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Abstract

In this paper we consider O. Bonnet II-isometry (or BIII-isometry) of surfaces in 3-dimensional
Euclidean space E>. Suppose amap F: M — M" is a diffeomorphism, and F*(III*) = III,
k(m)=x;(m"), i=1,2,where me M, m*" € M*, m" = F(m), x; and k] are the
principal curvatures of surfaces M and M" at the points m and m" , respectively, IIl and
III* are the third fundamental forms of M and M", respectively. In this case, we call F an
O. Bonnet Ill-isometry from M to M* . O. Bonnet I-isometries were considered in references
[11-{5].

We distinguish three cases about BlII-surfaces, which admits a non-trivial BIll-isometry.
We obtain some geometric properties of BIIl-surfaces and Blll-isometries in these three cases;
see Theorems 1, 2, 3 (in Section 2). We study some special Blll-surfaces: the minimal BIII-
surfaces; BIll-surfaces of revolution; and BllIl-surfaces with constant Gaussian curvature; see
Theorems 4, 5, 6 (in Section 3).

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 53 A 05, 53 B 20.

0. Introduction

O. Bonnet [1] was the first to study the isometric deformations of surfaces
in 3-dimensional Euclidean space E 3 which preserve mean curvature. Also
W. C. Graustein [4] and E. Cartan [2] did some work in this area. Recently,
S. S. Chern [3] obtained an interesting result about the surfaces with mean
curvature H # constant. After that, I. M. Roussos [5] got some detailed
results. In this paper, a more general definition of O. Bonnet deformations
is given.
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2] On O. Bonnet IlI-isometry in E3 91

Let M and M™ be two surfaces in the Euclidean space E*. Suppose
I, II, III are the first, second, third fundamental forms of the surface M,
respectively. We shall denote the quantities pertaining to M by the same
symbols with asterisks “ % .

DEFINITION. Suppose F: M — M™ is a diffeomorphism, and F*(I") =1
or F*(II") =11 or F*(III") = III, where F* represents F ’s cotangent map.
Then we call F a I- or II- or Ill-isometry of M and M", respectively.
Moreover, suppose F preserves the principal curvatures at the corresponding
points:

K, (m)=1k;(m"), m'=F(m), i=1,2,

where m € M, m" € M™, x, and «x; are the principal curvatures of
M and M". In this case, we call F an O. Bonnet 1 or Il or Ill-isometry,
denoted by BI or BII or Blll-isometry, respectively. If a surface M admits
a non-trivial BI or BII or Blll-isometry, we call M a Bonnet 1 or II or
II-surface, respectively.

Isometric deformations which were considered in [1]-[5] are Bl-isometries,
because an isometric deformation preserves Gaussian curvature K, so if the
map preserves mean curvature H , then it preserves the two principal curva-
tures x, and k,, and hence it is a Bl-isometry.

In the present paper we shall study BlIl-isometries and obtain some results
given in Theorems 1-6, which are shown to be similar to the case of BI-
isometries.

1. Lemmas and formulas

We shall let v = 0, + iw, (i2 = —1) be the complex structure of the

metric I = (a),)2 + (w2)2 and let w,, be the connection form associated to

I, which is determined by the structural equations
do, = -0, N0,,, dw,=w Ao,
or
dw=ioAw,,,
where w, and w, are two real linearly independent forms.
LEMMA 1. Suppose w is a complex structure.
i) If 0" =, then 0], =-w,,.

(i) If w* =e"w, then w), =, —dt.
(iii) If @* = Aw, then w}, = w,, +*dlogA.
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Here t, A are functions, and “ x> is the Hodge x-operator with

0 =0,, *W,=-0,.

We consider a piece of an oriented surface M in E 3 , which we assume to
be sufficiently differentiable and with no umbilic points and non-zero Gauss-
ian curvature. Over M there is a field of orthonormal frames me, e,e, , such
that m € M, where unit vectors e, and e, are the principal directions of
M at m, and e, is the unit normal vector to M at m. Suppose w, and
w, are a basis of the 1-forms of M dual to the field of principal frames. Set

a>c,and
) W, =aw,;, W,=C0,;, ac#0,
(2) W), = hw,3 + kw,;.

