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Sensitivity of mixing times of Cayley graphs
Jonathan Hermon and Gady Kozma
Abstract. We show that the total variation mixing time is not quasi-isometry invariant, even for
Cayley graphs. Namely, we construct a sequence of pairs of Cayley graphs with maps between them
that twist the metric in a bounded way, while the ratio of the two mixing times goes to infinity.
The Cayley graphs serving as an example have unbounded degrees. For non-transitive graphs, we
construct bounded degree graphs for which the mixing time from the worst starting point for one
graph is asymptotically smaller than the mixing time from the best starting point of the random
walk on a network obtained by increasing some of the edge weights from 1 to 1 + o(1).

1 Introduction

There are numerous works aiming at sharp geometric bounds on the mixing time of
a finite Markov chain. Examples include Morris and Peres’ evolving sets bound [39],
expressed in terms of the expansion profile, and the related bound by Fountoulakis and
Reed [19]. The sharpest geometric bounds on the uniform (a.k.a. L∞) mixing time are
given in terms of the log-Sobolev constant (see [16] for a survey on the topic) and the
spectral profile bound, due to Goel et al. [20]. Both determine the uniform mixing
time up to a multiplicative factor of order log log[1/min π(x)], where throughout
π denotes the stationary distribution (see [16, 32]). The reader is not familiar with
mixing time definitions can find them in Section 2.2. Other notions and definitions
used below can be found in Sections 1.5 and 1.7.

This type of geometric bounds on mixing times are robust under bounded per-
turbations of the edge weights, and in the bounded degree setup, also under quasi-
isometries. That is, changing some of the edge weights by at most some multiplicative
constant factor can change these geometric bounds only by some corresponding con-
stant factor. A natural question, with obvious implications to the potential sharpness
of such geometric bounds, is whether mixing times are themselves robust under
small changes to the geometry of the Markov chain. For instance, can bounded
perturbations of the edge weights change the mixing time by more than a constant
factor? Similarly, how far apart can the mixing times of simple random walks (SRWs)
on two quasi-isometric graphs of bounded degree be? Different variants of this
question were asked by various authors such as Pittet and Saloff-Coste [42, Section 6],
Diaconis and Saloff-Coste [16, p. 720], and Aldous and Fill [3, Open Problem 8.23].
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Sensitivity of mixing times of Cayley graphs 1401

Ding and Peres [17] constructed a sequence of bounded degree graphs satisfying
that the order of the total variation mixing times strictly increases as a result of a
certain sequence of bounded perturbations of the edge weights.1 In [24], a similar
example is constructed in which the uniform mixing time is sensitive under bounded
perturbations of the edge weights, as well as under a quasi-isometry. All these
examples are based on the “perturbed tree” example of T. Lyons [37] (simplified by
Benjamini [7]). In particular, they are highly non-transitive, and a priori it appears
as if what makes such examples work could not be imitated by a transitive example.
It remained an open problem to determine whether the total variation mixing time
of random walk on vertex-transitive graphs is robust under small perturbations. This
was asked by Ding and Peres [17, Question 1.4] (see also [32, p. 3] and [42, Section
6]). In this paper, we give a negative answer to this question, even when the small
perturbation preserves transitivity.

We denote the group of permutations of n elements by Sn . Recall that a transpo-
sition is an element of Sn which exchanges two values and keeps all the rest fixed.
Theorem 1.1 There exist a pair of sequences of sets of transpositions Sn and S′n such
that the Cayley graphs Cay(Sn , Sn) and Cay(Sn , S′n) are (3, 0)-quasi-isometric and

tmix(Cay(Sn , S′n)) ≳ tmix(Cay(Sn , Sn)) log log log ∣Sn ∣.
Further, Sn ⊂ S′n ⊂ S3

n ∶= {x yz ∶ x , y, z ∈ Sn}.
Of course, log log log ∣Sn ∣ ≍ log log n. We formulated the theorem in this way

because the size of the group is the more natural object in this context. Let us remark
that probably the ratio of mixing time in our example is indeed ≍ log log log ∣Sn ∣, but
for brevity, we prove only the lower bound.

The mixing times in Theorem 1.1 are the total variation ones. In what comes,
whenever we write mixing time without mentioning the metric, it is always the total
variation mixing time. The behavior described in Theorem 1.1 cannot occur for the
uniform mixing times which in the transitive setup is quasi-isometry invariant (see
Theorem 2.5).

1.1 Variations on a theme

A related question, asked by Itai Benjamini (private communication) is whether there
exists some absolute constant C > 0 such that for every finite group G for all two
symmetric sets of generators S and S′ such that S ⊂ S′ we have that the mixing time
of SRW on the Cayley graph of G with respect to S′ is at most C ∣S

′∣
∣S∣ times the mixing

time of SRW on the Cayley graph of G with respect to S (a set S is called symmetric
if S = S−1 ∶= {s−1 ∶ s ∈ S}). Our example also disproves this. In fact, S ⊂ S′ ⊆ S3 and
∣S′∣ − ∣S∣ ≤

√
∣S∣, where S i ∶= {s1 ⋅ ⋅ ⋅ s i ∶ s1 , . . . , s i ∈ S} for i ∈ N. The definition of an

(a, b)-quasi-isometry (see Section 1.5) gives that if S ⊆ S′ ⊆ S i then Cay(G , S) and
Cay(G , S′) are (i , 0)-quasi-isometric.

1Their construction was refined by Hermon and Peres in [26, Theorem 3], so that the mixing time
changes by an order of log ∣V ∣, which is optimal. The same paper contains various additional results
concerning sensitivity of mixing times and of the cutoff phenomenon under small changes to the
geometry of the chain.
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1402 J. Hermon and G. Kozma

The reason that ∣S′∣ − ∣S∣ ≤
√
∣S∣ is explained in the proof sketch section below—

both share a complete graph on some set K with ∣K∣ ≍ n. Hence, this complete graph
has an order of ≍ n2 edges, and there are only o(n) additional edges. We could have
increased Sn by including in it all ∣K∣! permutation of the elements in K, while keeping
S′n/Sn the same set (of size o(n)), thus making ∣S

′
n ∣−∣Sn ∣

∣Sn ∣
tremendously smaller.

We will also be interested in weighted versions of the problem, as these allow
us to define “weak” perturbations in a natural way. Let Γ be a group, and let W ∶=
(w(s) ∶ s ∈ S) be symmetric weights (i.e., w(s) = w(s−1)) such that the support of W
generates Γ. The discrete-time lazy random walk on Γ with respect to W is the process
with transition probabilities P(g , g) = 1/2 and P(g , gs) = w(s)

2∑r∈S w(r) for all g , s ∈ Γ. We
denote its TV (total variation) mixing time by tmix(Cay(Γ, W)). In continuous time,
let R ∶= (r(s) ∶ s ∈ S) be symmetric rates. The continuous-time random walk on Γ with
respect to R is the process that has infinitesimal transitions rates r(s) between g and gs
for all g , s ∈ Γ. Denote its mixing time by tmix(Cay(Γ, R)). As in the unweighted case,
due to the group symmetry the invariant distribution is uniform and the TV distance
between it and the distribution of the walk at some given time is independent of the
initial state.

Recall that Sn is the symmetric group (the group of permutations of n elements).
The following is the promised weighted version of our main result.

Theorem 1.2 For every f ∶ N→ [1,∞) satisfying that 1≪ f (n) ≤ log log log n, there
exist a sequence (Sn)∞n=3 of sets of transpositions Sn ⊂Sn and a sequence of weights
(Wn)∞n=3, such that Wn = (wn(s)) is supported on Sn and satisfies that 1 ≤ wn(s) ≤ 1 +
( f (n!)/ log log n)1/4 for all s ∈ Sn , and such that

tmix(Cay(Sn , Wn)) ≳ tmix(Cay(Sn , Sn)) f (n!).(1.1)

Similarly, in continuous time, if we set Rn =Wn (for the above Wn), we get that

tmix(Cay(Sn , Rn)) ≳ tmix(Cay(Sn , Sn)) f (n!).(1.2)

We remark that the power 1/4 is not optimal (it was not a priority for us to optimize
it). As before, ∣Sn ∣ ≍ n2.

