a) => (b) => (c) 
immediately, (c) => (d) is contained in (3) and (4); (d) => (e) is contained in 
(5), an unpublished result of Mur thy . (e) => (a) is proved in [5] and (e) 4=̂  (f) 
is contained in (6) and (7). 

(2) LEMMA. TV => v(mRm) tè 2 for all maximal ideals m of R. (Hence 
7V =» dim R ^ 2 and Rm is regular if h t (m) = 2.) 

Proof. See proof of [17, 2.4]. 

Remark. From (2) it follows tha t if R has no maximal ideals of h t < 2—e.g. 
if R is a 2-dimensional affine domain over a field—then R is regular; hence, 
given (a) <=> (c) of (1), it follows tha t (a) <=> (c) holds for such an R. This was 
observed in [7] for the special case of R the polynomial ring in two variables 
over a field. 

(3) LEMMA. TV => every stably-free projective R-module is free. 

Proof. Let P be a stably-free projective 7^-module. Then P ® Rs c^ Rrk F+s 

for some 5. If rk P = 1 P mus t be free (take the (s + l ) s t exterior power) . 
By (2), dim R fg 2 and so by Bass' Cancellation Theorem if rk P > 2 then P 
is free. Hence to prove the lemma we need only consider P projective, rk P = 2 
and P © R c^ R3. T h u s P is defined by the unimodular row [a f3 y] which we 
must show can be completed to a 3 X 3 matrix, with entries in R, having deter
minant 1. Now aa + (3b + yc = 1 for some a,b, c £ R, so consider the exterior 
vector 

v = ae2 A ez — bex A <?3 + ce\ A e2 (z A27?3 

where ei, ei, e^ are a basis for i^3. By proper ty 7V, v = V\ A v2 and the co
ordinates of Vi and v2 provide us with the two rows needed to complete [apy]. 

(4) PROPOSITION. Assume either 7V or that R is regular satisfying hypothesis 
(f) of (1). Then v(m) S 2 for every maximal ideal m of R. 

Proof. In general, v(m) ^ v(mRm) + 1 and vim) = v(mRm) if Rm is not 
regular ([2], Theorem 1). T h u s in view of (2), it suffices to consider the case 
where Rm is 2-dimensional and regular. 

In this case mRm is generated by a regular sequence of length 2, and 
mRp = Rp if p T^ m. Thus , p d ( w ) = 1. Fur thermore , KxtR

1(m1 R) is locally 
cyclic with O-dimensional support (see [15]) and hence cyclic. By Serre's 
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Lemma [15, Proposition 1] then, there is a projective resolution: 

(*) 0 - * P - * P - > r a - > 0 

Now, since m is locally generated by a regular sequence, the Koszul complex 

0 - > A 2 P - > P - * r a - * 0 

over the map P —» m is locally exact and hence exact. (See [13], proof of 
Lemma 4.4 for more details.) Thus A2P o^ R. Hence under hypothesis (f), 
P ^ R2 and so v(m) = 2. 

We finish the proof by showing that also under the hypothesis TV we have 
Pc^R2. 

Since v(mRm) = 2 we have v(m) S 3. Let Xi, x2, x3 be three generators for m 
and let e\, e2, e% be the standard bases for P3 . Let 

v 6 A2P3, u = xie2 A £3 + x2ex A ez + x3£i A ^2. 

By TV we have v = 1̂ A 2̂ where 

^z = «i<?l + &^2 + <^3 , t = 1, 2. 

Consider the sequence 

(ai a2 

&i 62 

(**) 0 -> R2 — *-+ P 3 > w -> 0 

By the usual facts about cofactors we see that this is a complex. The last 
map is onto by the choice of generators for m. The Buchsbaum-Eisenbud 
criterion [1] then applies, as depth (m, R) = 2, to assert that this complex is 
exact. 

By Schanuel's Lemma applied to (*) and (**) we see that P is a stably free 
projective P-module. By (3) then, P is free. 

Remark. Independently and by entirely different methods, this proposition 
was also proved by Estes and Matijevic in [5]. 

(5) PROPOSITION (Murthy). Let dim R S 2 and suppose v(m) = 2 for all 
maximal ideals of height 2. Then SK0(R) = 0. 

Proof (Murthy). Since dim R ^ 2 it will be enough to show that if P is 
projective, rk P = 2, then P © R ~ R2 © K. 

By a theorem of Bass [16, 3.3], since rk P = 2, there is a surjective homo-
morphism/ : P* —+ q where q is an ideal of R and ht q ^ 2. If q = R then P* 
(and hence P) has a free summand, so we may assume ht q = 2. Since 
v(m) = 2 for any maximal ideal of height 2 we have q is contained only in 
maximal ideals m for which Rm is 2-dimensional and regular. Thus, pd q = 1. 

