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On the condition number of certain
Rayleigh-Ritz-Galerkin matrices

Bernard J. Omodei

Martin H. Schultz [Bull. Amer. Math. Soe. 76 (1970), 840-84L] has
investigated the spectral condition number of the Rayleigh-~Ritz-
Galerkin matrices that arise when normalized B-spline coordinate
functions are used to approximate the solution of a class of
linear, self-adjoint, elliptic boundary value problems in one
dimension. This paper shows how results analogous to those of
Schultz [op. eit.] can be established under weaker assumptions.
We also extend the results to boundary value problems in higher

dimensions.

We consider the following class of linear, self-adjoint, two-point

boundary value problems:
n ig .
@) 2] = ¥ (2 p@ru)] - s
J=0
0o<x<1, fe€r°0,1], n=>1,
with homogeneous Dirichlet boundary conditions

(2) pFuo) = fu(1) =0, osksn-1.

Assume that pj(x) , 0=<J =n, are real-valued bounded measurable

functions on [0, 1] .

Wn 2 . 0
Let 0’ [0, 1] denote the completion of the set of all C [0, 1]
functions having compact support in (0, 1) , with respect to the Sobolev
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norm

ol {% jl [Djw(x)]edx}%

3=0 ‘0

We assume that there exists a positive constant K such that for all

w € %[0, 1] ,

1

2 . & ] 2
(3) | KHwIlL2 _f {jgo p;(x) [DPw(x)] }dx .

0

This assumption corresponds to the assumption that the differential

operator L is positive definite. Schultz [7] made the stronger

assumption that, for all w € WG’Q[O, 1],

2 1 7 . o

Klll®, = I {Z p(z) [PPw(x)] }dx .
W o 4=0 ¢

It can be shown that the problem (1)-(2) has a unique generalized

solution and that the Rayleigh-Ritz method is applicable; see Omodei [6].

Let {¢i(x)}2=l be m given linearly independent coordinate functions

such that ¢i € Wg’z[o, 1] for all 1 << =m . Let S& denote the

m

A . We clai without giving the
ey m, glving

approximating subspace spanned by {¢

derivation, that the Rayleigh-Ritz-Galerkin matrix R = (rikJ for the

problem (1)-(2) is given by

1 n . .
(%) r., = J {2 p ()P0 ()P d.(x)}de , 1S4, k=m.
ik K k 7
0 ‘g=0
We now introduce normalized B-spline coordinate functions. Following
the construction of de Boor [1], for a positive integer d , the finite set

of real numbers

T:0= < <z = ... % < =
[0] xo xl x2 xN xN+l 1

is said to be a (d+l)-extended partition of [0, 1] , if and only if

<z for a1 0 =k =N-d+1 ; that is, if fk denotes the

Tk " Tk+d
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multiplicity of the knot &, in T , then fk =d forall 1<k =N.

k
Let I ={0=<k=<Ww| z < xk+l} , and define
(5) A = max (xk+l-xk) and § = min (xk+l_xk)

ker ker

Let Spo(d, T) denote the extended spline space of all extended splines of

degree d on T satisfying the boundary conditions (2); that is,
Spo(d, ) consists of those real-valued functions on [0, 1] which

satisfy the boundary conditions (2), reduce to a polynomial of degree less

than or equal to d on Ezk, xk+1] for all k € I , and have d - fk

continuous derivatives in a neighbourhood of xk for all 1 =k =<N.

Assuming that »n =d , we add 2(d-n) extra knots to 7 to form the
partition

T = < = =

w o x_d_m = e _1 xo .’El cos _.'BN xN+l N+2 S ee. = xN+d+l-7’l .

We now define the classical B-splines for the partition 7T (see [4]):
M%(x) = (d+l)ngk, Tpirs oo Tppgers ) , -d+ns<ks=~N-n,

is (d+l) times the (d+l1)-th divided difference in y of the function

gly; z) = (y—x)f based on the points &, & s -5 T 4, - The

normalized B-splines are defined by

Cr+d+1 Tk
d+l

(6) wk(x) Mk(x) , -d+n<k=<N-n.