1.2 A non-transitive example

Our third result shows that if one is willing to consider non-transitive instances, then
indeed one can have a bounded degree example whose (usual worst-case) mixing time
is of strictly smaller order than the mixing time starting from the best initial state (i.e.,
the one from which the walk mixes fastest) after a small perturbation. In all previous
constructions of graphs with a sensitive mixing time, there was a large set that starting
from it, the walk mixes rapidly both before and after the perturbation, and the mixing
time is governed by the hitting time of this set (which is sensitive by construction). In
particular, the mixing time started from the best initial state is not sensitive.

Let G be a connected graph. Let W = (w(e) ∶ e ∈ E(G)) be positive edge weights.
Consider the lazy random walk (Xk)∞k=0 on G , i.e., the process with transi-
tion probabilities P(x , y) = w(x y)

2∑z w(xz) and P(x , x) = 1
2 for all neighboring x , y ∈ G.
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Sensitivity of mixing times of Cayley graphs 1403

For x ∈ G , we define the mixing time starting from x by

tmix(G , W , x) ∶=min{k ∶ ∥Px(Xk = ⋅) − π∥TV ≤ 1/4}.

With this definition, the usual mixing time tmix(G , W) (see Section 2.2) is equal to
maxx tmix(G , W , x).

Theorem 1.3 There exist a sequence of finite graphs Ln = (Vn , En) of diverging sizes
and uniformly bounded degree (i.e., supn maxv∈Vn deg v < ∞) and a sequence of some
symmetric edge weights Wn = (wn(e) ∶ e ∈ En) such that 1 ≤ wn(e) ≤ 1 + δn for all e ∈
En and such that

max
x∈Vn

tmix(Ln , 1, x) ≤ δn min
x∈Vn

tmix(Ln , Wn , x)(1.3)

for some δn → 0.

It follows from Theorem 1.3 that the average TV mixing time, by which, we mean
inf{t ∶ ∑x π(x)∥Px(Xt = ⋅) − π∥TV ≤ 1/4}, can be sensitive to perturbations. This is
in contrast with the average L2 mixing time (see Section 2.2). This gives a negative
answer to a question of Addario-Berry (private communication).

As in Theorem 1.1, the change in the order of the mixing time in Theorem 1.3 (the
inverse of the δn in (1.3)) is o(log log log ∣Vn ∣). If we replace the condition wn ≤ 1 + δn
with wn ≤ 1 + c, then the change in the order of the mixing time can be as large as
log log log ∣Vn ∣.

Let us quickly sketch the construction of Theorem 1.3 (full details are in Section 4).
Let n be some number, and let Sn be the set of transpositions from Theorem 1.2.
Let H be a large, fast mixing graph, and let A be some subset of the vertices of H
with ∣A∣ = ∣Sn ∣ and with the vertices of A far apart from one another. The graph L of
Theorem 3 has as its vertex set Sn ×H (we are using here the same notation for the
graph and its set of vertices). We choose the edges of L such that random walk on L has
the following behavior. Its H projection is just SRW on the graph H. Its Sn projection
is also SRW on Cay(Sn , Sn), but slowed down significantly. Any given transposition
s ∈ Sn can be applied only when a corresponding vertex of A is reached in the second
coordinate. The perturbation goes by perturbing only the Sn projection. We defer all
other details to Section 4.

1.3 A proof sketch

We will now sketch the proof of our main result, Theorem 1.1 (the proof of Theorem 1.2
is very similar). Readers who intend to read the full proof can safely skip this section.

Random walk on Cay(Sn , Sn) with Sn composed of transpositions is identical to
the interchange process on the graph G which has n vertices and {x , y} is an edge of G
if and only if the transposition (x , y) ∈ Sn . Hence, we need to construct two graphs G
and G′ on n vertices, estimate the mixing time of the two interchange processes and
show that the corresponding Cayley graphs are quasi-isometric.

Our two graphs have the form of “gadget plus complete graph.” Namely, there is a
relatively small part of the graph D which we nickname “the gadget” and all vertices
in G/D are connected between them. While D and the corresponding D′ in G′ will
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1404 J. Hermon and G. Kozma

be small (we will have ∣D∣ = ∣D′∣), they dominate the mixing time of the interchange
process.

To describe the gadget, let u ∈ N and ε ∈ (0, 1
2 ) be some parameters. The gadget

will have u “stages” H1 , . . . , Hu (the gadget is almost ∪u
i=1H i but not quite). We obtain

each H i by “stretching” the edges of some graph H′i which is a union of binary trees
of depth s i ∶= 4i−1u (note that H′i has the depth exponential in i and hence has volume
doubly exponential in i). To get H i , replace each edge of H′i with a path of length
�i ∶= 2u+1−i . Namely, for each edge {x , y} of H′i , we add �i − 1 new vertices (denote
them by v1 , . . . , v�i−1, and denote also v0 = x and v�i = y) and connect v j to v j+1 for all
j ∈ {0, . . . , �i − 1}; and remove the edge {x , y}.

We still need to explain how many trees are in each H i and how they are connected
to one another and to the rest of the graph. For this, we need the parameter ε, which at
this point can be thought of as a sufficiently small constant. For each of the vertices in
each of the trees (before stretching), we label the children arbitrarily “left” and “right.”
For each leaf x ∈ H i , we define g(x) to be the number of left turns in the (unique) path
from the root to x. We now let

B i ∶= {x leaf of H i ∶ g(x) > (
1
2
+ ε) s i}.(1.4)

The sets B i are used twice. First, we use them to decide how many trees will be in each
H i . For i = 1, we let H1 be one tree. For every i > 1, we let H i have ∣B i−1∣ trees, and
identify each point of B i−1 with one of the roots of one of the trees in H i . Second, we
use the B i to connect the H i to the complete graph. Every leaf of H i which is not in
B i is identified with a vertex of the complete graph (the complete graph K will be of
size n − o(n), much larger than ∪u

i=1H i which will be of size O(n1/4), and so most of
the vertices of K are not identified with a vertex of the gadget). This terminates the
construction of G (see Figure 1). Experts will clearly notice that this is a variation on
the perturbed tree idea. In other words, while the perturbed tree itself (as noted above)
is highly non-transitive, one can use it as a basis for transitive example by examining
the interchange process on it.

The graph G′ is almost identical, the only difference is that in each path correspond-
ing to a left turn we add short bridges. Namely, examine one such path and denote its
vertices v0 , . . . , v�i as above. Then in G′ , we add edges between v2 j and v2 j+2 for all
j ∈ {0, . . . , �i/2 − 1}.

Why this choice of parameters? It is motivated by a heuristic that for such graphs,
namely, a gadget connected to a large complete graph, the mixing time of the inter-
change process is the time all particles have left the gadget (they do not have to all
be outside the gadget at the same time, it is enough that each particle left the gadget
at least once by this time). See Section 1.4 for some context for this heuristic. Thus,
we are constructing our H i such that the time that it takes all particles to leave H i is
approximately independent of i. Indeed, the time a particle takes to traverse a single
stretched edge is approximately �2

i ≍ 4u−i while each tree of H i has depth 4i−1u (in
the sense that this is the depth of the tree before its edges have been stretched) and
the particle has to traverse all levels of H i , so it exits H i after time approximately
4u−1u, which is independent of i. And this holds for all particles simultaneously
because the probability that a particle takes λ ⋅ 4u−1u time to traverse the tree (for some
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Sensitivity of mixing times of Cayley graphs 1405

Figure 1: The gadget. Vertices marked with small squares actually belong to the complete graph
rather than to the gadget.

