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1. Introduction

Suppose that q is a continuous real-valued function on [0,∞) and that q(x) tends to +∞
with x. Then it is well known that the Sturm–Liouville equation

−y′′ + qy = λy on [0,∞) (1.1)

is of limit point type at +∞, and, given an initial condition of the form

y′(0) sinα = y(0) cos α (1.2)

with 0 � α < π, the resulting spectrum σ is discrete. Indeed, σ consists of simple eigenval-
ues λ0, λ1, . . . accumulating at +∞; moreover, well-known oscillation theory guarantees
that, for each k � 0, any eigenfunction yk corresponding to λk vanishes precisely k times
in (0,∞). For such results we refer the reader to [10, Chapter XIII], for example. From
this it follows that the Prüfer angle θ(λ, x) (which may be defined as the continuous
branch of cot−1(y′(x)/y(x)) for any solution y of (1.1), (1.2), given the initial condition
θ(λ, 0) = α) has certain asymptotic properties in x. Indeed, since it is well known that
θ(λ, x) must increase through values which are multiples of π, it follows that

kπ < θ(λ, x) < (k + 1)π for sufficiently large x (1.3)

whenever λk−1 < λ < λk, for any k � 0 (if we define λ−1 = −∞).
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In [8], under additional conditions on q, Crandall and Reno improved (1.3) to

θ(λ, x) → kπ+ (respectively, kπ−) if λk−1 < λ < λk (respectively, λ = λk−1) for k > 0
(1.4)

as x → ∞, and we shall call this the ‘kπ property’. (More precisely, [8] contains a
combination of statements, proofs and computer results equivalent to (1.4) for a related
angle, but it follows from the results cited below that (1.4) also holds for θ as defined
above.) Apparently unaware of [8], Brown and Reichel [7] established (1.4) under different
additional conditions on q, which were removed in [6]. We remark that computational
aspects are stressed in [7,8] and it is clear that (1.4) is much better suited to eigenvalue
computation than (1.3), particularly if regions of attraction to multiples of π (as x → ∞)
can be found for θ(λ, x). More general situations with locally integrable q were studied
in [2] (under Molčanov’s conditions [12] for discrete spectrum, allowing −∞ < lim inf q <

lim sup q = +∞) and in [3] (under modifications of Brinck’s [5] and Molčanov’s conditions
allowing lim inf q = −∞ as well; see § 2 for details).

Some of the above works (notably, [3, 6, 7]) dealt with equations involving the p-
Laplacian for fixed p ∈ (1,∞), and we shall now briefly discuss this extension. Eigenvalue
problems for such equations (actually with q = 0 on a compact interval) were to our
knowledge first studied by Elbert [11] via a generalized Prüfer angle depending on a
certain function sinp, which generalizes the usual sine function and has first positive zero
at

πp =
2π

p sin(π/p)
.

With cotp = sin′
p / sinp, one can define the (Elbert–)Prüfer angle as above but with cot

replaced by cotp (see § 3). This generalized angle has (perhaps in equivalent form) been
used to study numerous problems (see [4,9] and the references therein) and allows us
to reverse some of the ideas of the previous paragraph as follows. If (1.3) is satisfied,
then we are in the so-called ‘discrete’ case, and we can then define the ‘kπp property’ via
(1.4) with π replaced by πp; this extends the previous definition since π2 = π. We remark
that [3,6,7] also discussed related issues like variational principles, the radial p-Laplacian
and analogues of limit-circle behaviour, but these will not be considered here.

We shall instead consider ‘non-discrete’ cases where (at least for p = 2) there is an
essential spectrum, with a finite minimum λe, say. Then any eigenvalues λk < λe again
have eigenfunctions which vanish precisely k times in (0,∞), so we can apply the phi-
losophy of the previous paragraph to approach the problem for p ∈ (1,∞). Specifically,
we can define λe so that the Elbert–Prüfer angle θ(λ, x) remains bounded for all x and
λ < λe, but is unbounded in x for each λ > λe. It is clear that (1.3) holds for λk < λe

but simple examples (even with p = 2 and q piecewise constant and periodic) show that
θ(λ, x) may have no limit as x → ∞, and, in particular, (1.4) may fail. Nevertheless, we
shall show for a wide class of q that the kπp property does hold for a modified angle ϕ

satisfying cotp ϕ = f cotp θ for a suitable function f .
To be specific, in § 2 we discuss a differential inequality satisfied by functions like

the ϕ we seek, and this leads, at least in principle, to regions of attraction for ϕ(λ, x)
near multiples of πp, for large x and λ < λe. Section 3 is devoted to sets defined via
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limiting properties of ϕ, forming a partition of the real line, and with eigenvalues at their
endpoints. In § 4 we show how to construct a suitable function f so that ϕ satisfies (1.4).
It may be noted that, in the case when lim inf q > −∞, the simple construction f(x) =
x + 1 suffices. Finally, in § 5 we consider situations where instead θ(λ, x) (or equivalently
ϕ(λ, x)) is unbounded as x → ∞. In this way we obtain (with the work of the previous
sections) conditions allowing the precise location of λe, and also conditions guaranteeing
an infinite sequence of eigenvalues converging to λe from below.

2. A differential inequality

In this section we give a number of preparatory results, which extend [3, § 2] to the
differential inequality

u′(x) � D + b(x) − g(x)h(u(x)), 0 � x < ∞. (2.1)

Here D > 0; the function b(x) ∈ L1
loc[0, +∞) is non-negative and satisfies

∫ x+1

x

b → 0 as x → ∞; (2.2)

h is continuous and less than or equal to 1 on [0, Ω], h(u) > 0 for 0 < u < Ω and

h(ε) = o(ε), h(Ω − ε) = o(ε) as ε → 0, (2.3)

from which it follows that
h(0) = h(Ω) = 0.