N-n

It can be shown that {wk(x)}k=-d+n

[4]).

form a basis for Spo(d, T) (see

The following lemma is a simple consequence of a theorem in [2].

LEMMA 1. For an arbitrary (d+l)-extended partition T, there exists
a posttive constant D depending on d but not on T such that

1) |5

%
d+l
Z ak+d+1-n[ ] lPk“ = DHaH2
L2

k=—d+n Zrrdr1 ™k
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N+d+l-2n %
for all a € A EL2n e llall, [ a2]

i=1 t
We consider the case where the approximating subspace
Sm = Spo(d, m) , m=N+d+1-2n, and the coordinate functions

¢(x)_w7,+ndl

(x) , ©2=1,2, ..., m . Assume that fk5d+l-n for
all Z <k £ N to ensure that Spo(d, ) WZ’Z[O, 1] . The spectral
condition number of the Rayleigh-Ritz-Galerkin matrix H is defined by
~- -1 -
<(B) = IRI IR, vhere BN, = sup limall/lal,
a

Using (3), it can easily be shown that R is positive definite and

symmetric, and hence k(R) = A~ 1A where A and A are the minimm and
maximum eigenvalues, respectively, of R . The following theorem is
analogous to that of Schultz [7].

THEOREM 1. If (3) holds and T <is an arbitrary (d+l)-extended
partition of [0, 1] such that fk =d+1-n forall 1<k =N, then

there exists a positive congstant C depending on d but not on T such
that

(8) k(R) = C(A/G)(‘S
Proof. From (4) and (3), we obtain for all a € A" ,
2
alra = J {Z P; () » Z: iV nd- l(x):[ } > Kl’ 2 a wz+n—d-l” ,
=1 L

which, by Lemma 1, yields

m (.’l:- -2 . )
aTra = kp° Y a° —n d:’_I"'d'l
2 koP(d1) " sllalll
and thus
(9) A = kp%(d+1)71s .
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Conversely, since pj(x) s, 02§ =n, are bounded on [0, 1] , there

exists & positive constant P such that, for all @& € A" »

tA

a’ra = p § fl I_ y azDszm 0 l(x)_l dx

J=0 ‘0 “1i=1

1A

n

P .Z (2d+1) Z a E?Jwtm dl(x):l de
J=0

since

() , L=< =m , has support Thus

Viim-de1 E‘i+n-d.1' xi+n]

m
a’Ra = P(2d+1) 2[
1,-1

Hzﬂw

itn-d- l" o
L

1 T an—d- l

Using Lemma 3.1 of [3], it can be shown that there exists a positive

constant E depending on d but not on T such that

“D%Lm 4 1” <E forall 15i<m.
r
Hence
a’ra < PE(2d+1)(d+1)062"|a||2 |
and thus
(10) A < PE(2d+1)(d+1)A6™" .

Combining (9) and (10), we obtain the desired result with

= PE(2d+1)(d+1)°k~ 102 . //

A corollary analogous to the Corollary of [7] is clearly valid.

Extension to higher dimensions

We consider the following class of linear, self-adjoint, boundary

M
value problems defined on an M-dimensional hypercube £ = X [0, 1]

J=1
with boundary 99 =

(11) Llu(x)1 = f(x) , xeq, ferI3Q)
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with homogeneous Dirichlet boundary conditions

(12) PPu(x) =0, x€,q, o0<lal=n-1, nz1

k]

where the linear differential operator L is defined by

(13) w0l =¥ (-1)|°‘|D°‘E9 B(x)DBu(x)] .
oslal,|B|= @

We are using the usual multi-index notation, see [5]. Assume that all the

coefficients paB(X) are bounded measurable functions in £ and that

Pog = Pgy for all 0 = lal, |8] =n .