λ > 1) is exponentially small in the number of layers 4i−1u, and hence that would not
happen to any of the particles in the tree, which has approximately 24i−1 u particles,
if λ is sufficiently large. In the roughest possible terms, the growing height of the
trees is dictated by the growing number of vertices (which must grow because H i has
many more roots than H i−1, since each x ∈ B i−1 is a root of H i ) while the decreasing
stretching balances the growing height to get approximately uniform expected exit
time. The only exception is H1, whose height is not dictated by the number of roots
(clearly, as there is only one), but by the stretching.

With the definitions of G and G′ done, estimating the mixing times is relatively
routine, so we make only two remarks in this quick sketch. How do we translate
the fact that all particles visited the complete graph into an upper bound on the
mixing time? We use a coupling argument. We couple two instances σ and σ ′ of the
interchange process (in continuous time) using the same clocks and letting them
walk identically unless σ(x) = σ ′(y) for an edge {x , y} that is about to ring, in which
case we apply the transposition to exactly one of σ or σ ′, reducing the number of
disagreements (this coupling involves a standard trick of doubling the rates, and
censoring each step with probability 1/2). The fact that the complete graph is much
larger and has many more edges simplifies our analysis (the reader can find the details
of the coupling in Section 3.2).
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The lower bound for the mixing time on G′ uses the standard observation that
adding those edges between v2 j and v2 j+2 makes the left turn more likely to be taken
than the right turns, transforming B i from an atypical set (with respect to the hitting
distribution of the leaf set of H i ) to a typical one, and hence, the particle that started
at the root of H1 has high probability to traverse all H i before entering the complete
graph for the first time. This, of course, takes it 4u−1u2 time units (compare to the
mixing time bound of 4u−1u for the interchange process on G). Of course, the mixing
time of the interchange process on G′ is also bounded by the time that all particles
leave the gadget, but we found no way to use this. We simply bound the time a single
particle leaves the gadget and get our estimate.

1.4 The mixing time of the interchange process

Since our proof revolves around estimating the mixing time of the interchange process
on some graph, let us spend some time on a general discussion of this topic. We first
mention some conjectures relating the mixing time of the interchange process on a
finite graph G to that of ∣G∣ independent random walks on G.

Given a finite graph G = (V , E) and edge rates R, the corresponding n-fold product
chain is the continuous-time Markov chain on V n satisfying that each coordinate
evolves independently as a random walk on G with edge rates R. This is a continuous-
time walk on the n-fold Cartesian product of G with itself, whose symmetric edge rates
Rn are given by

Rn((v1 , . . . , vn), (v1 , . . . , vk−1 , v′k , vk+1 , . . . , vn)) ∶= R(vk , v′k)

for all v1 , . . . , vn , v′k ∈ V and k ∈ [n]. We shall refer to this Markov chain as n inde-
pendent random walks on G with edge rates R and denote its (TV) mixing time by
tmix(n independent RWs on G , R). As usual, the mixing time is defined with respect
to the worst starting tuple of n points, which turns out to be when they all start from
the worst point for a single walk on G with edge rates R.

Oliveira [40] conjectured that there exists an absolute constant C > 0 such that
the TV mixing time of the interchange process on an n-vertex graph G with rates
R, i.e., tmix(Cay(Sn , R)), is at most Ctmix(n independent RWs on G , R). See [30,
Conjecture 2] and [29, Question 1.12] for two different strengthened versions of this
conjecture. See [30] for a positive answer for high dimensional products.

For the related exclusion process, some progress on Oliveira’s conjecture is made
in [29]. Returning to the interchange process, in the same paper, the following more
refined question is asked [29, Question 1.12]: Is tmix(Cay(Sn , R)) equal up to some
universal constants to the mixing time of n independent random walks on (G , R)
starting from n distinct locations? (see [29] for precise definitions). We see that our
result is related to finding some graphs G such that the mixing time of ∣G∣ independent
SRW with edge rates 1 on G, starting from distinct initial locations, is sensitive under
small perturbations. In fact, the graphs we construct in this paper satisfy this property
too, but in the interest of brevity, we will not prove this claim (the proof is very
similar to the one for the interchange process we do provide). This conjectured relation
between the exclusion process and independent random walks is behind the heuristic
we employed (and mentioned in Section 1.3) to construct our example.
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As we now explain, if we did not require the initial locations to be distinct (as is the
case in Oliveira’s conjecture) such sensitivity could not occur. It is easy to show (e.g.,
[29]) that when ∣G∣ = n,

1
4

trel(G , R) log n ≤ tmix(n independent RWs on G , R) ≤ 4trel(G , R) log n,

where trel(G , R) is the relaxation time of (G , R), defined as the inverse of the second
smallest eigenvalue of −L, where L is the infinitesimal Markov generator of the walk
(G , R). The relaxation time is robust under small perturbations (see Section 2.1),
and hence so is tmix(n independent RWs on G , R). Our result that the mixing time
is sensitive does not contradict Oliveira’s conjecture, as he conjectured only an upper
bound (which, in our case, is sharp for neither Sn nor S′n).

Loosely speaking, in order to make the mixing time of n independent random
walks starting at distinct locations of smaller order than (the robust quantity)
trel(G , R) log n it is necessary that the eigenvector corresponding to the minimal
eigenvalue of −L be localized on a set of cardinality no(1). This is a crucial observation
in tuning the parameters in our construction, which explains why for smaller areas of
the graph (namely, H i with small index i) we “stretch” edges by a larger factor. This is
the opposite of what is done in [24].

Lastly, we comment that in contrast with a single random walk, in order to change
the mixing time of n independent random walks, starting from n distinct initial
locations, it does not suffice for the perturbation only to change the typical behavior
of the walk, but rather it is necessary that it significantly changes the probabilities of
some events in some sufficiently strong quantitative manner. See [24] for a related
discussion, about why it is much harder to construct an example where the uniform
mixing time is sensitive than it is to construct one where the TV mixing time is
sensitive.

1.5 Quasi-isometries and robustness

Since we hope this note will be of interest to both group theory and Markov chain
experts, let us take this opportunity to compare two similar notions related to
comparison of the geometry of two graphs or of two reversible Markov chains. The
first is the notion of quasi-isometry which is more geometric in nature. The second
is the notion of robustness which is more analytic. In particular, we are interested in
properties which are preserved by these notions.

This discussion is an important part of the background, but let us advise the readers
that it is not necessary to appreciate our results, as they apply in both cases. For
example, Theorem 1.1 shows that the mixing time is neither quasi-isometry invariant
nor robust.

A quasi-isometry (defined first in [23]) between two metric spaces X and Y is a
map ϕ ∶ X → Y such that for some numbers (a, b) we have

∀u, v ∈ X d(u, v) − b
a

≤ d(ϕ(u), ϕ(v)) ≤ ad(u, v) + b,

where d denotes the distance (in X or in Y, as appropriate). Further, we require that, for
every y ∈ Y , there is some x ∈ X such that d(ϕ(x), y) ≤ a + b. We say that X and Y are
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(a, b) quasi-isometric if such a ϕ exists. (Our choice of definition is unfortunately only
partially symmetric. If ϕ ∶ X → Y is an (a, b) quasi-isometry then one may construct
a quasi-isometry ψ ∶ Y → X with the same a but perhaps with a larger b.)

For a property of random walk that is defined naturally on infinite graphs, we say
that it is quasi-isometrically invariant if whenever G and H are two quasi-isometric
infinite graphs, the property holds for G if and only if it holds for H (the graphs are
made into metric spaces with the graph distance). Examples include a heat kernel on-
diagonal upper bound of polynomial type [12], an off-diagonal upper bound [21], and
a corresponding lower bound [10, 22]. A particularly famous example is the Harnack
inequality [5]. For a quantitative property of random walk naturally defined on finite
graphs, such as the mixing time, one says that it is invariant to quasi-isometries if,
whenever G and H are (a, b)-quasi-isometric, the property may change by a constant
that depends only on a and b and not on other parameters. Similar notions may
be defined for Brownian motion on Riemannian manifolds, and one may even ask
questions like “if a manifold M is quasi-isometric to a graph G and Brownian motion
on M satisfies some property, does random walk on G satisfy an equivalent property?”
and a number of examples of this behavior are known.