The mean curvature and the Gaussian curvature of M are

3) H=1a"'+c"), K=(c)'
The structural equations of M are

(4) dw,=-w,Aw,, du,=0 Ao,,
(5) dw,=-Ko, Aw, = -0;\@,;,

(6) dw3= -0y A0, doy =070,

The metric of the Gaussian image g(M) of M is
2 2

(7 Ig = (w13) + (w23) .

The complex structure of this metric is

(8) W=+ 0,

From (6), we have

(9) do=ioAw,,.
We denote
(10) f=a-c>0, g=a+c=2HK "

Taking exterior derivatives of (1) and using (4) and (6), we get the existence
of functions o, B, v, d, such that

da = aw,; + fw,; = aw; + fhw,,,
(11) fw12=ﬁw13+l’w23a B=rfh, v=fk,
dc =vw;+ 0w, = fkw ; + dw,;.
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Taking exterior derivatives of (11) and using (5), (6) and (11), we get the
existence of 4, B, ..., E, such that

da = 38w, + Aw,; + Bwy, = (A+ 31k w,; + (B + 3fhk)w,;,
df = —(a+2w)w, + Bu;; + (C + a)w,,

=[B— fhiaf~' = 2k)]w,; + [C +a— fhiaf~" - 2k)]w,,,
dv = (6 +2B)w,, + (C + ¢)w 3 + Dw,,

=[C+c+ fhSf™ =2h) o, +[D+ fk(bf™" = 2h)]w,,,
ds = 3w, + Do, + Ew,; = (D = 3fhk)w,; + (E — 3fk*)w,,.
Using (10) and (11), we get

(12)

(13) dg =2d(HK™') = f(uw,, + va,),

(14) df = fl(u—2k)w,; — (v — 2h)w,,],

where

(15) fu=a+v, fu=g+34.

Then we can determine the following 1-forms. By using %, v in (15), let
(16) 0, =uw;; +vw,y,, 0,=+0,=-v0;+ uw,,;,

(17) Q) TUD 3 — VW3, Q) =*a = VD3t UD,,.

If HK™' = constant, then 0, = a; = 0; if HK™! # constant, 6, and 0,,
or @, and a, are linearly independent. From (13) and (14), it follows that

(18) dg=f8,,

(19) dlogf=a, +2+w,,.
According to (3),

(20) 4K ' =gt - £,

Taking derivatives of (20) and using (18) and (19), we have
(21) 2/ Ak = g6, - flo, + 2+ wyy).
Suppose HK - # constant. We denote

(22) u+iv=_Le",

(23) L=t +v = e’ + B+ 02+ 6% + 2av + BO)].
(24) cosy =uL™', siny=vL".

Let

(25) 0=20,+i6,,

(26) a=a, +ia,.
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Using (8), (16), (17), and (22), we get
(27) 0=Le Yw, a=Le'w, 6=e¢""Ya,
0, =a,;cos2y + a,sin 2y = L(w ;€08 ¥ + w,;sin ),
(27 0,=—a,sin2y +a,cos2y = L(~w,;Sin ¥ + w,,cos ¥),
a, = L(w;cos ¢y — w,;siny), a,=L(w;,;siny+ w,;cosy).
From (10}, (20), (23) and‘(13), it follows that

fP=a(HK™"Y ~ K", [grad(g)) = 4[grad(HK )T’ = f°L%,
SO
2 [grad(HK ")

= e o

We now consider a metric which is conformal to / ¢ (see (7))

(28) L? = 4f(grad(g)]

(29) I'=(a)* + ()’ = LI,

Let 6,, and «,, be the connection forms associated to complex structures
6 and o, respectively. From (27), using Lemma 1, we have

(30) 0,=w,+dy+=+dlogL,
(31) a,=w,—dy++dlogL,
(32) 0, =0a,,+2dy.

We rewrite (2) as

2) W, = hlozl + k'az.

From (2)' and (27), we have

fLK = f ' (hcosy — ksiny)=af —vd,

fLK = f_l(hsint// +kcosy)=av+ BJ + Bz + v
Taking derivatives of (23) and using (11), (12), (18) and (19), we get

(33)

(34) dlogL = —a, —2*w, +*Q + pb,,
where

(35) 2fL*Q = 2(B + D)a, - (4 — E — f)a,,
(36) 2fL’p=A+2C+E +2HK™ .