We write
g(x) = g+(x) − g−(x), where g+(x) := max(g(x), 0),

and we assume that g satisfies the conditions:

∃C > 0 :
∫

J

g− < C for all intervals J of length |J | � 1 (B−)

and

∀ε > 0, lim
x→∞

∫ x+ε

x

g+ = ∞,

i.e. ∀ε > 0, ∀A > 0, ∃Xε,A : x > Xε,A =⇒
∫ x+ε

x

g+ > A. (M+)

Note that (B−) and (M+) were employed by Brinck [5] and Molc̆anov [12], respectively,
but with g instead of g±, in their studies of conditions for discreteness of spectra when
p = 2.
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Lemma 2.1. Let u be a solution of (2.1). Given 0 < γ < δ < Ω and η > 0, there
exists Xγ,δ,η so that

x > Xγ,δ,η, u(x) ∈ (γ, δ], u(y) � δ for all y ∈ [x, x + η] (2.4)

implies that

there exists ε ∈ (0, η) such that u(x + ε) = γ. (2.5)

Proof. Let B = min{h(u) : u ∈ [γ, δ]}. Then 0 < B � 1. By virtue of (M+) and (2.2)
we select Xγ,δ,η so that

x > Xγ,δ,η =⇒
∫ x+η

x

g+ >

(
δ − γ + Dη +

∫ x+η

x

b(t) dt + ([η] + 1)C
)/

B.

Suppose that x > Xγ,δ,η satisfies (2.4) but that no ε ∈ (0, η) can be found to satisfy (2.5).
Then u(y) ∈ (γ, δ) for all y ∈ [x, x + η] and we have

u(x + η) � u(x) + Dη +
∫ x+η

x

b(t) dt −
∫ x+η

x

g+(t)h(u(t)) dt +
∫ x+η

x

g−(t)h(u(t)) dt

� δ + Dη +
∫ x+η

x

b(t) dt − B

∫ x+η

x

g+(t) dt + ([η] + 1)C < γ

by choice of Xγ,δ,η. This contradiction establishes the result. �

Lemma 2.2. Given 0 < γ < δ < Ω such that

δ − γ − Cm > 0, (2.6)

where m = max{h(u) : γ � u � δ}, there is Yγ,δ such that for any solution of (2.1)

x > Yγ,δ, u(x) � γ =⇒ u(x + t) < δ for all t > 0.

Proof. Put

MX := max
x�X

∫ x+1

x

b(t) dt. (2.7)

By (2.2), we can choose Zγ,δ such that M := MZγ,δ
< δ − γ − Cm. Set

η =
δ − γ − Cm − M

D + M + Cm
.

Then η > 0. We can take Yγ,δ = max{Zγ,δ, Xγ,δ,η}, where Xγ,δ,η is defined as in
Lemma 2.1. Suppose that x > Yγ,δ has u(x) � γ and that z > x has u(z) = δ. Without
loss of generality we take z to be the minimum of all points r > x with u(r) = δ. Now
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take y ∈ [x, z] so that u(y) = γ and u(w) ∈ (γ, δ) for all w ∈ (y, z). Then

δ − γ = u(z) − u(y)

=
∫ z

y

u′(t) dt

� D(z − y) +
∫ z

y

b(t) dt + m

∫ z

y

g−(t) dt

< D(z − y) + ([z − y] + 1)(M + Cm)

� (z − y)(D + M + Cm) + M + Cm.

Thus, z − y > η and so we may apply Lemma 2.1 over (z − η, z) to obtain a point
w ∈ (z − η, z) with u(w) = γ. This contradiction establishes the result. �

We now extend the definition of h to all of R by requiring that it be periodic of
period Ω and we shall continue to write h for this extended function. This now raises
the possibility that a solution to (2.1) (with this periodic h) need not be bounded, but
we can demonstrate the following.

Lemma 2.3. Let u be a solution of (2.1) with h extended by Ω-periodicity to R. Then
u is bounded above on R

+.

Proof. Let γ and δ satisfy 0 < γ < δ < Ω and (2.6), which by (2.3) can be achieved
by taking γ = 1

2δ sufficiently close to 0. If the conclusion of the lemma fails, then there
exist finite

xn = min{x : u(x) = nΩ + γ}, n � 1.

Recalling MX from (2.7), we have

nΩ + γ = u(0) +
∫ xn

0
u′(t) dt

� u(0) + Dxn +
∫ xn

0
b(t) dt +

∫ xn

0
g−(t)h(u(t)) dt

� u(0) + Dxn + ([xn] + 1)(M0 + C)

so xn → ∞. Now we use Lemma 2.2 to find Yγ,δ and fix N so that xN > Yγ,δ. Note that
v(x) = u(x) − NΩ satisfies the differential inequality (2.1) and, further, that v(xN ) = γ.
Lemma 2.2 then shows that v(x) < δ for all x > xN , a contradiction. �

Lemma 2.4. Let u be a solution of (2.1). If lim infx→∞ u(x) < Ω, then

lim sup
x→∞

u(x) � 0.

Proof. By assumption there exist δ ∈ (Ω/2, Ω) and a sequence xn → ∞ such that
u(xn) < 2δ − Ω for each n = 1, 2, . . . . Suppose lim supx→∞ u(x) > 0, so there exist
γ ∈ (0, δ − 1

2Ω), and yn → ∞ such that

u(yn) > 2γ. (2.8)
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Now 2δ − Ω < δ and δ − (2δ − Ω) − C max{h(u) : 2δ − Ω � u � δ} with δ = Ω − ε

becomes
ε − max{h(u) : Ω − 2ε � u � Ω − ε},

which is positive for small ε > 0 by (2.3). Note that we can take δ as close to Ω as
we wish. Thus, we can apply Lemma 2.2 with (2γ − Ω) playing the role of γ to claim
the existence of N1 so that u(x) < δ for all x > xN1 . Furthermore, 2γ < δ and so, by
Lemma 2.1 with η = 1, say, there are N2 and zn > yn so that u(zn) = γ for all n > N2.
Note that γ can be chosen as close to 0 as we wish so that the conditions of Lemma 2.2
with 2γ playing the role of δ are satisfied. Again (2.3) is used here. Then Lemma 2.2
shows that u(x) < 2γ for x large enough, contradicting (2.8). �

Lemma 2.5. With D, b, g and h as above, suppose that u(x, µ) satisfies u′(x, µ) �
D + b(x) − (g(x) − µ)h(u(x, µ)) on [0,∞) for µ ∈ [0, µ0), where µ0 > 0 is a constant.
Assume also that u(x, µ) is continuous in µ ∈ [0, µ0] for any x � 0. If u(x, 0) → 0 as
x → ∞, then there is ν ∈ (0, µ0) so that

0 < µ < ν =⇒ lim sup
x→∞

u(x, µ) < Ω.