The notion of robustness does not have a standard definition, and in particular,
the definitions in [17] and [24] differ (and also differ from the definition we will use
in this paper). Nevertheless, they all have a common thread: a definition for Markov
chains that implies that the property in question is preserved under quasi-isometry
of graphs of bounded degree, but that makes sense also without any a priori bound
on the transition probabilities. Here, we will use the following definition. Let M be
the set of finite state Markov chains. We say that a q ∶M→ [0,∞] is robust if, for any
A ∈ (0, 1], there exists some K ∈ (0, 1] such that the following holds. Assume M and
M′ are two irreducible reversible Markov chains on the same finite state space V with
stationary distributions π and π′ and transition matrices P and P′ satisfying

∀ x ∈ V , Aπ′(x) ≤ π(x) ≤ 1
A π′(x),

∀ f ∈ RV , AE′( f , f ) ≤ E( f , f ) ≤ 1
AE
′( f , f ),

(1.5)

where E( f , f ) and E′( f , f ) are the corresponding Dirichlet forms, namely,

E( f , g) ∶= 1
2 ∑u ,v∈V

π(u)P(u, v)( f (u) − f (v))(g(u) − g(v))

and similarly for E′. Then q(M) ≥ Kq(M′).
We also define robustness for Markov chains in continuous time, and in this case,

we replace P(u, v) above withL(u, v) which is the infinitesimal rate of transition from
u to v, but otherwise the definition remains the same.

If P and P′ are SRWs on (a, b) quasi-isometric graphs with the same vertex set
(with the quasi-isometry being the identity), whose maximal degrees are at most D,
then (1.5) holds with some A depending only on (a, b, D) [14]. Thus, a robust quantity
is also quasi-isometry invariant between graphs of bounded degree on the same vertex
set.

Each notion has its advantages and disadvantages relative to the other notion.
Quasi-isometry has the flexibility that the spaces compared need not be identical or
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even of the same type, indeed the fact that a Lie group (a continuous metric space,
indeed a manifold) is quasi-isometric to any cocompact lattice of it (a discrete metric
space) plays an important role in group theory. Robustness has the advantage that
unbounded degrees are handled seamlessly.

Returning to our results, since the examples of our Theorem 1.1 are not of bounded
degree, it is natural to ask if they satisfy a comparison of Dirichlet form of the form
(1.5). In fact, this is true because in said examples our pair of sets of generators Sn
and S′n (from the statement of Theorem 1.1) satisfy for all n that Sn ⊂ S′n and that any
s′ ∈ S′n/Sn can be written as s1(s′)s2(s′)s3(s′) ∈ S3

n = {x yz ∶ x , y, z ∈ Sn} in a manner
satisfying that

max
s∈Sn

∑
s′∈S′n/Sn

3
∑
i=1

1{s i(s′) = s} ≤ 2.(1.6)

It is standard and not difficult to see that (1.6) implies the comparison of Dirichlet
forms condition (1.5) (see, e.g., [8, Theorem 4.4]). Thus, the examples of Theorem 1.1
also satisfy (1.5) with A being a universal constant. We remark that, in general, S ⊂
S′ ⊆ S3 is sufficient for deriving (1.5) only with an A that may depend on ∣S′∣.

1.6 Remarks and open problems

We start with a remark on the Liouville property problem, a problem which for us was
a significant motivation for this work. An infinite graph with finite degrees is called
Liouville if every bounded harmonic function is constant (a function f on the vertices
of a graph is called harmonic if f (x) is equal to the average of f on the neighbors of x
for all x).

An open problem in geometric group theory is whether the Liouville property
is quasi-isometry invariant in the setup of Cayley graphs (and, in the spirit of the
aforementioned question of Benjamini, whether it is preserved under deletion of some
generators, possibly by passing to a subgroup, if the smaller set of generators does not
generate the group). The problem of stability of the Liouville property is related to that
of mixing times. Indeed, the example of Lyons [37] mentioned above which is a base
for all previous examples for sensitivity was in fact an example for the instability of the
Liouville property (for non-transitive graphs).

A result of Kaimanovich and Vershik (see [31] or [35, Chapter 14]) states that for
Cayley graphs, the Liouville property is equivalent to the property of the walk having
zero speed. Of course, our graphs being finite means there is no unique number to be
designated as “speed,” as in the Kaimanovich–Vershik setting. But still it seems natural
to study the behavior of dist(Xt , 1) as a function of t, where Xt is the random walk, 1
is the identity permutation (and the starting point of the walker), and dist is the graph
distance with respect to the relevant Cayley graph (with respect to Sn or S′n , as the
case may be). Interestingly, perhaps, the functions increase linearly for the better part
of the process for both our Sn and S′n , so we cannot reasonably claim we show some
version of instability for the speed for finite graphs. (We will not prove this claim, but
it is not difficult.)

Due to the relation to the Liouville problem, there is interest in reducing the
degrees in Theorem 1.1. We note that since our Sn is a set of transpositions, we must
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have ∣Sn ∣ ≤ (n
2) ≍ (

log ∣Sn ∣
log log ∣Sn ∣

)
2
. As explained in the proof sketch section above, in our

construction, there is a set K ⊂ [n] ∶= {1, . . . , n} such that ∣K∣ = n(1 − o(1)) and all of
the transpositions of the form (a, b) with a, b ∈ K belong to Sn . Hence ∣Sn ∣ ≍ n2.

Let us mention two possible approaches to reduce the size of Sn . The first is to
replace the complete graph over K in the construction by an expander. In this case,
we will have ∣Sn ∣ ≍ n. It seems reasonable that this approach works, but we have not
pursued it. Let us remark at this point that the mixing time of the interchange process
on an expander is not known, with the best upper bound being log2 n [4] (see also
[29]).

The second, and more radical, is to replace the (∣K∣2 ) transpositions corresponding
to pairs from K by some number (say m, but importantly independent of n) of
random permutations of the set K, obtained by picking m independent random perfect
matchings of the set A, and for each perfect matching taking, the permutation that
transposes each matched pair. (If ∣K∣ is odd, we keep one random element unmatched.)
Note that the Cayley graph is no longer an interchange process, and that approximately
n2 elements have been replaced by a constant number. The degree would still be
unbounded because of the other part of the graph. Again, we did not pursue this
approach. One might wonder if it is possible to replace the entire graph, not just K, by
matchings, but this changes the mixing time significantly.

Question 1.1 Can one take the set of generators Sn to be of constant size? (Certainly,
not with transpositions but with general subsets of Sn , or with other groups). If not, can
one take ∣Sn ∣ to diverge arbitrarily slowly as a function of ∣Gn ∣? Is there a relation between
the degree of the graph and the maximal amount of distortion of the mixing time which
is possible?

A related question is the following.

Question 1.2 Does the aforementioned question of Benjamini have an affirmative
answer for bounded degree Cayley graphs?

Here are two questions about the sharpness of our log log log term.

Question 1.3 Does there exist a sequence of finite groups Gn of diverging sizes, and
sequences of generators Sn ⊂ S′n ⊆ S i

n for some i ∈ N (independent of n) for all n, such
that ∣S′n ∣ ≲ ∣Sn ∣ and

tmix(Gn , S′n) ≳ tmix(Gn , Sn) log ∣Gn ∣?(1.7)

Question 1.4 Can one have in the setup of Theorem 1.3

min
x∈Vn

tmix(Gn , Wn , x) ≳ tmix(Gn) log ∣Vn ∣?(1.8)

The opposite inequalities to (1.7) and (1.8) hold since the spectral gap is a quasi
isometry invariant (see Section 2.1) and on the other hand determines the mixing time
of a random walk on an n-vertex graph up to a factor 2 log n (see, e.g., [33, Section
12.2]).