From (24), it can be seen that

(24)' usiny —vcosy = 0.
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Taking derivatives of (24)’, using (11) and previous formulas, we get

(37) dy = —w, +Q+ pb,.

Inserting (34) and (37) into (30) and (31), we get

(38) 0,, =20, —a, +2p0,,

(39) a, =40, —a, —2Q = 2w, — a, — 2dy + 2p0,.
Let

(40) ay, = Pay + Qa,,

where P, Q are two functions. Using (39), (35), (36), (2)' and (33) gives
P=-2(fL)"’[f(B+D)+2(af - )],

Q=1+(fL)[f(A-E - f) - 2(a* - B* =" + 6)].
By solving (39), we have

(41)

(39)' Q=2w,, - 3[Pe, +(Q+ 1)a,].

Inserting (39)' into (34) and (37), we get

(42) 2dlogL = (Q - 1)a; — Pa, + 2p0,,

(43) 2dy =2w, — [Pa; +(Q + Da,] + 2p0,.

Set

(44) dP =Pa;, dQ=Qa;,, dp=pu0,, i=1,2
Taking exterior derivatives of (42), we have

(45) (dp—p*x0,,)N0,+J6,AN6,=0,

where

(46) -2J=P+P +Q,

Taking exterior derivatives of (43), we have

(47) (dp—-pr0,,)70,-16,70,=0,

where

(48) 20=K-Q-2L"?

and K is the Gaussian curvature of the metric 7 (see (29)) so that
(49) da,=-Ra Aa,, R=-P -Q'+P -0,
From (45) and (47), we obtain

(50) dp-p+0,,=-16,+J6,
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or, by (32) and (48),
(50) dp=p+0,,-10,+J0,
= p(ra, +2+dy)+[L™ - L (K - Q)16, + J0,.
Taking exterior derivatives of [19] and using (40), we get
(51) d*w,=-1Pa Na,.

Applying the *-operator and taking exterior derivatives of (40), we get

(52) dra, =(P+Q,)a, Aa,.
Similarly, from (31), using (51) and (52), we get

(53) d+xdy =(2J+1iP)a Aa,
and from (30) and (19), we have

(54) d+*0,=2Ja,Na,,

(55) dxdlogf=(Q+2L )a, Aa,
Applying the *-operator to (34) and using (37), we get
(56) sdlogL = —w,, + o, +dy.
Taking exterior derivatives of the above equation,
(57) dxdlogL = (L™ - K)a, Aa,.
We denote

(58) dy=ve, di=Je, dK-Q=K-Q), i=1,2.

Taking exterior derivatives of (50) gives

(59) (16, +JO)N6,,+ 0, +JO)NO,+1(d*a,+2d*dy)
—[4d(R - Q)-dL™*)A6,+dI A, =0.

Let us compute the left side in (59).
(a) The sum of the first two terms is

(60) (=10, + JO,) A (xa ), +2+dy)+ (10, + J6,) A O,
= {[-I(P + ly,) + J(Q + 2y,)] cos 2y
- [(Q +2y,) + J(P + 2y,)}sin 2y }a, A a,.
(b) The third term is

(61) Idxa,+2dxdy)=2pJa, Aa,.
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(c) The sum of the last two terms is
(62)
~[4d(R - Q) -dL™*IA 8, +dJ A G,
=-2L"dlogLAG, — 1d(R — Q) A8, +dJ A,
= {[4(K - @), + J,]cos 2y — [§(K — Q), — J,]sin2y
- L_Z[P cos2y + (Q — 1)sin2y]}a, A a,.
Inserting (60)-(62) into (59), we get
(63) pJ — LL [P cos 2y, (Q + 1) sin 2y]
+{=I(P+2y,) +J(Q +2w,) + }[3(K - Q), + J,]} cos 2y
—{J(P +2y,) + I(Q +2,) + 3[L(K - Q), - J,]} sin2y = 0.
We need the following lemma.