Proof. Note that (B−) holds for all µ ∈ [0, µ0) with g replaced by g−µ and C replaced
by C + µ0. Note also that the number Xε,A can be chosen such that (M+) holds for all
g − µ, µ ∈ [0, µ0), instead of g. In like manner, Lemmas 2.1 and 2.2 also hold with the
quantities Xγ,δ,η, Yγ,δ chosen independent of µ.

Now choose γ ∈ (0, 1
2π) and x0 so that

u(x, 0) < γ for all x � x0. (2.9)

Since under our hypotheses u(x, µ) is continuous in µ, we see that

u(x0, µ) < γ for all small enough µ > 0.

Suppose that for each n ∈ N there is µn < µ0/n for which

lim sup
x→∞

u(x, µn) � π. (2.10)

Then there is zn > x0 so that u(zn, µn) = γ, n ∈ N.
Assume that zn accumulate at a finite number z0 as n → ∞. Then, for arbitrary ε > 0,

γ − u(z0, 0) = (u(zn, µn) − u(z0, µn)) + (u(z0, µn) − u(z0, 0))

� D|zn − z0| +
∣∣∣∣
∫ zn

z0

b(x) dx

∣∣∣∣ + Ω

∣∣∣∣
∫ zn

z0

|g(x)| dx

∣∣∣∣ + ε

holds for n large enough. This implies u(z0, 0) � γ, contradicting (2.9).
Thus, zn → ∞ as n → ∞. Let γ be such that γ − C max{h(u) : γ < u < 2γ} > 0.

Take Yγ,2γ from Lemma 2.2 and n such that zn > Yγ,2γ . Since u(zn, µn) = γ, Lemma 2.2
yields that u(x, µn) < 2γ for all x > zn, contradicting (2.10). �
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3. Modified Prüfer angles

From now on, for p > 1, we shall adopt the notation

o|t|p−1 = |t|p−1 sgn t

for the odd extension of the (p−1)th power, and we shall consider the differential equation

−(o|y′/s|p−1)′ = (p − 1)(λ − q)o|y|p−1, (3.1)

where q, s ∈ Lloc
1 (0,∞) with s > 0 a.e. Additional properties on the coefficients will be

assumed subsequently.

Definition 3.1. If y ∈ Lp(0,∞) satisfies (3.1) and the initial condition(
y′

sy

)
(0) = cotp α for α ∈ (0, πp), y(0) = 0 for α = 0, (3.2)

then y and λ will be called an eigenfunction and eigenvalue, respectively.

Here cotp is defined via Elbert’s modified trigonometric functions (see § 1 and [3] for
further details). Note that the initial condition (3.2) makes sense since o|y′/s|p−1 ∈ AC

(cf. [3]).
For a solution y of initial-value problem (IVP) (3.1), (3.2) the f -modified Elbert–Prüfer

angle ϕ was introduced in [4] via

y(x, λ) = ρ(x, λ) sinp ϕ(x, λ), f(x)y′(x, λ) = s(x)f(x)ρ(x, λ) sin′
p ϕ(x, λ).

This leads to (
fy′

sy

)
(x, λ) = cotp ϕ(x, λ),

where we require f to be positive and locally absolutely continuous on [0,∞). In terms
of the usual (unmodified, i.e. f ≡ 1) Elbert–Prüfer angle θ(x, λ) we have

cotp ϕ = f cotp θ,

where

θ′ = s|sin′
p θ|p − (q − λ)|sinp θ|p, θ(0) = α. (3.3)

We shall specify ϕ(0) to lie in the range [0, πp). The positivity of f and well-known
properties of θ immediately show the following (see, for example, [4]).

Lemma 3.2.

(i) The angle ϕ increases through multiples of πp.

(ii) ϕ ∈ [ 12Nπp,
1
2 (N + 1)πp] ⇐⇒ θ ∈ [ 12Nπp,

1
2 (N + 1)πp] for any integer N � 0.
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Lemma 3.3. The modified angle ϕ satisfies the first-order IVP

ϕ′ = −f ′

f
(sin′

p ϕ)p−1 sinp ϕ +
s

f
|sin′

p ϕ|p − fp−1(q − λ)|sinp ϕ|p, (3.4)

ϕ(0) = cot−1
p (f(0) cotp α) ∈ [0, πp), (3.5)

whence
λ � µ =⇒ ϕ(x, λ) � ϕ(x, µ). (3.6)

Definition 3.4. For any λ ∈ R, n(λ) is the smallest integer (or +∞ if there is none)
such that ϕ(x, λ) < (n + 1)πp for all x ∈ R+.

Remark 3.5. From Lemma 3.2 and (3.6), n(λ) is the number of zeros in R+ of any
solution of (3.1), (3.2), and, moreover, θ may be used instead of ϕ in the above definition.

Our next result appeared as [4, Lemma 2.4], but since part of the proof there may be
misleading, we shall provide another argument for completeness.

Lemma 3.6. For any x0 ∈ (0,∞), ϕ(x0, λ) → 0 as λ → −∞.

Proof. Choose δ ∈ (0, πp − α). Since α � 0, Lemma 3.2 (i) shows that ϕ(x, λ) > 0 for
all λ ∈ R and x > 0.