Our last question pertains to Theorem 2.5. It is inspired by a question of Itai
Benjamini on the Liouville property in the infinite setting.
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Question 1.5 Let G = (V , E) be a finite connected vertex-transitive graph. Is the
uniform (or L2) mixing time robust under bounded perturbations of the edge weights?
(certainly, this is open only when the perturbation does not respect the transitivity).
Likewise, does there exist some C(a, b, d) > 0 (independent of G) such that if the degree
of G is d and G is (a, b)-quasi-isometric to G′ (which, again, need not be vertex-
transitive), then the uniform mixing times of the SRWs on the two graphs can vary by at
most a C(a, b, d) factor?

We end the introduction with a few cases for which the mixing time is known to be
robust. Robustness of the TV and L∞ mixing times for all reversible Markov chains
under changes to the holding probabilities (i.e., under changing the weight of each
loop by at most a constant factor) was established in [41] by Peres and Sousi and in
[28] by Hermon and Peres. Boczkowski, Peres, and Sousi [9] constructed an example
demonstrating that this may fail without reversibility. Robustness of the TV and L∞
mixing times for general (weighted) trees under bounded perturbations of the edge
weights was established in [41] by Peres and Sousi and in [28] by Hermon and Peres.
Robustness of TV mixing times for general trees under quasi-isometries (where one
of the graphs need not be a tree, but is “tree-like” in that it is quasi-isometric to a tree)
was established in [1] by Addario-Berry and Roberts.

In many cases, known robust quantities provide upper and lower bounds on the
mixing time which are matching up to a constant factor. For example, in the torus
{1, . . . , �}d with nearest neighbor lattice edges, the mixing time is bounded above by
the isoperimetric profile bound on the mixing time [39] and below by the inverse of the
spectral gap. For a fixed d , both bounds are Θ(�2). As both quantities are robust, we get
that any graph quasi-isometric to the torus would have mixing time Θ(�2), as in the
torus. In fact, the same holds for bounded degree Cayley graphs of moderate growth
(see, e.g., [29, Section 7]). Moderate growth is a technical condition, due to Diaconis
and Saloff-Coste [15], who determined the order of the mixing time and the spectral
gap for such Cayley graphs. Breuillard and Tointon [11] showed that for Cayley graphs
of bounded degree this condition is equivalent in some precise quantitative sense to
the condition that the diameter is at least polynomial in the size of the group.

Lastly, in a recent work [36], R. Lyons and White showed that for finite Coxeter
systems increasing the rates of one or more generators does not increase the Lp
distance between the distribution of the walk at a given time t and the uniform
distribution for any p ∈ [1,∞]. Since multiplying all rates by exactly a factor C changes
the mixing time by exactly a factor 1/C, this implies that the mixing time is robust
under bounded permutations of the rates of the generators.

1.7 Notation

We denote [n] = {1, . . . , n}. We denote by Pv probabilities of random walk starting
from v, which should be a vertex of the relevant graph. We denote by c and C arbitrary
positive universal constants which may change from place to place. We will use c for
constants which are small enough and C for constants which are large enough. We
will occasionally number them for clarity. We denote X ≲ Y for X ≤ CY and X ≍ Y for
X ≲ Y and Y ≲ X. We denote X ≪ Y for X = o(Y). Throughout, we do not distinguish
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between a graph G and its set of vertices, denoting the latter by G as well. The set of
edges of G will be denoted by E(G).

2 Preliminaries

Definition 2.1 Let Γ be a finitely generated group, and let S be a finite set of generators
satisfying s ∈ S ⇐⇒ s−1 ∈ S. We define the Cayley graph of Γ with respect to S,
denoted by Cay(Γ, S), as the graph whose vertex set is G and whose edges are

{(g , gs) ∶ g ∈ Γ, s ∈ S}.

Definition 2.2 Let G be a weighted graph, and let (r(e)e∈E(G)) be the weights. The
interchange process on G is a continuous-time process in which particles are put on
all vertices, all different. Each edge e of G is associated with a Poisson clock which
rings at rate r(e). When the clock rings, the two particles at the two vertices of e are
exchanged.

The interchange process is always well defined for finite graphs (which is what we
are interested in here). For infinite graphs, there are some mild conditions on the
degrees and on r for it to be well defined. The interchange process on a graph G of size
n is equivalent to a random walk in continuous time Xt on Sn with the generators S
of Sn being all transpositions (x y) (in cycle notation) for all (x y) which are edges of
G. The rate of the transposition (x y) is r(x y). The position of the ith particle at time
t is then X−1

t (i), where the inverse is as permutations.

2.1 Comparison of Dirichlet forms

Recall the condition (1.5) for comparison of Dirichlet forms. When it holds it implies
a comparison of the eigenvalues: If 0 = λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λn and 0 = λ′1 ≤ λ′2 ≤ ⋅ ⋅ ⋅ ≤ λ′n
are the eigenvalues of I − P and I − P′, respectively, then under (1.5) (see, e.g., [3,
Corollary 8.4] or [8, Corollary 4.1]),

Aλ i ≤ λ′i ≤ λ i/A for all i .(2.1)

The same inequality holds for the eigenvalues of the Markov generators −L and −L′
in continuous time (that is, L(x , y) = r(x y) for x ≠ y and L(x , x) = −∑y∶ y≠x r(x y),
where r(x y) is the rate of the edge (x y) and with the convention that r(x y) = 0 if
x y ∉ E). The proof is the same as in the discrete case (see, again, [8, Corollary 4.1]).
The quantity λ2 is called the spectral gap. It follows that it is robust.

2.2 Mixing times

We now define the relevant notions of mixing: total variation, L2 and uniform. We
start with the total variation mixing time which is the topic of this paper, and which
we will simply call the mixing time.
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Definition 2.3 Let Xt be a Markov chain on a finite state space (in continuous
or discrete time) with stationary measure π, and denote the probability that Xt = y
conditioned on X0 = x by Pt(x , y). Then the mixing time is defined by

tmix =max
x

inf{t ≥ 0 ∶ ∣∣Pt(x , ⋅ ) − π∣∣TV ≤ 1
4}.

In discrete time, we often assume that Xt is lazy, i.e., that at each step, P(Xt+1 =
Xt) ≥ 1

2 , and we will not state this explicitly. In particular, the mixing time in Theorem
1.1 is for the lazy chain. (Without laziness issues of bipartiteness and near bipartiteness
pop up, which have little theoretical or practical interest; see, e.g., [6, Remark 1.9] and
[27, 41].)

The other notions we are interested in are the L2 and uniform mixing time and the
average L2 mixing time. Here are the relevant definitions.

Definition 2.4 Let Xt , π and Pt(x , y) be as above. Then the L2 mixing time, the L∞
(or uniform) mixing time and the average L2 mixing time are, respectively,

t(2)mix ∶=min{t ∶ max
x
∥Px(Xt = ⋅) − π∥2,π ≤ 1/2},

tunif
mix ∶=min{t ∶ max

x , y
∣Px(Xt = y)

π(y) − 1∣ ≤ 1/4} ,

tave
mix ∶=min{t ∶ ∑

x
π(x)∥Px(Xt = ⋅) − π∥2

2,π ≤ 1/4} .

Here and below,

∥μ − π∥2
2,π ∶= ∑

x
π(x)( μ(x)

π(x) − 1)
2

= −1 +∑
x

μ(x)2

π(x) .

The constants 1
2 and 1

4 do not play an important role and were chosen for
convenience. We remark that in the reversible setting the L2 and the L∞ mixing times
satisfy tunif

mix = 2t(2)mix, while even without reversibility tunif
mix ≤ 2t(2)mix. See [20, Equation

(2.2)] and [38, Equation (8.5)] for a proof in continuous time. The proof in discrete
time is similar.

In the remainder of this section, we show the following.

Theorem 2.5 The average L2 mixing time is robust for reversible Markov chains in
continuous time.

An immediate corollary is that the (usual, not averaged) L2 mixing time is robust
in the transitive setup, under perturbations that preserve transitivity (in the discrete
time case assuming the holding probabilities are bounded away from 0). By the remark
above, the same holds for the uniform mixing time. Theorem 2.5 is not needed for the
proofs of our main results. We added it for the sake of completeness. The proof is
similar to the one in [42].