LEMMA 2. A necessary and sufficient condition for a surface M with HK -
# constant fo be a Weingarten-surface is

(64) (P +2y,)cos2y + (Q + 2y,)sin 2y = 0.

PrROOF. According to (10), (18) and (21), a necessary and sufficient con-
dition for M to be a W-surface is da A dc = 0, which can be written as
(65) (o, +2%w,)A0,=0.

Applying the *-operator to (39), we get
o, +2+w, =*a,+2+dy +2p0,.
Using the above equation from (65), we have
*(a, +2dy)A0O, =0
or
(a, +2dy)ne, =0.

Using (40), (58), (27)' and rewriting the above equation, we see that (64)
follows.

2. Blll-isometry

Let F: M — M" be a Ill-isometry from M to ]fl , with me, e,e; and

7;1512223 the fields of principal frames over M and M, respectively. We
have

* *

* * * *
(1) W, =AW, W,=CW,;, O =aW;;, W,=CW,;.
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Let
. * * L *
W=W;+i0,;, ©O=0;+i0,.

Since F is a Ill-isometry, we have

* it
(2) w=e w
or
’ * . * 3
(2) W3 =W ;C0ST — W,3SINT, W,; =W ;SINT+®W,,C087,

where 7 is an angle of rotation of the principal directions during the BIII-
isometric deformation. On the other hand, from the invariance of principal
curvatures, we get

(3) a=a, c¢=c.
Using (1.10) and (3) gives

(4) f=f, g=s
From (1.16), (1.33) and (1.24),

(3) 6,=6,

or

169,y + Doy, = w3 + vy,
which gives, in view of (2)’,

(6) U=1ucOST—VUSINT, U =uSiNT+VCOST.

Taking derivatives of the first equation in (4) and using (1.19) we get
(7 &l+2*&),2=a1+2*w12.

Using Lemma 1 from (2), we have

(8) Wy =W, —T.
Using (7), (8), we have

) dt = j(ay — &y).
From (6) and (1.27)

(10) 32 = o, $in 27 + o, €08 2.
Putting

(11) t=ctgt,
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we get from (9),
(12) dt = ta, — a,.

This is the total differential equation satisfied by the angle 7. In order that
the Blll-isometry be non-trivial it is both necessary and sufficient that (12)
is integrable. Taking exterior derivatives of (12), in view of (1.40), we get an
integrable condition

(13) tP+1-Q=0.

Now let us distinguish three cases about BIII-isometry. Similarly, BI-
isometry is classified into three types.

(1) First type, HK™' = constant. Then by (1.13), ; =0, i=1, 2.

(2) Second type, HK - # constant, and P =0, Q@ = 1. Then (13) holds
identically for all ¢, and (12) has a continuum of solutions, each depending
on an arbitrary constant. Thus we obtain a one-parameter family of surfaces
BIIl-isometric to M .

(3) Third type, HK™' # constant, and P #0, Q # 1. Then from (13),
we have
(13) t=Q-1)P",
and (12) has a single solution. Thus we obtain a single surface which is
BIII-isometric to M .

THEOREM 1. Any surface with constant HK™' isa Bill-surface of the first
type. In other words, any surface with constant HK =1 can be IlI-isometrically
deformed, preserving the principal curvatures. During this deformation the
principal directions are rotated by a fixed angle 1 (= constant).

Since in this case a; =a, =0, dt =0, ¢t = constant, 1 = constant, The-
orem 1 naturally holds. This theorem is an analogy of O. Bonnet’s theorem
for Bl-isometries [1].

THEOREM 2. Let M be a Blll-surface of the second type, that is, HK -1 #
constant and P=0, Q=1.

(i) The metric which is conformal to the metric 1, of the Gaussian image
gM) of M,
_ lgrad(HK ")’
= (HK—I)Z _K e’
has Gaussian curvature equal to —1, where H and K are the mean curvature

and Gaussian curvature of M , respectively.
(i) M is a W-surface.

~
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(iii) The non-trivial family of Blll-surfaces is a family of surfaces which
depends on six arbitrary constants.