We claim that there exist ξ0 ∈ (0, x0) and λ0 < 0 such that ϕ(ξ0, λ0) < δ. Indeed,
assume the converse, i.e. that ϕ(x, λ) � δ for all λ < 0 and x ∈ (0, x0). Since α < πp, there
exists ξ0 such that ϕ(x, λ) < πp − δ for all x ∈ (0, ξ0] and λ < 0. Then, making λ in (3.4)
more negative, we can ensure that ϕ(x, λ) < δ for some x ∈ (0, ξ0], a contradiction.

Since the function G := |f ′/f | + |s/f | + |fp−1q| is integrable on any finite interval,
there exists ε = (x0 − ξ0)/N for some N > 2, such that∫ x+ε

x

G(x) dx < δ for any x ∈ [0, x0].

Then (3.4) yields

|ϕ(x, λ) − ϕ(x + ε1, λ)| < δ for ε1 ∈ (0, ε] and x ∈ [0, x0]. (3.7)

In particular, ϕ(ξ0 + ε, λ0) < 2δ.
For sufficiently negative λ, say λ � λ1 � λ0, we can argue as for our claim above

to ensure that ϕ(ξ0 + 2ε, λ) < 2δ. Continuing this process for N such steps, we reach
ϕ(x0, λ) < 2δ for λ sufficiently negative. Since δ can be chosen arbitrarily small, this
completes the proof. �

We shall now assume the following:

there exists a constant D > 0 such that
|f ′|
f

< D, (3.8)

(2.2) is satisfied by b =
s

f
, (3.9)

fp−1(q − λ) satisfies (B−) and (M+) for each λ ∈ R− = (−∞, 0). (3.10)
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Of course, R− can be replaced by the interval (−∞, λe) after a shift of the eigenparameter
provided λe is finite. (In the discrete case discussed in § 1, λe = ∞, so R− could be
replaced by (−∞, λ∗) for arbitrarily large λ∗, but this case has already been analysed in
the references cited earlier.) The above assumptions lead to the fact that, for λ ∈ R−,
ϕ(x, λ) satisfies a first-order differential inequality of the type considered in § 2, where
we take Ω = πp and h(u) = |sinp u|p. By Lemma 2.3, Definition 3.4 and Remark 3.5, we
come to the following.

Lemma 3.7. For each λ ∈ R−, n = n(λ) � 0 is finite, so, for all sufficiently large x,

nπp < ϕ(x, λ) < (n + 1)πp

and any solution y(x, λ) of (3.1), (3.2) has n zeros in (0,∞).

Definition 3.8. For each n � 0, we define

Λn = {λ ∈ R− : nπ < ϕ(x, λ) < (n + 1)π for all x sufficiently large},

Λ+
n = {λ ∈ Λn : ϕ(x, λ) → (n + 1)π as x → ∞},

Λ−
n = {λ ∈ Λn : ϕ(x, λ) → nπ as x → ∞}.

Lemma 3.9. Λn = Λ+
n ∪ Λ−

n .

Proof. Suppose that λ ∈ Λn \ Λ+
n and apply Lemma 2.4 to ϕ(x, λ) − nπp. Since

lim inf(ϕ(x, λ) − nπp) < πp we see that lim sup(ϕ(x, λ) − nπp) � 0. On the other hand,
ϕ(x, λ) − nπp > 0 for x sufficiently large and the result follows readily. �

Note that, since ϕ is monotonic in λ, each of the sets Λn, Λ±
n is convex and is therefore

an interval or empty.

Lemma 3.10. If λ ∈ Λ−
n , then λ is not an eigenvalue of (3.1), (3.2).

Proof. Suppose that y is a solution of (3.1), (3.2) with λ ∈ Λ−
n . Then, for x sufficiently

large, fy′/sy > 1. Thus, y and y′ have the same sign, which without loss of generality we
take to be positive. It follows that y is positive and increasing and hence bounded away
from 0 as x → ∞. Hence, y /∈ Lp(0,∞) and so λ is not an eigenvalue of (3.1), (3.2). �

Lemma 3.11. Λ−
0 
= ∅.

Proof. For λ < 0, ϕ(x, λ) satisfies the inequality

ϕ′(x, λ) � D + b(x) − f(x)q(x)|sinp ϕ(x, λ)|p (3.11)

with fq satisfying the conditions of § 2. We take γ = 1
2δ with δ chosen small enough to

ensure 1
2δ−sin2 δ > 0 and we apply Lemma 2.2 to find Yγ,δ so that if ϕ(x, λ) is a solution

of (3.11), then

x > Yγ,δ =⇒ ϕ(x, λ) < 1
2δ =⇒ ϕ(x + t, λ) < δ for all t � 0. (3.12)

Note that Yγ,δ does not depend on the choice of λ < 0.
Now, by Lemma 3.6, there exists λ < 0 such that ϕ(Yγ,δ, λ) < 1

2δ and so the conclusion
of (3.12) holds. Lemma 2.4 completes the proof. �
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From Definition 3.4 and monotonicity of ϕ in λ,

Nµ := lim
λ↗µ

n(λ) (3.13)

exists (finite or infinite) for each µ ∈ R. The main result of this section is the following.

Theorem 3.12. Assume that (3.8)–(3.10) are satisfied, and that

each set Λ+
n consists of at most one point. (3.14)

Then R− =
⋃N0

n=0 Λn and, in the case N0 > 0, there exists a sequence {λn}N0−1
n=−1 ⊂ R−

such that λ−1 = −∞ and

Λ−
n = (λn−1, λn), Λ+

n = {λn}, Λn = (λn−1, λn] whenever 0 � n < N0.

Moreover, if N0 < ∞, then ΛN0 = Λ−
N0

= (λN0−1, 0).

Proof. First, note that ϕ(x, λ) increases monotonically in λ for any x and thus the
sets Λ−

n , Λ+
n and Λn are intervals. Now Lemmas 2.5 and 3.2 (i) and Equation (3.6) can

be used to prove that Λ−
n is open for each n.

Consider the case N0 < ∞. Let us show that Λ+
N0

= ∅. Indeed, if λ∗ ∈ Λ+
N0

, then (3.14)
implies supx∈R+

ϕ(x, λ) > (N0 + 1)πp for λ ∈ (λ∗, 0) and this contradicts the definition
of N0.