Proof Let L be the Markov generator, and let 0 = λ1 < λ2 ≤ ⋅ ⋅ ⋅ ≤ λn be the eigen-
values of −L. Denote Pt = e tL. Then,
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∥Px(Xt = ⋅) − π∥2
2,π + 1 = ∑

y

Px(Xt = y)2

π(y)
(∗)= ∑

y

Px(Xt = y)Py(Xt = x)
π(x) = Px(X2t = x)

π(x) ,(2.2)

where in (∗) we used reversibility.
Hence,

∑
x

π(x)∥Px(Xt = ⋅) − π∥2
2,π = −1 +∑

x
Px(X2t = x)

= Tr(P2t) − 1 =
n
∑
i=2

exp(−2λ i t).(2.3)

Recalling the definition of the average L2 mixing time, we get

tave
mix = inf {t ∶ ∑

x
Px[X2t = x] ≤ 5/4}

= inf {t ∶
n
∑
i=2

exp(−2λ i t) ≤ 1/4} .(2.4)

Using (2.1) concludes the proof. ∎
Remark 2.6 The same calculations can be done in discrete time, leading to analogs
of (2.3) and (2.4):∑x π(x)∥Px(Xt = ⋅) − π∥2

2,π = ∑n
i=2 β2t

i and so

tave
mix = inf {t ∈ N ∶

n
∑
i=2

β2t
i ≤ 1/4} ,

where 1 = β1 > β2 ≥ ⋅ ⋅ ⋅ ≥ βn > −1 are the eigenvalues of the transition matrix P
(assuming P is irreducible and aperiodic). This would allow to conclude a similar result
in discrete time if it weren’t for values of β i close to either 0 or −1. Both problems can
be resolved by adding laziness, but in the interest of brevity, we skip the details.

2.3 Geometric notions

Recall from Section 1.5, the definition of (a, b)-quasi-isometry for metric spaces, and
that when we say that graphs are (a, b)-quasi-isometric, we are treating them as metric
spaces with the graph distance as the metric.

Definition 2.7 Consider a reversible Markov chain on a finite state space Ω with
transition matrix P (in continuous time, with generatorL) and stationary distribution
π. We define the Cheeger constant of the chain as

Φ ∶= min
A∶ 0<π(A)≤1/2

Q(A, Ac)/π(A), where

Q(A, Ac) ∶=
⎧⎪⎪⎨⎪⎪⎩

∑x∈A, y∉A π(x)P(x , y), in discrete time,
∑x∈A, y∉A π(x)L(x , y), in continuous time.

We will also need a version for a subset of the graph (this is the discrete analog of
Dirichlet boundary conditions).
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Definition 2.8 Let Ω, P, L and π be as above. Let A ⊊ Ω. We define Φ(A) ∶=
minB⊂A Q(B, Bc)/π(B).

Further, we define λ(A) to be the smallest eigenvalue of the substochastic matrix
obtained by restricting I − P (resp. −L) to A.

The following discrete version of Cheeger’s inequality under Dirichlet boundary
conditions is well known (see, e.g., [20, (1.4) and Lemma 2.4]. For every irreducible
discrete- or continuous-time reversible chain, and every set A with π(A) ≤ 1/2, we
have that

Φ2(A)/4 ≤ λ(A) ≤ Φ(A), Φ2(A)
4 maxa∈A ∣L(a, a)∣ ≤ λ(A) ≤ Φ(A)(2.5)

in discrete and continuous time, respectively.

Lemma 2.9 Let G be a finite graph, v a vertex of G and A1 , . . . , Ak the components
of G/{v}, i.e., of G after removal of the vertex v and all adjoining edges. Let w i ∈ A i be
vertices. Then the probability that random walk starting from v hits {w1 , . . . , wk} at w i
is proportional to the effective conductance from v to w i .

For a gentle introduction to electrical networks, see [18].

Proof Denote by Tw i the hitting time of w i and by TW the hitting time of the set
{w1 , . . . , wk}. If the walker returns to v before TW , the process begins afresh, so it is
enough to consider only the last excursion from v. In other words, the probabilities are
proportional to the conditioned probabilities Pv(Tw i = TW ∣TW < Tv) (we define Tv
to be the return time to v). Since each w i is in a different component of G/{v}, these
conditional probabilities are proportional to Pv(Tw i < Tv). These are proportional to
the effective conductance (see [35, Exercise 2.47]). ∎

Let G1 ∶= (V1 , E1) be some graph. Let G2 = (V2 , E2) be a graph obtained from G1
by “stretching” some of the edges of G1 by a factor of at most K (we say that G2 is a
K-stretch of G1). That is, for some E ⊂ E1, we replace each edge uv ∈ E by a path of
length at most K (whose endpoints are still denoted by u and v). Note that V1 ⊂ V2.
The identity map is a (K , 0)-quasi-isometry of G1 and G2.

Lemma 2.10 There exists a constant cd > 0 (depending only on d) such that if H is a
simple graph of maximal degree d and G is a K-stretch of H, then

Φ(G) ≥ cd Φ(H)/K ,(2.6)

where Φ(G) and Φ(H) are the Cheeger constants of G and H, respectively.

This is well known and easy to see (see, e.g., [24, Proposition 2.3] for a proof). We
finish this section with a simple lemma on stretched trees.

Lemma 2.11 Let T be a finite binary tree of height �, let f ∶ {1, . . . , �} → N be non-
increasing, and let G be the graph one gets by stretching each edge between levels h − 1
and h of T to a path of length f (h). Then, for every v in level h of T, we have

PG(random walk starting from v hits the root before hitting level �) ≤ 2−h .
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Proof The symmetry of the problem allows us to identify all the vertices in each level
of T (before stretching). Consider the probability that random walk starting from v
hits level � before hitting the root. After the identification, we have the following.
• Level � is just one vertex (which we also denote by �).
• Removing the vertex corresponding to level h (which we also denote by v) discon-

nects the root from �.
Hence, Lemma 2.9 may be used. Suppressing the dependence on �, denote the resis-
tances from the root and from v to � by R1 and R2, respectively. Then the probability
to hit the root before hitting � is R2/R1. These resistances can be computed directly
using parallel-series laws. Indeed, the resistance of f (i) edges in a series is f (i) and
the resistance of 2i parallel connections of this kind between i and i + 1 is 2−i f (i). All
in all, we get

R1 =
�

∑
i=1

f (i)
2i ≥

�

∑
i=1

f (i + h)
2i ≥

�−h
∑
i=1

f (i + h)
2i = 2h R2 ,

where the first inequality follows because f is non-increasing. The assertion of lemma
follows. ∎

2.4 A tail estimate for hitting times

Recall that the hitting time of a set D is defined as TD ∶= inf{t ≥ 0 ∶ Xt ∈ D}. Denote π
conditioned on A by πA, i.e., πA(a) = 1{a ∈ A} π(a)

π(A) . Using the spectral decomposi-
tion of PA (the restriction of the transition matrix P to the set A) with respect to the
inner product ⟨ f , g⟩πA ∶= ∑a πA(a) f (a)g(a), we get (see, e.g., [3, Chapter 3] or [6,
Lemma 3.8]),

min
x , y∈A

π(x)
∣A∣π(y) ∑a∈A

Pa[TAc > t] ≤ PπA[TAc > t] ≤ e−λ(A)t(2.7)

in discrete or continuous time.

3 Proof of Theorems 1.1 and 1.2

Throughout this section, we consider the interchange process on a graph G in con-
tinuous time in which all edges ring at rate 1 (Theorems 1.1 and 1.2 are formulated in
discrete time, but translating the mixing time from continuous time to discrete time is
simple and we explain this for Theorem 1.1 at the end of its proof, the explanation there
holds for Theorem 1.2 equally). Since the claims of both theorems are asymptotic, we
may and will assume that n is sufficiently large.