ProoFr. Since
(14) P=0, Qg=1,
(1.3) is identically true for all 7. Using (1.49), we have

R=—(PP+Q’-P,+0Q)=-1.
From (14), P, = Q, =0 and using (1.46) and (1.48), we get
J=0, I=—(1+L7%, J=0, K =0

Inserting the above equations into (1.63) we get
(15) 2y, cos 2y + (1 + 2y,) sin 2y = 0.

This is exactly (1.64). By Lemma 2, we obtain (ii).
From (15) we have

(16) 2y, =psin2y, 1+42y,=—-pcosy,
where p is a function. Taking derivatives of (16), we get, for i=1, 2,
(17)  2y,;=p;sin2y +2py,;cos2y, 2y, =p,cosy + 2py,sin2y.

Inserting (17) into (1.53), using v, = y,, plus J =0, P = 0, and by
solving the equation obtained, we get

(18) pl=—2p!/12, p2=2p'//1-

It can be verified by differentiating (18) that the integrable condition for p
is satisfied. From our discussion the differentials of the six functions a, c,
logL, p, v, p are all determined. Hence our surfaces of non-constant
HK™', which can be III-isometrically deformed in a non-trivial way pre-
serving the principal curvatures, depend on six arbitrary constants.

REMARK. Theorem 2 is analogous to S. S. Chern’s Theorem for BI-
isometry [4].

About the third type of BllI-surfaces, we only consider the case of a surface
satisfying the equation

(19) Pcos2y +(Q—1)sin2y =0.

First of all, we get the following,.
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LEmMA 3. Let M be a Blll-surface, which satisfies (19). Then the follow-

ing differentials satisfy

(20) dy,dP,dQ,dL,dp,da,dc=0 (mod 6,).

ProOF. By solving (13), we get
(21) t=(1-Q)P "
Inserting (21) into (12).
(22) PdQ - (Q - 1)dP = P(Q - ), — Pla,.
Taking exterior derivatives of (22), we have
(23) 2dPAdQ=(Q-1)dPAa,+PdQAa, - 2PdP Ao, — Pla, Aa,.

Taking the wedge product of (22) with dP, dQ, a, and «,, respectively
we obtain

dPAdQ=(Q-1)dPAa, —PdPAq,,
(Q-1)dPAdQ=P(Q-1)dQAa, ~ P’dQ Aa,,
P’a,Nay=—(Q-1)dP Ao, +PdQAa,,
P(Q-1a,Aay=—(Q—-1)dPAa,+ PdQ Aa,.
Taking derivatives of (19), we get
(25) dPcos2y +dQsin2y + 2[-Psin2y + (Q — 1) cos2y]dy = 0.
From (19),

(24),_,

o-1 sin2y = —P

JPP+@-1? P +(Q-1)

Using (19)' and (22), we get

(19) cos2y =

(26) dPcos2y +dQsin2y = —P6,.
Inserting (26) into (25), we get
(27) 2dy = —0,sin2y.

Taking exterior derivatives of (27), we have

0,A0,, sin2y =0.
Since P #0, sin2y # 0, and it follows that 6,A6,, =0, or
(28) (P +2y,)cos2y + (Q + 2y,)sin 2y = 0.

https://doi.org/10.1017/51446788700030263 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030263

102 Wenmao Yang [13]
From (28), using Lemma 2, we have that M isa W-surface. Using (28) and
(19) we get

(29) 2y, cos2y + (2y, + 1)sin2y = 0.

From (19), (28) and (29),

— - 2 -
(30) tg2y/=Q_P1 _ (przuzl)zzviv:'
Applying the x-operator to (27), we have
(31) 2xdy =-0,sin2y.
Taking exterior derivatives of (31), in view of (27), we get
(32) 2d xdy = Pa, Aa,.

On the other hand, from (1.53),
2dxdy = (4J + P)a, A a,.
By the above two equations, we get J = 0, or (see (1.46))

(33) P +Q,+P=0.
We denote
(34) dP=Pa;, dQ=Q;,, i=1,2.