By Lemma 3.11, Λ−
0 = R− if N0 = 0 and Λ−

0 = (−∞, λ0) if N0 > 0, where λ0 < 0. In
the latter case, Lemmas 2.4 and 2.2 imply that limx→∞ ϕ(x, λ0) = πp. Since Λ−

1 is open,
we see that λ0 ∈ Λ+

0 . Now (3.14) shows that Λ+
0 = {λ0}.

Applying Lemmas 2.4 and 2.2 again, we see that Λ−
1 
= ∅. Finally, the proof may be

completed by induction on n (cf. [2, Theorem 4.2]).
The case N0 = ∞ is similar, but simpler. �

In what follows, f will be chosen in accordance with various assumed properties of s

and q in order to show that the eigenvalues of (3.1), (3.2) are exactly the points in the
sets Λ+

n .

4. Non-oscillatory cases

We return to the IVP (3.1), (3.2) and consider the following conditions

there exists c̄ > 0 so that
∫ x+1

x

s(t) dt < c̄ for every x > 0 (4.1)

and

lim
x→∞

∫ x+1

x

q−(t) dt = 0. (4.2)

Similar conditions were used in [14, Theorem 15.1 (a)] to prove λe � 0 for p = 2.
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4.1. We start by defining

I(x) =
∫ x+1

x

q−(t) dt,

which is absolutely continuous in x, and we write

Ĩ(x) = max{I(t) : t � x} for x � 1.

Next we define
Ĩ(x) = a2−x for 0 � x < 1,

where a > 0 is chosen so that

I(x) � a2−x for 0 � x � 1

and

Ĩ(1) � a2−1.

Then Ĩ(x) is defined for all x, is non-increasing, and Ĩ(x) → 0 as x → ∞. Now we set

Î(x) =

{
Ĩ(x), 0 � x < 1,

max{ 1
2 Î(x − 1), Ĩ(x)}, x � 1,

thereby defining Î(x) inductively for all x. It is easy to see (again, for example, induc-
tively) that Î is positive and non-increasing and thus has a limit L � 0 as x → ∞.
Moreover, note that, for x � 1,

Î(x) � 1
2 Î(x − 1) + Ĩ(x)

from which it follows that L � 1
2L and so L = 0. We further note that, for x � 1,

Î(x)
Î(x − 1)

� 1
2
.

Now, defining

J(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ 1

0
Î(t) dt, 0 � x � 1,

∫ x

x−1
Î(t) dt, x � 1,

we immediately see that J ′(x) � 0 for x � 1, so J is non-increasing. Moreover, Î(x−1) �
J(x) � Î(x) so J → 0 as x → ∞.

Finally, we put

f(x) =
(

1
J(x)

)1/(p−1)

(4.3)

so
f is non-decreasing and tends to ∞ as x → ∞. (4.4)
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Theorem 4.1. As defined above, f satisfies (3.8)–(3.10).

Proof. We first note that

f ′(x)
f(x)

= − J ′(x)
(p − 1)J(x)

=
Î(x − 1) − Î(x)

(p − 1)J(x)

� Î(x − 1) − Î(x)
(p − 1)Î(x)

� 2
p − 1

− 1
p − 1

� 1
p − 1

,

so f satisfies (3.8). In addition we have

∫ x+1

x

s(t)
f(t)

dt � 1
f(x)

∫ x+1

x

s(t) dt � c̄

f(x)
,

which tends to zero as x → ∞ by (4.4), thus verifying (3.9).
Next, ∫ x+1

x

f(t)p−1q−(t) dt � f(x + 1)p−1I(x)

� f(x + 1)p−1Ĩ(x)

� f(x + 1)p−1Î(x)

=
Î(x)

J(x + 1)
� Î(x)

Î(x)
� 1. (4.5)

Hence, for λ < 0,∫ x+1

x

f(t)p−1(q(t) − λ)− dt �
∫ x+1

x

f(t)p−1q−(t) dt � 1, (4.6)

so (B−) is satisfied. Moreover, for any 0 < ε � 1 and λ < 0,

∫ x+ε

x

f(t)p−1(q(t) − λ)+ dt → ∞ as x → ∞.

Note that∫ x+ε

x

f(t)p−1(q(t) − λ)+ dt

=
∫ x+ε

x

f(t)p−1(q(t) − λ) dt +
∫ x+ε

x

f(t)p−1(q(t) − λ)− dt

� |λ|
∫ x+ε

x

f(t)p−1 dt +
∫ x+ε

x

f(t)p−1q+(t) dt −
∫ x+ε

x

f(t)p−1q−(t) dt

� |λ|f(x)p−1ε − 1

by (4.5). Now (M+) follows from (4.4). �
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4.2. We now give some results to prepare for Theorem 4.5, which is the main result of
this section.

Lemma 4.2. Suppose λ < 0 and λ ∈ Λ+
n for some n. Then lim infx→∞ θ(x, λ) >

(n + 1
2 )πp, where θ(x, λ) is the unmodified Prüfer angle defined by (3.3).

Proof. Since ϕ(x, λ) → (n + 1)πp from below as x → ∞, we see that

θ(x, λ) ∈ ((n + 1
2 )πp, (n + 1)πp) for x > X, (4.7)

where X is sufficiently large.
Assume that lim infx→∞ θ(x, λ) = (n + 1

2 )πp. Then, for any η > 0 small enough, there
exists a sequence {xn}∞

1 such that limn→∞ xn = ∞ and

(n + 1
2 )πp < θ(xn, λ) < (n + 1

2 )πp + η.

Let
δn := sup{δ ∈ (0, 1] : θ(xn + ε, λ) < (n + 1

2 )πp + 3η for all ε < δ}.

In particular,
if θ(xn + δn, λ) < (n + 1

2 )πp + 3η, then δn = 1. (4.8)

It follows from (4.2) that there exists X ′ > X such that

∫ x+1

x

q−(t) dt < η if x � X ′.