Let us start the proof by recalling elements of the construction already discussed
in the proof sketch in Section 1.3 and in other places in the introduction. We need to
find a set of transpositions Sn ⊂Sn such that tmix(Cay(Sn , Sn)) is small compared to
either tmix(Cay(Sn , S′n)) for a second set of transpositions S′n such that Sn ⊆ S′n ⊆ S3

n
(in Theorem 1.1) or to tmix(Cay(Sn , Sn , Wn)) for some weights Wn (in Theorem 1.2).
We describe our set of transpositions using a graph G on n vertices, whose edges are
the transpositions. The construction has two parameters, u ∈ N and ε ∈ (0, 1

2 ) (both
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will be chosen later). We designate u parts of G and call them H1 , . . . , Hu (we will use
H i to denote both a subset of [n] and the induced subgraph, and we will now describe
them as graphs, thus describing also a part of G). The H i are constructed inductively
as follows. The induction base, H1 is a binary tree of depth u whose edges have been
replaced by paths of length 2u . To define H i+1 given H i we label, in each vertex of each
of the trees used to construct H i one child as “left” and the other as “right.” We denote,
for each leaf v of H i , the number of left children on the path from the root to v by g(v).
Recall the definition of the bad leaves B i ,

B i ∶= {x leaf of H i ∶ g(x) > (
1
2
+ ε)s i}(3.1)

from (1.4). We define H i+1 as a forest of ∣B i ∣ binary trees of depth s i+1, with each edge
replaced by a path of length �i+1, with

s i ∶= 4i−1u �i ∶= 2u+1−i

and each tree rooted at a point of B i (so H i+1 ∩H i = B i as sets). This terminates the
description of the H i . All this, we remind, was already discussed in Section 1.3 with
some additional explanations and motivation (and a figure depicting the gadget⋃H i
on page 30).

We now claim that, uniformly in ε,

24u−1 u ≤ ∣
u
⋃
i=1

H i ∣ ≤ 24u u .

Indeed, the first inequality is clear because Hu has at least one root (since ε < 1
2 ) and

the second inequality comes from

∣H i ∣ ≤ �i 2s i+1∣B i−1∣ ≤ 2u+2−i+4i−1 u
i−1
∏
j=1

24 j−1 u ≤ 2u+2−i+4i−1 u(1+1/3) ≤ 23⋅4i−1 u ,

which can be summed readily to give

i
∑
j=1
∣H j ∣ ≤ 24i u ,(3.2)

and in particular, the case i = u is what we need. Hence, we may choose some u = un
such that u4u ≍ log n (in particular, u ≍ log log n) such that

u
∑
i=1
∣H i ∣ ≤ n1/4 ,(3.3)

regardless of ε (we need here n ≥ 65,536 to have 24u u ≤ n1/4 for u = 1). Fix such a u for
the rest of the proof.

The subgraph ⋃H i is the “gadget,” and the rest of the graph G is a complete graph
on a set of vertices K. The gadget connects to the complete graph via the good leaves
of the H i (and all the leaves of the last one, Hu) so we define K to also include those
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vertices. Thus, we define

K ∶= ([n]/
u
⋃
i=1

H i) ∪ (
u−1
⋃
i=1
({leaves of H i}/B i)) ∪ {leaves of Hu}.

Let the edges of G be all the edges of all the H i union with a complete graph on K, i.e.,

E(G) ∶= (
u
⋃
i=1

E(H i)) ∪ {{x , y} ∶ x , y ∈ K}.

This finishes the construction of G (except for the choice of ε), and hence of Sn . We
delay the definitions of S′n and Wn to Section 3.3.

Below, when we want to emphasize the dependence on u and ε, we will write
Gn(u, ε) for G and Sn(u, ε) for Sn . We will also denote Gn(ε) ∶= Gn(un , ε) and
Sn(ε) ∶= Sn(un , ε) (recall that un is the value we fixed above such that un4un ≍ log n).

3.1 An upper bound for the time to exit the gadget

Throughout the proofs, we will pick the parameter ε so that ε > u−1/3.

Lemma 3.1 The expected exit time from H i , starting from a worst initial state in H i
(i.e., the one maximizing this expectation), denoted by L i , satisfies (uniformly in i)

L i ≍ �2
i s i = u4u =∶ L.(3.4)

As this lemma is standard, we only sketch its proof.

Proof sketch Examine the random walk X on H i , and let σ0 , σ1 , . . . be the times
when it reaches a vertex of degree 3 (we require also Xσ i+1 ≠ Xσ i ). Between σi and
σi+1, the walk is in a part of the graph which is simply three paths of length �i . By
symmetry, it reaches each of the 3 ends of these lines with equal probability. Hence,
Xσ i is identical to a random walk on a binary tree of depth s i . The distance of random
walk on a binary tree from the root has the same distribution as a random walk on N

with a drift toward infinity, and hence, a simple calculation shows that the expected
exit time is Cs i . To get back to random walk on H i , we note that, even if we condition
on Xσ0 , Xσ1 , . . . , then the local symmetry says that the times σi+1 − σi are independent
of Xσ i and of one another. For each i, we have E(σi+1 − σi) ≍ �2

i , because this is the
same as the exit time from the interval {0, . . . , �i}, where the walk exits 0 at rate 3
(and the other vertices at rate 2), again by the symmetry. ∎

Below, we employ the notation L = u4u from the above lemma. Let TK ∶= inf{t ∶
Xt ∈ K} be the hitting time of the complete graph K. Recall that we have fixed a choice
of u = un satisfying that u4u ≍ log n.

Proposition 3.2 There exist some constants C and c′ such that, for every ε and n, we
have that the graph Gn(ε) satisfies for all i ∈ [u] that

∑
v∈H i

Pv[TK >
CL
ε4 ] ≤ C 1

∣H i ∣c′ε2 .(3.5)
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Consequently, if E is the event that, for all i ∈ [u], all particles whose initial location is in
H i hit the complete graph K before time CL/ε4, then limn→∞ P(E) = 1, uniformly in ε.

We recall our standing assumptions that n is sufficiently large and that ε > u−1/3
n (in

particular, “uniformly in ε” above means “uniformly in ε ∈ (u1/3 , 1
2 )”). Let us remark

that the ε4 term is not optimal, but this is not a priority for us.

Proof of Proposition 3.2 The assertion of the last sentence of the proposition follows
from (3.5) by a union bound over the particles (recall that in the interchange process,
each particle is performing a random walk). We also need here our assumption that
ε > u−1/3, as it gives∑u

i=1 1/∣H i ∣cε2 = o(1), since ∣H i ∣ ≥ 2s i = 24i−1 u .
Thus, we need to verify (3.5). Let m = m(ε) ≥ 1 be some integer parameter to be

fixed later. Let

ρ i(t) ∶= ∑
v∈H i

Pv[min{T[n]/Wi , TK} > t], Wi =Wi(m) ∶= ⋃
j∈[i−m , i+m]∩[u]

H j ,

where T[n]/Wi is the hitting time of [n]/Wi (or the exit time of Wi , if you prefer). The
proof of Proposition 3.2 is concluded by combining the following two lemmas. Indeed,
let m be the minimal value which satisfies the requirement of Lemma 3.4, so 4m ≍ ε−2.
We use the same value of m in Lemma 3.3 and get that for t > CL/ε4 we have (3.6).
Combining this with (3.7) gives the proposition. ∎

Lemma 3.3 For all i ∈ [u] and all t ≥ C116m L for some C1 sufficiently large,

ρ i(t) ≤
1
∣H i ∣2

.(3.6)

(As usual, C1 is an absolute constant. In particular, it depends on neither i nor t.)