From (23), (24),_, and (33), we have

(35) 2(P,Q, - P,Q,) = —(Q - 1)P, - PQ, — 2PP, — P*,
PQ,-PQ =-(Q-1)P,- PP,
(Q_ l)(Ple _P2Q1) = _P[(Q_ 1)Q2 +PQ1],
(Q-1)P,—PQ,=P’, P +Q,=-P.
By solving (35) for P, ..., Q, we get

(36)

NG

Sl

or
(37) P sin2y — Pycos2y =0, Q,sin2y —Q,cos2y =0,
PP +(Q-1)P,=0, PQ,+(Q-1)Q,=0.
Using (19), (33) and (1.48), from {1.63), we have
(38)  [3(R - Q) - LT)(P+2y,) cos2y + (Q + 2u;) sin 2y]
+ (K - Q),cos2y — (K - Q), sin2y] = 0.
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Using (28) and (38) implies
(K - Q),cos2y — (K — Q) sin2y = 0.

From (37) and the above equation, we have

(39) R, cos2y — K, sin2y = 0.
Using (1.49) and its differential, we get
(40) ~R=P+0'-P+0Q,,

-K =2(PP,+QQ)- P, +Q,,,
- K, =2(PP,+QQ,) - P, + Q,,.
Using (40), (19)" and (39) implies
(41) P(Q) = Py) +(Q - 1)Q, — Pyp)
=2[P(PP + QQ,) - (Q - 1)(PP, + 0Q,)].
Then (11), (19) and (21) imply
-1

t=ctgt = 5= —ctg2y.

Q

Hence
(42) T=-2¢+kn, k=integer.

We wish to express the differentials on the left side of (20) in terms of 6,
and 0, . First, from (37) we have

(43) dP =P sec2y-6,, dQ=Q, sec2y-0,.
Furthermore,

a, = Pa, +Qa, =6,(Pcos2y + Qsin2y) + 6,(—Psin 2y + Q cos2y).
From (19)', (27), we get

(44) 0,, = a,, +2dy = (—Psin2y + Qcos2y)6,.
Using (1.42) gives

(45) dlogL = [1 + 4(Q — 1)sec2y19,.

From (1.50),

(46) dp =L - L(R - Q) + p(Psin2y — Qcos2y)]6,.

Using (27) and (45), from (1.38) it follows that
(47) w,,=3sin2y -0, — {1+ }[Psin2y — (Q + 1) cos 2y¢]}0,.
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From (1.18), (1.19) and (47), we get
(48) dg=f0,, df=f[2p+ Psin2y —(Q - 2)cos2y]b,.
Using (1.10) and (48), we see that

2da = fl2p+ 1+ Psin2y — (Q — 2)cos2y16,,
2dc= f[-2p+1 - Psin2y +(Q — 2)cos 2y¢]0,.

According to (27), (43), (45), (46) and (49), we obtain (20).
Now we easily obtain the following theorem.

(49)

THEOREM 3. Let M be a Blll-surface of the third type, and satisfying
equation (19). Then M is a helicoidal surface.

A helicoidal surface in E> is a surface which is invariant under a helicoidal
motion:

' v
Ct(X)=X, x=(x1’x2,x3)a X=(X1,X2,X3),

x; = X, Cost + X, sint,
x;=-—xlsint+xzcost, —0 <t <400,
I
X3 = X3+ bt,
where the x,-axis is taken as the axis of a helicoidal motion. Let C be a
curve parametrized by s:
c(s) = (x,(5), x,5(5), x5(5)).

Any helicoidal surface M may be considered as the one generated by he-
licoidal motion of all the points of C. Thus its parametrization by s, ¢
is
(50) x(s, t) = (x,(s)cost + x,(s)sint,

— X, (s)sint + x,(s)cost, x,(s) + bt),

where b = constant. In other words, on a helicoidal surface there exists a
family of helicoidal curves, which have the same helicoidal distance (b =
constant) and helicoidal axis.
PRrROOF OoF THEOREM 3. Let us show that on the surface M the set of
6,-curves (the curve along which 6, = 0) is a family of helicoidal curves.
First of all, from Lemma 3 we conclude that

(51) v,P,Q,L,p,a,c=constant (mod 8,)
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that is, they are all constant along the 6,-curves (6, = 0). Let us find the
curvature x and torsion 7 of the 8,-curves.
According to (1.1) and (1.27), along 8,-curves, we have
W, =aw,; = —aL—lt92 siny,
W, = CW,yy = cL_I()2 cos y.