Assume that xn > X ′. We see from (3.3) and (4.1) that

θ(xn + δn, λ) < (n + 1
2 )πp + η + c̄|sin′

p(
1
2πp + 3η)|p + η < (n + 1

2 )πp + 3η

whenever
|sin′

p(
1
2πp + 3η)|p < η/c̄. (4.9)

Let us show that (4.9) is fulfilled for η > 0 small enough. Indeed, using properties of
the function sinp (see, for example, [4, § 1]), one finds, for 0 < ν < 1

2πp,

|sin′
p(

1
2πp + ν)|p = 1 − |sinp( 1

2πp + ν)|p

= 1 − sinp
p(

1
2πp − ν)

=
∫ πp/2

1
2πp−ν

(sinp
p(t))

′ dt

= p

∫ πp/2

πp/2−ν

sinp−1
p (t) sin′

p(t) dt

< pν sin′
p(

1
2πp − ν).

Since sin′
p(

1
2πp) = 0, (4.9) holds if sin′

p(
1
2πp − 3η) < 1/3pc̄.
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Thus, by (4.8), there exists N ∈ N such that n > N implies

(n + 1
2 )πp < θ(xn + δ, λ) < (n + 1

2 )πp + 3η for all δ ∈ (0, 1].

Now with (4.9) we see that if 3η/|sinp( 1
2πp + 3η)|p < −λ, then

θ(xn + 1, λ) < (n + 1
2 )πp + 3η + λ|sinp( 1

2πp + 3η)|p < (n + 1
2 )πp, (4.10)

so (4.10) holds for η small enough and contradicts (4.7). �

At this point we shall make an assumption complementary to (4.1):

there exists c > 0 so that c <

∫ x+1

x

s(t) dt for every x > 0. (4.11)

Lemma 4.3. Suppose 0 > λ ∈ Λ+
n for some n. If y satisfies (3.1) and (3.2), then

(i) y′/s is bounded on [0,∞),

(ii) |y(x)| < Ae−kx, x > 0, for certain constants A, k > 0,

(iii) q−yp ∈ L1.

Proof. (i) Since ϕ(x, λ) → (n + 1)πp from below, we can assume without loss that

θ(x, λ) ∈ ((n + 1
2 )πp, (n + 1)πp), y(x) > 0 and y′(x) < 0

for x � X, where X is sufficiently large. Thus, 0 < y(x) � y(X) for x � X.
Assume that for a sequence xj → ∞ we have y′(xj)/s(xj) → −∞. Then, for x > X +1

and 0 � t � 1,

(o|y′/s|p−1)′ = (p − 1)(q − λ)o|y|p−1 � −(p − 1)(q − λ)−yp−1,∫ x

x−t

(o|y′/s|p−1)′ � −(p − 1)
∫ x

x−t

(q − λ)−yp−1 � −(p − 1)(y(X))p−1(C1 + |λ|),

where

C1 = max
x�X

∫ x+1

x

q− dt < ∞.

Hence,

o|y′(x)/s(x)|p−1 − o|y′(x − t)/s(x − t)|p−1 � −(p − 1)(y(X))p−1(C1 + |λ|),
|y′(x)/s(x)|p−1 − |y′(x − t)/s(x − t)|p−1 � (p − 1)(y(X))p−1(C1 + |λ|).

Now, choosing j large enough to ensure

|y′(xj)/s(xj)|p−1 > (p − 1)(y(X))p−1(C1 + |λ|) +
(

2
c
y(X)

)p−1

,
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we see that

|y′(xj − t)/s(xj − t)| � 2
c
y(X),

y′(xj − t) � −2
c
y(X)s(xj − t),∫ 1

0
y′(xj − t) dt � −2

c
y(X)

∫ 1

0
s(xj − t) dt � −2

c
y(X)c,

y(xj) − y(xj − 1) � −2y(X).

Hence,
y(xj) � −2y(X) + y(xj − 1) � −y(X) < 0.

This contradiction establishes statement (i).

(ii) By Lemma 4.2, we can assume that

y′(x)
sy(x)

(x) < −C2 for x � X1,

where C2 and X1 are certain positive constants. Using (4.1), we obtain, for x � X1,

ln y(x) − ln y(X1) =
∫ x

X1

y′(t)
y(t)

dt < −C2

∫ x

X1

s(t) dt < −C2c(x − X1 − 1)

and y(x) < y(X1)eC2c(X1+1)e−C2cx.

(iii) This follows from [3, Lemma 3.2]. �

4.3. We are now ready to establish the remaining assumption of Theorem 3.12.

Theorem 4.4. Each set Λ+
n contains at most one point.

Proof. Suppose λ and µ both belong to Λ+
n and λ < µ, so

θ(x, λ) < θ(x, µ) < (n + 1)πp

for all x. Suppose y and z are non-trivial solutions of (3.1), (3.2) corresponding to λ and
µ, respectively. We define x0 by

θ(x0, λ) = nπp when n � 1,

x0 = 0 when n = 0

and we take v to be the solution of the IVP consisting of the differential equation (3.1)
on [x0,∞) with µ in place of λ and subject to the initial condition v(x0) = 0 when n � 1
or n = α = 0, and v′(x0)/s(x0)v(x0) = cotp(α) when n = 0 
= α. Note that, for n = 0,
v = z and, furthermore, we can assume that y, v are of one sign, which we take to be
positive on (x0,∞).
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If we define an angle θv on [x0,∞) via v′/sv = cotp θv, then

θ(x, λ) − nπp < θv < θ(x, µ) − nπp,

so lim infx→∞ θv(x) > 1
2πp follows from Lemma 4.2. As in the proof of Lemma 4.3 (ii),

we now have

v(x) < Ave−kvx for x > x0 and v′/s remains bounded as x → ∞. (4.12)

For small ε > 0 we use
w =

yp

(v + ε)p−1

so

w′ =
pyp−1y′

(v + ε)p−1 − (p − 1)ypv′

(v + ε)p
.

