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Abstract

A composite integer N is said to be a strong pseudoprime for the base C if with N-1 =Td, (2,d) = 1
either

C* = 1, or C2' = 1 (mod AT) some r, 0 *£ r < s.

It is shown that every arithmetic progression ax + b (x = 0,1,...) where a,b are relatively prime integers
contains an infinite number of odd strong pseudoprimes for each base C > 2.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 A 15.

1.

A composite integer JV is said to be a pseudoprime for the base C > 2 if

(1) C"-1 = l(modiV).

It is well known that, for each base C, there are infinitely many pseudoprimes.
Moreover there are universal pseudoprimes, that is composite integers N that are
pseudoprime for all bases C with (C, N) = 1. Such numbers are called Carmichael
numbers. It is believed, but not known, that there are infinitely many Carmichael
numbers. In fact there is no certain known method for constructing integers that are
pseudoprime to more than one base (other than in the trivial case where one base is
the power of another).

Lehmer (1976) pointed out that the condition

(2)

/ C \where I TF I is the Jacobi symbol, gives a stronger test for primality than does (1);
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when N is an odd prime (N, C) = 1, (2) is just Euler's criterion. He remarked that (2)
is satisfied for fewer C than is (1), and proved that given N, (2) cannot be satisfied for
all bases C with (C, N) = 1. Lehmer called N satisfying (2) strong pseudoprimes for
the base C; thus he showed that there are no strong Carmichael numbers.

Rather appropriately, composite integers satisfying (2) have also recently been
called Euler pseudoprimes for the base C. The adjective strong has been reserved for
the following criterion : an odd composite number N is a strong pseudoprime for the
base C if with N-1 = 2sd, (2,d) = 1, either

(3) C d s l ( m o d N ) or C2'd = 1 (mod N) some r, 0 < r < s.

Any prime p with (p, C) = 1 satisfies one or other of these alternatives. Rabin (1976)
has shown that no odd composite integer is a strong pseudoprime for more than half
the bases relatively prime to it; the same was shown for Euler pseudoprimes by
Solovay and Strassen (1977). Indeed Malm (1977) points out that the Euler
pseudoprimes = 3 (mod 4) are strong pseudoprimes. Conversely, Pomerance,
Selfridge and Wagstaff (1979) show that a strong pseudoprime is always an Euler
pseudoprime; so the criterion (3) is indeed stronger than is (2), whilst it coincides with
(2) when N = 3 (mod 4). Moreover it is readily seen that an Euler pseudoprime for

the base C with I -~ I = — 1 is a strong pseudoprime for the base C. The reader will

find further detailed discussion, and extensive tables, in the last cited paper.
It was shown by Rotkiewicz (1963), (1967) that every arithmetic progression

ax + b (x = 0,1,2,...) where (a, b) = 1, contains infinitely many pseudoprimes (that is
to say, pseudoprimes for the base 2). In the present note we prove that

THEOREM. Every arithmetic progression ax + b(x = 0,1,2,...), where a,b are
relatively prime integers, contains an infinite number of odd (composite) strong
pseudoprimes for each base C ^ 2.

One might ask whether the restriction (a, ft) = 1 is necessary. Our present method
certainly does not allow us to nominate a given prime divisor for a strong
pseudoprime and it can be shown quite readily (again see Pomerance et al. (1979))
that if (a, b) # 1 then not every such arithmetic progression can contain
pseudoprimes.

2.

For each positive integer n we denote by Q>n(X) the nth cyclotomic polynomial

d\n
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where n is the Mobius function. It will be convenient to write

<HQ ri) = QJiQ.

It is easy to see that O(C; ri) > 1 for C ^ 2 and n > 1. For we have

<D(C;H)= n ( C - C )
(m,n)= 1

where £„ is a primitive nth root of unity and the product is over the (p(n) integers m
with 1 < m < n and (m, ri) = 1. But for each such m we have | C — Q \ > 1 whence our
assertion.

A prime factor p of C — 1 is said to be primitive if it does not divide any of the
numbers Cm — 1, m = l,2,...,n — 1. The following result is well known.

LEMMA 1. Denote byr = tin) the largest prime factor ofn. lfr\<b(C; ri) then every
prime dividing O(C; ri) is a primitive prime divisor ofC—l, and is = l(modri). If
r* || $(C; ri),k^l (which is to say i* | <D(C; ri) but r*+ i \<b(C; ri)) then r is a primitive
prime divisor ofC"'1* — 1. Ifn > 6 then C — \ has at least one primitive prime divisor.

PROOF. See the proof of the theorem of Zsigmondy (1892); for example see Kanold
(1950).

LEMMA 2. / / q is a prime such that q2\\n and a is a natural number such that

acp(a)\q—l then <D(C; ri) = 1 (moda).