Hence the arc length differential of 6,-curves is

(52) ds = \/(wf+w§) =L‘l\/a2sin2l//+c2 cos2w02.

Since the angle between tangent directions of ¢,-curves and the first principal

directions (¢ = 0) is ¢ = y + n/2, the normal curvature of 6,-curves, by
Euler’s theorem is

K, = a”' cos® o+ ¢! sin2¢
(53) 1.2 -1 2

=a sin"y+c cos y.
Along 6,-curves, 6, = 0 implies dy =0, d¢ = 0. Using (47), we have
(54) w,;, = —{1 + §[Psin2y — (Q + 1) cos 2y]}4,.

Using the formula for geodesic curvature x, = d¢/ds + w,,/ds and (52)
and (54), we obtain the geodesic curvature of a 6,-curve
(55  x, = —L {1+ }[Psin2y — (Q + 1) cos 2y1}.

\/ a’ sin? v+ ¢? cos? v

From (51), (53) and (55), k, and k, are constant on each 6,-curve, so its
curvature

(56) K= \/xi + xf, = constant.
Then the torsion of the 6,-curve is given by
(57) t=tg+d0/ds,

where 7, is the geodesic torsion of the 6,-curve, € is the angle between the
principal space normal of the 6,-curve and the normal to the surface. We
have

(58) 7 =(c_l—a_l)cos¢sin¢=(c_l—a_l)siny/cost//, gl =x_/x, .
g g/"n

From (51), (57) and (58), torsion 7 = constant along the 6,-curve.
Consequently, we have that the 6,-curves are circular helices which are
distinct, in general. Thus the surface M is a helicoidal surface.
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3. Some special BIll-surfaces
1. The minimal BIII-surfaces.

THEOREM 4. Suppose M and 1(4 are minimal surfaces, and F: M — }fl
is a mapping. Then F is a Bl-isometry if and only if F is a Blll-isometry.
Proor. For any surface M, we have
HI-2HII+ KI =0,

where H and K are the mean curvature and Gaussian curvature, respec-
tlvely, and I, II and III are the three fundamental forms of M . Since M

and M are minimal surfaces, H = H 0 and so Il = —KT1, III = —KI

When F is a BI or Blll-isometry, K = K . Thus the above equations imply
the conclusion of Theorem 4.

ExaMmPLE. A Blll-isometry between the catenoid and the helicoid.

Catenoid M : m(t, 8) = (coshtcos 8, coshtsin@, t),

Helicoid A*l: r;z(u, v) = (ucosv, usinv, v),
—co<t<oo, 0<@<2rm, u>0, 0<wv<2n.
The fundamental forms and curvatures of M :
I=cosh’t(d* +d6*), H=0,
I = cosh > ((d* +d0%), K =—cosh™*¢

The fundamental forms and curvatures of A‘I :
I=du’ + (1 +1d)dv?, H=0,

0= (1 + ) d? + (1 + uD)dv?], K=—(1+4%)?

The mapping F(¢, ) = (4, v): u =sinh¢, v = 0 is both a Bl-isometry and
BIII-isometry:

F*(i)—l F(III)—III
H=H=0, K=K

2. The BlllI-surfaces of revolution.
We consider the plane curve x = y(z) > 0, y = 0 and the surface of
revolution

(1) M:m(z, 8) =(y(z)cos@, p(z)sinf, z).
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Thus
mlz =(y cosf, y'sin6, 1), m; = (ysinf, ycos@, 0).
We choose an orthonormal frame by

e = (y'2 + I)_l/z(y'cosa, y'sind, 1),
(2) e, =(—siné, cosb, 0),
2 —1/2 . ’
e;=¢ xe,=(y +1) ""(~cosf, —sinb,y),
so that
@ w,=0"+1)""dz, o,=7ydo,
0, =ho, +ko,, h=0, k=y@?+1)7"?
5 wu = a_lCl)] 5 a= —(y”)_l(y’z = 1)3/2, y” # 0,
(5) -1 ) 1/2
Wy=Cc W, c=y(r +1)"7,
. f=a-c=-0") 0"+ )20+ + "),

g=a+c= (yn)—l(ylz + 1)1/2(_1 _ y12 + ?7”).