Now the p-Laplacian version of Picone’s identity [1, Theorem 1.1] shows that

R = R(y, v, ε) := |y′|p − w′|v′|p−2v′ � 0 for a.a. x > x0,

and hence, for any b > x0,

0 �
∫ b

x0

R

sp−1 =
∫ b

x0

o|y′/s|p−1y′ −
∫ b

x0

o|v′/s|p−1w′

= (p − 1)
∫ b

x0

(λ − q)yp − (p − 1)
∫ b

x0

(µ − q)yp

(
v

v + ε

)p−1

+ B|bx0

= (p − 1)
∫ b

x0

yp

(
λ − µ

(
v

v + ε

)p−1)
− (p − 1)

∫ b

x0

qyp

(
1 −

(
v

v + ε

)p−1)
+ B|bx0

� (p − 1)
∫ b

x0

yp

(
λ − µ

(
v

v + ε

)p−1)
+ (p − 1)

∫ b

x0

q−yp

(
1 −

(
v

v + ε

)p−1)
+ B|bx0

,

where
B = o|y′/s|p−1y − o|v′/s|p−1w.

Let b → ∞ and note, by Lemma 4.3 (i), (ii) and (4.12), that B(b) → 0. This gives

0 � (p − 1)
∫ ∞

x0

yp

(
λ − µ

(
v

v + ε

)p−1)
+ (p − 1)

∫ ∞

x0

q−yp

(
1 −

(
v

v + ε

)p−1)

− o| cotp α|p−1(y(x0))p

(
1 −

(
v(x0)

v(x0) + ε

)p−1)
,

where the last term is to be taken as 0 unless n = 0 
= α. Now let ε → 0 and, noting
Lemma 4.3 (iii), use Lebesgue’s Dominated Convergence Theorem to obtain

0 �
∫ ∞

x0

yp(λ − µ) < 0.

This contradiction establishes the result. �
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4.4. Taking Theorem 3.12 into account, we can summarize the results of this section
as follows.

Theorem 4.5. Under conditions (4.1), (4.2) and (4.11), the conclusions of Theo-
rem 3.12 hold, and the λn therein are precisely the negative eigenvalues of problem (3.1),
(3.2). For any eigenfunction yn (associated with λn) we have ynekx ∈ L∞ for some k > 0,
y′

ns−1 ∈ L∞ and y′
ns1−1/p ∈ L1.

Proof. This follows from Theorems 3.12, 4.1 and 4.4, Lemma 4.3 and from suitable
amendment to the proof of [3, Theorem 4.1]. �

Note that one can now easily obtain Sturmian comparison properties for eigenvalues
as in [3, Theorem 4.3] and the fact that yn has precisely n zeros in (0, +∞) as in [3,
Corollary 4.2].

4.5. A special case

We conclude this section with the situation where s satisfies (4.1) and (4.11), and
lim inf q(x) is finite (say 0 after a shift of eigenparameter) as x → ∞. Then one may
replace (4.3) by the simpler formula f(x) = x + 1. Indeed, (3.8) and (3.9) are obvious,
as is (B−) in (3.10). To establish (M+), we note that, for λ < 0 and x sufficiently large,
q(x) > 1

2λ > λ. For such x we have

∫ x+1

x

(f(t)(q(t) − λ))+ dt =
∫ x+1

x

(t + 1)(q(t) − λ) dt

�
∫ x+1

x

(t + 1)(− 1
2λ) dt → ∞ as x → ∞.

Thus, this simple modification ϕ of θ also has the kπp property. As special cases one
could consider certain situations of [10, Chapter XIII] where p = 2 and s(x) and q(x) are
both continuous in x and have limits as x → ∞. We note that θ need not have the kπp

property, and, for example, when s = 1 and q is continuous with q(x) → 0 as x → ∞,
Brown and Eastham [6] have shown (for λ < 0) that θ(x, λ) has a limit which is not a
multiple of πp as x → ∞.

5. Oscillatory cases

We shall call the problem (3.1), (3.2) oscillatory at λ if some (and hence every) solution
y has infinitely many zeros on R

+. The converse property was the subject of the previ-
ous sections. Since the angle θ(x, λ) (or its modified version ϕ(x, λ)) increases through
multiples of πp, oscillatory behaviour is equivalent to unboundedness of such angles as
x → ∞. In this section we shall examine some oscillatory situations, leading to conditions
for location of λe and for existence of infinitely many eigenvalues below λe.
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Theorem 5.1. Assume that there exist sequences {xn}∞
1 , {yn}∞

1 , {cn}∞
1 such that

(i) 0 � xn < yn and 0 < cn for all n ∈ N, and cn are bounded,

(ii) cn(yn − xn) → +∞ as n → ∞,

(iii)
1

cn(yn − xn)

∫ yn

xn

((cn − s(t))+ + q+(t)) dt → 0 as n → ∞.

Then the problem (3.1), (3.2) is oscillatory at any λ > 0; in particular, λe � 0.

Proof. From (3.3),

θ(yn, λ) � θ(yn, λ) − θ(xn, λ)

=
∫ yn

xn

θ′(t, λ) dt

=
∫ yn

xn

(s|sin′
p θ|p − (q − λ)|sinp θ|p)

�
∫ yn

xn

(cn|sin′
p θ|p + λ|sinp θ|p) −

∫ yn

xn

((cn − s)|sin′
p θ|p + q|sinp θ|p)

� min{cn, λ}(yn − xn) −
∫ yn

xn

((cn − s)+ + q+) dt.

If cn > c > 0 for all n, then, with C = min{c, λ} > 0, we have

θ(yn, λ) � (yn − xn)
(

C − 1
yn − xn

∫ yn

xn

((cn − s)+ + q+) dt

)
→ +∞

since we can replace cn(yn − xn) by yn − xn in (ii) and (iii).
If {cn} is not bounded away from 0, we can assume (for simplicity of notation) that

limn→∞ cn = 0. Then, for n large enough,

θ(yn, λ) � cn(yn − xn)
(

1 − 1
cn(yn − xn)

∫ yn

xn

((cn − s)+ + q+) dt

)
,

and the right-hand side tends to +∞ by (ii) and (iii). �

Taking xn = 0, yn = x and cn = c, we obtain the following.