Let Wg’z(ﬁ) denote the completion of the set of all Cw(S_f)
functions having compact support in §., with respect to the Sobolev norm
%
bt ,,={ = [Pt 2ax}
Wt oslal=n ‘R
We assume that there exists a positive constant K such that for all

w € h’g’z(g) s

(14) xlwl® SJ { > p (x)Daw(x)DBw(x)}dx ;
2 a losla],|8l=n B

It can be shown that the problem (11)-(13) has a unique generalized
solution and that the Rayleigh-Ritz method is applicable, see [6]. Let

{¢i(X)}’,Z=l be m linearly independent coordinate functions such that

d>7: € Vg’z(ﬂ) for all 1 =7 =m . The Rayleigh~-Ritz-Galerkin matrix

R = (rik) for the problem (11)-(13) is given by

(15) »,, = { )3 (x)0% (X)DB¢.(X)}dx > 1=i, k=m.
Tik JQ o<lal,|8]=n Pag k 7

Foreach g, 1=J =M, let ‘ITJ. be a (d+l)-extended partition of

[0, 1] in the j-th dimension:

.0 = d) (9) < () < < () (7)) _
11‘7..0—:1:0J <:z:l‘7 _:1:2'7 _...—:ch <xN;+l—l,
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and let Aj and 6‘7' be defined as in (5). Using expression (6), we

N.-n
. J
construct the normalized B-spline basis {lpk (x(g))} for
k=-d+n
Spolds ™), G=1,2, ..., M. Let Tz X m; bea (d+1)-extended
J=1
product partition of @ and let
A= max A, and 6 = min §. .
15j=M Y 1<j<M 7

The extended multivariate spline space Spo(d, T) is defined to be the

M
tensor product @& Spo[d, 'nj) . It can be shown that Spo(d, T) is the
J=1

linear span of all the normalized multivariate B-splines

(1) (2) (M) < <
q;kl(x ]q)kz(x ) ... wkM(x ), -d+n= kysW;-m,

which we rename as {Bi(x)}rg::L , where

M
X = [x(l), x(e), cees x(M)) and m=1] | (Ivj+d+1—2n]
J=1

Using Lemma 1, it is straightforward to prove the following:

LEMMA 2. For an arbitrary (d+l)-extended product partition T of
Q , there exists a positive comstant D depending only on d such that

for all a € A",

m
(16) “ 5 aiBi“ 2 55 2all, .
2 2
L

In applying the Rayleigh-Ritz method, let the approximating subspace

Sm = Spo(d, T) and let the coordinate functions ¢i(x) = Bi(x) s

2=1, 2, ..., m . Assuming that the maximum multiplicity of the interior

knots of ‘trj is less than or equal to d+ 1 -n, forall 1 s<j<M,

then it can be shown that Spo(d, T Wg’z(ﬂ) , see [6].
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THEOREM 2. If (14) holds and T 1is an arbitrary (d+1)-extended
product partition of § such that the multiplicity assumption above ig

valid, then there exists a positive constant C depending only on d such
that

(17) (R) < C(a/&)Mg~2n

Proof. From (15) and (14), we obtain for all a € B ,

-, L oo ]
a Ra (x)D B.(x)|D B (x)
L} O$|0L|Z|6]En Fo igl %% l: 2 % }

A3 el

v

which, by Lemma 2, yields

a’Ra = ko8 all? ,

and thus

(18) A = k28T

.

Conversely, since paB(x) , 0<|af, |Bl =#n , are bounded in 0 ,

there exists a positive constant € such that

aTRa =@q

m 2
Y aiBi(x):l dx ,

o=|a|=m jfz i=1

and using the minimal support properties of {B }7, -1 ° it can be shown that

there exists a positive constant F depending only on d such that

2
T < ol
a Ra <QF 3 Z as JQ E) Bi(x):] dx

os|a|=n i=1
m 2

S QF Y a‘?(dﬂ)MEM “D B. “ .
i=1 0<|oz |=n o

Using Lemma 3.1 of [3], it can be shown that there exists a positive
constant & depending only on d such that
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2
v ”DaB. <FS? forall 1<is<m.

os|al=n o

= L
Hence

a"ra = in«dwl>MZMé‘2”uan§ ,

and thus
(19) A = @FE(dn) R .

Combining (18) and (19), we obtain the desired result with

T = gFE(d+1) 1572 //
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