THEOREM 5. The surfaces of revolution which are Blll-surfaces are exactly
as follows.
(i) Those of the first type (HK “lo constant), which satisfy

(7) @2+ 0" -y
(ii) Those of the second type, which satisfy

@ [g/(yrz + l)]’ _ (5—1)2 ylZ +1
_—f)’" 7 _}'” .

(iii) There are no Blll-surfaces of the third type.

2
" 1) =cy”, ¢ = constant.

PrOOF. According to (6) and (1.13), we have
dg=g'dz= f(uw; +vw,;).
It follows that
©) u=af"'g(%+1"?,  v=0.
From (1.16) and (1.17), we get
(10) o =0, =uw;,=f"'g'dz,
a, =0, =uw,; = —(f¥") ' &' (y* + 1)de6.
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Taking exterior derivatives of (10).

[ 1,1 !
(11) da, =0, doy=- %] dz A db.
Using (10), we have

gl' 2 )’,2 +1
(12) a, Ao, = — [7 7 dzndg.

From (11), (12), (1.9) and (1.40), we get

_ _ g'(y'2+l) ! £ 2 }'"
(13) P=0, Q—[—fy,, Hg] A

For the first type, from @, = a, =0 or u =v = 0, using (9), g =0,
g = ¢ = constant, we have that (6), becomes (7).

For the second type, from P =0, Q =1, using (13), we have (8).

For the third type, P # 0, and according to (13) this is not possible. So
there are no surfaces in this case.

3. The BIII-surfaces with constant Gaussian curvature.
Suppose a surface M has non-zero constant Gaussian curvature K and
HK ™' # constant. Since dK~' =0, from (1.19) and (1.21), we get

(14) df = fle, +2+ w,,) = g6,
or

(15) a, +2+w,=00,,
where

(16) c=gf ' £+l

Note that the inequality in (16) can be concluded from K # 0. In fact, if
oc=(a+c)/(a—c)==x1,weget a=0 or c =0, and hence K =ac =0.
Using (1.2)" and (1.27), rewrite (15) as

(17 1—2k' =ogcos2y, 2k =aosin2y.
Using (1.38), (1.27) and (15), we get
(18) 0,=02p-0)8,, *012=(c-2p)b,.

Taking derivatives of (16), using (1.18), and (1.19), we have
(19) do = (1- "),
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According to equation (16), 1 — o’ # 0, and in view of (1 +0)/(1 —0) =
(f+8)/(f—8g)=-a/c, from (19) we get

(20) l‘i"az = %dlog‘%l =0,

Applying the *-operator to (15), we get

(21 a, - 2w,, = 00,.

Taking exterior derivatives of (21), from (1.40), (1.5) and (19), we have
(22) (Q-1)/2=0(1-0a)— L2

From (1.50) and (18), we obtain

(23) dp=[p(c—2p)+ L7 - LK - Q)16, + J6,.
From (1.42), we obtain

(24) 2d1logL = (Q - 1)a, — Pa, + 2p8,.
Taking derivatives of (22), using (19), (23) and (24), we get
(25) 1dQ =20, + u6, + L*[(Q - 1)a, - Pa,),
where

(26) A= p(1-2po)-20(1—a’)+L 2 (a+2p)-La(R-Q), u=ol.

THEOREM 6. There does not exist any Blll-surfaces of the second type such
that K = constant # 0, H # constant.

ProoOF. For the second type of BIll-surface, we have
(27) P=0, Q=1, K=-1.
Since K = constant # 0, HK ™' # constant, using (27) and (22), we get
(28) L2 =q(1-0).
Using (27) and (28), from (23) and (24), we get
(29) dp={1-[p"+(1-0)]}6,,
(30) dlog L = pb,.

From (27) it follows that dQ = 0, and from (25) we have 4 = u = 0. Using
(26), we get (a2 —1)(o — 1) =0. It follows that g = 1, in view of o’ #1.
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From (28) again we have L= 0, contradicting that HK - # constant,
L # 0. So the surface cannot exist.
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