Corollary 5.2. Assume that there exists a constant c > 0 such that

lim inf
x→∞

1
x

∫ x

0
((c − s(t))+ + q+(t)) dt = 0. (5.1)

Then the conclusions of Theorem 5.1 hold.

A stronger condition was used in [14, Theorem 15.1 (b)] when p = 2 for a stronger
conclusion.

If we combine Corollary 5.2 with the work of § 4, then we obtain the following.
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Corollary 5.3. If (4.1), (4.2), (4.11) and (5.1) hold, then the kπp property holds for
every eigenvalue below 0 = λe.

We turn now to the number of eigenvalues below λe, which is also related to oscillatory
behaviour. The connection depends on the following result, which we express in terms of
Nµ introduced in (3.13).

Theorem 5.4. Let µ ∈ R. Then the problem (3.1), (3.2) is oscillatory at µ if and only
Nµ is infinite.

Proof. Since ‘only if’ is evident, suppose that IVP (3.1), (3.2) is oscillatory at µ, but
that k = Nµ is finite. Since θ(x, µ) → +∞ with x, we can choose xk to ensure that

θ(xk, µ) > kπp. (5.2)

On the other hand, θ(x, λ) cannot decrease through multiples of πp as x increases, so
θ(xk, λ) < kπp for all λ < µ. Since the right-hand side of (3.3) is continuous in λ, obeys
Carathéodory’s conditions in (x, θ) and is Lipschitz in θ, θ(xk, λ) is continuous in λ at
µ. Letting λ ↗ µ, we obtain θ(xk, µ) � kπp, contradicting (5.2). �

Thus, the distinction between whether there are infinitely or finitely many λn in The-
orem 3.12 depends on whether IVP (3.1), (3.2) is oscillatory or not at 0. Indeed, from
Theorems 4.5 and 5.4, we have the following.

Corollary 5.5. Assume that (4.1), (4.2) and (4.11) hold. Then each negative eigen-
value satisfies the kπp property. If, in addition,

IVP (3.1), (3.2) is oscillatory at 0, (5.3)

then there are infinitely many negative eigenvalues converging to 0 = λe. Similarly, if
(5.3) fails, then there are only finitely many negative eigenvalues.

The oscillatory condition (5.3) is connected with the Elbert–Prüfer angle via Theo-
rem 5.4 and Definition 3.4. The following result gives a corresponding analogue of The-
orem 5.1.

Theorem 5.6. Assume that there exist sequences {xn}∞
1 and {yn}∞

1 such that 0 �
xn < yn and

lim
n→+∞

∫ yn

xn

min{−q(t), s(t)} dt = +∞. (5.4)

Then N0 = +∞, so IVP (3.1), (3.2) is oscillatory at 0.

Proof. Let us show that

for any N ∈ N there exist λ0 < 0 and n ∈ N such that θ(yn, λ0) > Nπp. (5.5)
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Indeed, for negative λ, we have

θ(yn, λ) − θ(xn, λ)

=
∫ yn

xn

(s(t)|sin′
p θ(t, λ)|p − (q(t) − λ)|sinp θ(t, λ)|p) dt

�
∫ yn

xn

(min{−q(t), s(t)}|sin′
p θ(t, λ)|p + min{−q(t), s(t)}|sinp θ(t, λ)|p) dt

+ λ

∫ yn

xn

|sinp θ(t, λ)|p dt

�
∫ yn

xn

min{−q(t), s(t)} dt − |λ|(yn − xn). (5.6)

It follows from (5.4) that∫ yn

xn

min{−q(t), s(t)} dt > Nπp + 1 for some n.

Taking λ0 ∈ (−(yn −xn)−1, 0), we see that (5.6) implies θ(yn, λ0)−θ(xn, λ0) > Nπp and
so (5.5) is satisfied.

Thus, n(λ0) � N , whence N0 � N and, since N is arbitrarily large, the proof is
complete. �

There is a substantial literature on oscillation conditions for p = 2 (cf. [10,13,15]),
and even for 1 < p < ∞ (cf. [9]). We shall give two comparisons with our work. The
first concerns the Leighton–Wintner conditions, which were generalized to 1 < p < ∞
in [9, Theorem 1.2.9] in a form equivalent to∫ ∞

s1/(p−1) = +∞ (5.7)

and ∫ ∞
q = −∞. (5.8)

Hölder’s inequality shows that (4.11) implies (5.7) for 1 < p � 2, so, for such p,
(5.3) may be replaced by (5.8) in Corollary 5.5. This result may be compared with [13,
Theorem 2.19], which (for p = 2) uses (5.8) and various extra conditions on q and s to
obtain an infinite number of eigenvalues below λe, but with no conclusion about the kπ

property. Also, if we take xn = 0, yn = x in Theorem 5.6, then we see that∫ ∞

0
min{−q(t), s(t)} dt = +∞ (5.9)

can be used instead of (5.4) in Theorem 5.6. When p = 2, the Leighton–Wintner condi-
tions are implied by (5.9). On the other hand, (5.7) is not implied by (5.4) for p = 2, or
by the special case (5.9) for any p 
= 2.
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Our second comparison concerns Kneser’s condition, for which we assume s = 1. Then

lim sup
x→∞

xpq(x) < −(1 − p−1)p (5.10)

suffices for (5.3) (see [9, Theorem 1.4.5] for an equivalent version). Thus, (5.10) may be
used instead of (5.3) in Corollary 5.5. Moreover, [9, Theorem 1.4.5] also shows that

lim inf
x→∞

xpq(x) > −(1 − p−1)p

suffices for (3.1), (3.2) to be non-oscillatory at 0, so, by the final sentence of Corollary 5.5,
only finitely many negative eigenvalues exist; this result was recently proved directly (for
continuous q) in [6, Theorem 3.2].
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