PROOF. We have

<HC; n) = MC; q2(n/q2)) = U [<D(C; q2j]»W\
4l2

Hence it certainly suffices to prove that <^(g; q2) = 1 (mod a) for natural numbers g.
We have

Suppose pm | a some prime p. If p* | gq — 1 then pm \ q -1 implies that pm+k | gq<q~J) - 1 .
If (p,0«-l) = l and (p,g) = l then <p(pm)\q-\ and p m | ^ ^ - 1 implies

pm|gf,(«-i>_1 Finally if p\g then pm < q implies pm|^9. So in each case
pm j ($(^, q2) — 1). This proves the lemma.

3. Proof of the theorem

If for each pair of integers a, b with (a, b) = 1 there is at least one strong
pseudopnme for the base C of the shape ax + b, some natural number x, then there
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are infinitely many such pseudoprimes. To see this just notice that we then have such
pseudoprimes of the shape adx + b for every natural number d with (d, b) = 1, and we
may choose d as large as we wish. This said, we may also suppose without loss of
generality that a is even and b is odd. Thus we prove the theorem if we can produce a
strong pseudoprime n for the base C with n = b (mod a).

Given a and b as described, with 2k\\b,X^-\ we commence our construction by
choosing three distinct odd primes Pi,p2,P3 that are relatively prime to a.
Furthermore we introduce two further primes q, with q > p( (i = 1,2,3), and p which
are to satisfy certain conditions we detail below. Firstly we require that

(a) 2xplp2p3q
2\\p-l and (C,p)=l.

Because p is prime it satisfies the condition (3); this is because + 1 are the only square
roots of 1 in a finite field, and C~l = 1 (modp). So either

(4) Cp-l)l2X= l(modp) or C(p-1)/2" = - l ( m o d p ) some n,

Slightly different proofs will be required to deal with the two alternatives. However
in either case we will construct q and p so that the number

n, = pO(C;{p-l)/2lpd or p«>(C; (p-1)/2"- 'p . ) (i = 1,2,3)

is our required strong pseudoprime; here we take the first choice for n; if the first
alternative in (4) applies, and the second, with the appropriate n, in the event that the
second alternative in (4) applies. It will be convenient to write

m^rii/p (i = 1,2,3)

and to denote the integer (p — l)/2*p,-, respectively (p — \)/2^~l pf by st (i = 1,2,3).
We note that by (a) certainly st > 6. Hence if p divides more than one of the m{ then
by Lemma 1 we would have p a primitive prime factor of both CSi— 1 and CSj— 1
which is absurd if s; # Sj. So we may suppose that p divides neither m^ nor m2, say.
Now let r be the greatest prime factor of p — 1. By (a) we have r ^ q so r > p1 ; p2 and
thus r is the greatest prime divisor of both st and s2. Again by Lemma 1, if r were to
divide both m, and m2 then r would be a primitive prime factor of both Cs/'* — 1 and
QHI* _ ^ w h e r e r* || p — 1. But this is absurd, so without loss of generality r does not
divide mv Then Lemma 1 implies that every prime factor of w, is congruent to 1
modulo st. So

(5) m! = 1 (mod SJ.

Certainly q2 \\ sv So if we insist that

(b) P<( fc - l ) | « - l (i = 1,2,3)

then by Lemma 2 (recall that q>(p) = p — 1) we have

(6) wij = l(modp!).
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In the same spirit, the requirement on q that

(c) 22X+1\q-l

implies by Lemma 2 (recall that q>(2x+ l) = 2x) that

(7) mi~\{moA2k+l).

Recalling that, by (a), both p t || p - 1 and 2X || p — 1 we can conclude from (5), (6) and
(7) that

m, = 1 (mod 2{p -1)),

which is to say that

(8) n1

some positive integer x; x is positive because, with C ̂  2 and 5 > 6, certainly
<D(C; s) > 1.

Now suppose that the first alternative in (4) applies. We have

so (mup) = 1 and

imply that

Hence nt is a strong pseudoprime for the base C.
If the second alternative in (4) applies we have, as b*h"

and we note that 2px +1 is odd. Hence we have

mi =O(C;(p- l ) /2"- 1 p

which imply that

Wl = p<D(C; (p -

So also in this case n1 is a strong pseudoprime for the base C.
It remains for us to show that the conditions (a), (b), (c) can be satisfied and that n^

lies in the appropriate arithmetic progression. Accordingly apply the Chinese
remainder theorem and Dirichlet's theorem on primes in arithmetic progressions to
select a prime q with

- l ) ( P 3 - l ) | « - l . 2ua<p{a)\q-\.
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This fixes (b) and (c) and automatically yields q > pt (i = 1,2,3). Similarly we select a
prime p so that p > C and

p = 1 + Pl p2p3q
2 (mod p\p\plq3), p = b(mod2x+1 a).

This successfully gives (a) because the moduli are relatively prime. These remarks
conclude our proof, for we have aq>{a)\q — 1 and q2 | |p —1, so Lemma 2 yields
mx = l(moda). Hence

«! = pm^ = b (mod a),

as required.
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