(Xi, X2, X3) 

https://doi.org/10.4153/CJM-1980-003-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-003-3


30 M. BORAXYNSKI, E. I). DAVIS AND A. V. GERAMITA 

Let m D q be maximal. Since v(m) = 2, w is generated by a regular sequence 
and so the Koszul complex based on these generators gives a free resolution of 
m. Hence [m] = [R], in Go(R). 

Since R/q has finite length as an /^-module we have t ha t R/q has a finite 
filtration by modules of the form R/m where m is maximal and m ~D q. Thus , 
we also obtain [q] = [R] in GQ(R). 

Now, we have the exact sequence 

/ 
0 - > L - > P * - * < 7 - > 0 , 

where L = Kerf. Since pd q = 1, L is projective. Hence 

[P*] = [L] + [<?] = [L] + [R] in K0(R), 

i.e. P * and L ® R are stably isomorphic. Since dim R = 2, P* ® R c^. 
(L © i?) © i? and so P ® Rc^R2 ® K, where i f = (L)*, as was to be shown. 

(6) LEMMA. / / SKQ(R) = 0 /Aew ^ g hypotheses imposed on the projective 

modules of R by ( Id) and (If) are equivalent. 

Proof. Observe tha t if SK0(R) — 0 then any projective module P is s tably 
isomorphic to A r k P P © JR

rkP"1 . 
If Ark F P ^ P then P is stably-free and hence free if the ( Id) hypothesis 

holds. Conversely, if P is stably free then so is Ark PP and hence Ark PP ^ R. 
Since the (If) hypothesis holds, P is then free. 

(7) COROLLARY. Assume either 7Y or that R is regular satisfying hypothesis (f) 
of (1). Then SKQ(R) = 0, all oriented projective R-modules are free, and stably 
free projective R-modules are free. 

Proof. SK0(R) - 0 by (4) and (5). The rest follows from (3) and (6). 

Remarks. 1) (7) should be compared with ([10], 6.4) where the conclusion is 
deduced from the stronger hypothesis 7Y-

2) Note tha t Theorem (1) is now proved. See Remarks after Theorem (1). 

(8) COROLLARY. If R is normal then 7Y => R is a Towber ring. 

Proof. Given a maximal ideal m of R, Rm is regular; by (2), if h t (m) = 2, or 
by the hypothesis "no rma l " if htm < 2. (The corollary now follows from 
(c) => (a) of (1). We continue with an al ternate a rgument for the reason 
explained in the Remarks following the s ta tement of Theorem (1).) T h u s R is a 
direct sum of regular domains of dimension a t most 2. Since the properties Tv

n 

get along with direct sums, we may assume R is a domain. By (7) and Bass 
cancellation, every projective /^-module of rank > 2 is of the form "free © 
ideal." Hence by ([10], 3.4) we have Tv

n for all 2 < p ^ n. In part icular then, 
we have Tn

n+l for all n. Then R is a Towber ring by ([9], Theorem 1). 
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2. Towber rings and certain theorems and conjectures of Eisenbud-
Evans. Consider the following statements concerning a ^-dimensional 
noetherian ring R. 

i) Every ideal of R is generated, up to radical, by d elements. 

ii) For a finitely generated i^-module M, 

v(M) S 8 (M) = max{v(Mp) + dim(R/p)\p £ Spec R, dim R/p < d\. 

iii) If P is a projective i^-module of rank d, then P has a free summand. 

All these statements are false in general. However, if R = S[X], then 

i) is true [4]. 
ii) is conjectured in ([3], Conjecture 3) and proved if 5 is a domain in 

[14] and [12]. 
iii) is conjectured in ([3], Conjecture 1) and is proved there if S is local. One 

can then use Qullen's Localization Theorem to show that iii) is true if S is 
regular. 

In this section we prove i) and ii) for Towber rings. These results lend further 
support to the notion expressed in [10] that Towber rings of dimension two 
behave, in certain respects, as if they were one dimensional. (Perhaps one 
should say: as if they were of the form <S[X], where S is one dimensional.) 

The validity of iii) for Towber rings would prove that every projective 
module over a Towrber ring is of the form "free © rank 1" and that Towber 
rings enjoy the cancellation property for all projective modules (not just the 
stably-free ones). If one really expects a Towber domain of dimension two to 
behave as if it were 5[X], 5 a Dedekind domain, then one should conjecture the 
"free © rank 1" result for arbitrary Towber domains. By [13], iii) is valid for a 
Towber ring which is a finitely generated affine algebra over an algebraically 
closed field. We do not know if iii) is valid in general, however, for a two 
dimensional Towber domain. 

We now proceed to a proof of i) and ii) for Towber domains. 

(9) PROPOSITION. Let R be a Towber ring. Then 
a) v(M) ^ 8 (AI) for any finitely generated R-module M. 
b) Every radical ideal of R is generated by 2 elements. 

Remark. For the case R = S[X], S a Dedekind domain, (9) a) and (9) b) are 
unpublished results of M. P. Murthy and R. Gilmer respectively. (9) b) is 
observed, independently, in [5]. 

Proof. With no loss of generality, we assume R is a domain, since a Towber 
ring, being regular, is a direct sum of Towber domains. 

We first show that b) follows from a). 
Let 0 5* J = rad(7); we will show that 8(1) g 2. Note that v(IRv) + 

d\m(R/p) ^ 2 for any prime p of height one, since Rp is a discrete valuation 
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ring. Now let m be a height two maximal ideal such tha t m D 7. If m is minimal 
over 7 then IRm = mRm and so v(IRm) = 2. If m is not minimal over 7 then 
IRm is pure height one and so v(IRm) = 1 since Rm is factorial. T h u s <5(7) ^ 2 
and b) follows from a ) . 

We now turn to the proof of a ) . Since R is a domain it suffices, by an observa
tion of Sathaye [14], to prove a) only for ideals of R. Fur thermore , if <5(7) > 2 
then <5(7) is the "Fors ter bound" and v(I) ^ 3(1) by ([6], Satz 1). Since 
8 (I) < 2 only in the trivial cases of I = (0) or dim R < 2, it remains to prove 
tha t v(I) rg 2 in case R is a 2-dimensional Towber domain and v(IRM) :g 2 for 
all maximal ideals m of 7?. Hence a) follows from the following proposition, 
which proves tha t a) holds for a (possibly) larger class than Towber rings. 

(10) PROPOSITION. Let R be a 2-dimensional locally factorial domain such that 
all oriented projective R-modules are free. Let I be an ideal of R such that 
v(IRm) ^ 2 for all maximal ideals m of R. Then v(I) :§ 2. 

Proof. We may assume 7 ^ 0 . By ' ' locally factorial" we have for any prime p, 
if h t p < 2, Ip ~ Rv and if h t p = 2, either Iv ^. Rv or Iv is isomorphic to an 
i^-ideal generated by a regular sequence of length 2. Thus , E x t V ( 7 , R) is 
locally cyclic with 0-dimensional support , and so cyclic. Moreover pd(7) ^ 1. 
By Serre's lemma again, there is a projective resolution 

(*) 0 - > ^ - > P - > / - > 0 . 

Claim. A 2 P ~ / = ( / - 1 )" 1 -

Conclusion of proof assuming the claim. Since / is an invertible ideal, IJ is 
locally isomorphic to I and so Serre's lemma, applied to IJ, gives a projective 
resolution 

0 - » R -><? - » 7 / -> 0. 

By the claim we have A2(J ^ J 2 . Identify Ç with a sub-module of K2 (K = 
quotient field of R). Tensoring this exact sequence with J~l (observe t ha t given 
our identification, this amounts to multiplication by J " 1 ) we obtain QJ~l —» 
I -> 0 exact. W7e see tha t k2(QJ-1) = ( A2Q)J~2. Since ( A2Q)J~2 ~ i^ and, by 
hypothesis, Ç / - 1 ^^ /^2, we obtain v(I) ^ 2. 

Proof of claim. We consider three cases: 
(i) I is unmixed of h t 1. In this case the hypothesis "locally factorial" 

implies I is invertible and hence P ^ R © I. Then A2P ^ I = ( 7 - 1 ) - 1 -
(ii) 7 is unmixed of h t 2. In this case I is not contained in an associated 

prime of a principal ideal, since the hypothesis implies t ha t R is Cohen-
Macaulay. T h u s I~l = Lt, and so J = R. Now, since 7 is locally generated by a 
regular sequence, (*) is a Koszul complex (see proof of (4)) and hence A2Pc^R. 
Notice also, then, t ha t in this case P o^ R2. 

(iii) 7 is of mixed height. In this case 7 = JH where 77 = 77 _ 1 . (Proof. By 
"locally factorial," Im — JmHm for every maximal ideal m of Li.) 
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Observe that for any prime p, Ivc^ Hp since J is invertible whence Jv is 
principle. Moreover, Hp = Rv\îhtp = 1. So, i^is a locally 2-generated ideal to 
which case (ii) applies. Thus, by the remark at the end of (ii) we have an exact 
sequence: 0—+R—>R2—>H—+0. Tensoring with J gives an exact sequence: 

(**) 0-*J-+J®J->I->0. 

Schanuel's lemma, applied to (*) and (**) gives: 

J@J@R~P®J. 

Applying A3 to this ''equation" gives J2 o^ (A2P)J. So A2P o^ J as was to be 
shown. 
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