Lemma 3.4 There exist absolute constants C, c > 0 such that for all ε ∈ (0, 1/2), if
4m ε2 ≥ C, then, for all n ≥ N0, the graph G(n, u, ε) satisfies for every i ∈ [u] that

∑
v∈H i

Pv[T[n]/Wi < TK] ≤
C

∣H i ∣cε2 .(3.7)

Proof of Lemma 3.3 Let M be the restriction of the Markov generator L to Wi/K
(i.e., this is the generator of the chain killed upon exiting Wi/K). Let λ be the smallest
eigenvalue of −M. It will be convenient to extend the definition �i = 2u+1−i also to
negative i. We now claim that

λ ≳ �−2
i−m .(3.8)

To see this, let W be an arbitrary connected component of Wi . We first apply Lemma
2.10 to W. Since it is a piece of an infinite binary tree with edges stretched to various
extents, but not more than �i−m , and since the infinite tree has positive Cheeger
constant, we get that the Cheeger constant of W is at least �−1

i−m . Applying Cheeger’s
inequality (2.5) to W/K embedded in an infinite, stretched tree shows (3.8).
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Using this, we get that

ρ i(t)
(2.7)
≤ ∣Wi ∣ exp(−λt)

(3.8,3.2)
≤ 24i+m u exp(−c�−2

i−m t)
(∗)
≤ 24i+m u exp(−c4i−u−m−1 ⋅ C116m ⋅ u4u)

(3.2)
≤ 1
∣H i ∣2

,
(3.9)

where the inequality marked (∗) follows from the definitions of �i and L (recall that
L = u4u) and from the bound on t in the statement of the lemma. In the last inequality,
we also use that C1 is sufficiently large. ∎

Proof of Lemma 3.4 We divide the event T[n]/Wi < TK into two cases: that the
random walk hits H i+m+1 before hitting K, and that it hits H i−m−1 before hitting K.
Denote these two events by U and D, respectively (notice that if i ≥ u −m then U

is empty and if i ≤ m + 1 then D is empty). The letters U and D stand for “up” and
“down,” with the orientation being as in Figure 1 (page 30).

We first handle U. For U to happen there must be some time σ < TK such that
Xσ ∈ B i+m−1 ⊂ H i+m and, further, the walker is contained in H i+m between time σ
and the first hitting time to the set of leaves of H i+m which (on the event U) occurs
at B i+m . Assume such a σ exists and examine the walker between σ and TB i+m . The
walker is not simple (because being after σ conditions it to not return to the roots of
H i+m) but this is not important for us. The symmetry of the tree implies that at the first
time after σ that the walker visits a leaf of H i+m , the difference between the number
of left and right turns along the path the walker takes is distributed like a sum of i.i.d.
±1 variables (giving equal probability to each value). In particular, the probability that
the target leaf is in B i+m is

P(Bin(s i+m , 1
2 ) > (

1
2 + ε)s i+m) ≤ exp(−cε2s i+m).

Our assumption that a time σ exists only reduces the probability further so we get, for
every v ∈ H i , that Pv(U) ≤ exp(−cε2s i+m). Summing over v gives

∑
v∈H i

Pv(U) ≤ ∣H i ∣ exp(−cε2s i+m)
(3.2)
≤ 24i u exp(−cε24i+mu),

and we see that if m satisfies 4m ≥ 2/cε2 then this sum is smaller than, say, 1/∣H i ∣2.
Require m to satisfy that, but do not fix its value yet (there will be a similar requirement
below).

We move to the estimate of D. We use Lemma 2.11 and get that for any v in level
h of H i (we are counting levels before stretching here) or in the path between level h
and h + 1, we have

Pv(D) ≤ 2−h−∑i−1
j=i−m s j .

(Note that Lemma 2.11 measures a larger event. Indeed, D is the event to hit the root
of our tree before hitting level i +m or K, so it is smaller than the event to hit the root
before i +m, which is what is measured by Lemma 2.11.) The number of vertices at
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level h, or in a path between level h and h + 1, is ∣B i−1∣ ⋅ 2h ⋅ �i , so we get

∑
v∈H i

Pv(D) ≤
s i−1
∑
h=0
∣B i−1∣2h�i ⋅ 2−h−∑i−1

j=i−m s j = s i�i
∣B i−1∣

2∑
i−1
j=i−m s j

.(3.10)

Denote p j ∶= P(Bin(s j , 1
2 ) > (

1
2 + ε)s j). Then ∣B j ∣ ≤ ∣B j−1∣2s j p j and further p j ≤

exp (−cε2s j). Iterating this gives

∣B i−1∣ ≤ ∣B i−m−1∣2∑
i−1
j=i−m s j

i−1
∏
j=1

p j ≤ ∣B i−m−1∣2∑
i−1
j=i−m s j exp (−cε2s i−1) .

Substituting this in (3.10) gives

∑
v∈H i

Pv(D) ≤ s i�i ∣B i−m−1∣ exp(−cε2s i−1)
(3.2)
≤ s i�i 24i−m−1 u exp(−cε2s i−1).

We see that taking m so that 4m ε2 is sufficiently large makes the term 24i−m−1 u =
2s i−1 4−m+1

negligible compared to the exponential (recall that s i = 4i−1u). This is the last
requirement from m and we may fix its value. Further, our standing assumption that
ε > u−1/3 means that the s i�i terms are also negligible with respect to exp(−cε2s i−1).
Hence

∑
v∈H i

Pv(D) ≲ exp(−c′ε2s i−1),

as needed. The lemma is thus proved, and so is Proposition 3.2. ∎
Having established in Proposition 3.2 that the walker hits K, we now show that it

remains there for a considerable amount of time.

Lemma 3.5 Let t ∶= C1L/ε4 for some C1 sufficiently large. For every x ∈ [n], let N(x)
be the amount of time a walker starting from x spends in K up to time t. Then

P [∃x ∈ [n] s.t. N(x) < 2
3 t] → 0

as n →∞, uniformly in ε > u−1/3 (but not necessarily in C1).

Proof Let q = C2L/ε4, where C2 is the constant from Proposition 3.2, denoted there
by C. Apply Proposition 3.2 after some arbitrary time s. We get that during the interval
[s, s + q], the probability that all particles in [n]/K hit K is at least

1 − C
u
∑
i=1

1
∣H i ∣cε2 > 1 − C2−u/4 .

Hence, for any fixed value of C1, we can apply this for s = 0, q, 2q, . . . , q(⌊t/q⌋ − 1)
(just a constant number of times, in fact ⌊C1/C2⌋) and get that with probability going
to 1, all events happen simultaneously. In other words, no particle spent more than 2q
consecutive time units in any visit of [n]/K.

Let us now bound the number of possible visits. We will show that a.a.s. as n →∞
no particle makes more than one visit to [n]/K by time t after reaching K for the
first time. For this purpose, denote ∂K to be all points of K with a neighbor in [n]/K
(namely, leaves of H i which are not in B i for i < u and all leaves of Hu).
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Suppose a particle is at time 0 at some x ∈ K. Let us first bound the number of jumps
it does up to time t. Since the degrees of our graph are all bounded by ∣K∣, this number
is stochastically dominated by an appropriate Poisson variable, and in particular, the
probability that the particle performed more than 2t∣K∣ jumps is o(1/n). Adding the
restriction that the jump would be to a vertex of K only reduces the number further,
so we get the same bound for the number of jumps to vertices of K.

Among the first 2t∣K∣ jumps to vertices of K, the number of jumps to ∂K is
stochastically dominated by Bin(2t∣K∣, ∣∂K∣

∣K∣−1). Hence, the probability that more than
4t∣∂K∣ of them are to ∂K is o(1/n) (where we used that ∣∂K∣ ≳ nc , which follows from
our choice of u).

Examine now the first 4t∣∂K∣ + 2 visits to ∂K (not necessarily up to time t, all of
them). The probability that at least two of the following jumps were away from K
is at most (4t∣∂K∣ + 2)2/∣K∣2 = o(1/n), where we used the fact that by (3.3) ∣∂K∣ ≤
n1/4 and ∣K∣ ≥ n − n1/4, as well as t ≲ log2 n (recall that L ≍ log n and ε > u−1/3 ≍
(log log n)−1/3). In the case that indeed no more than 1 of these jumps went to [n]/K,
we get that the first 4t∣∂K∣ + 2 visits to ∂K include all the visits to ∂K up to time t: no
more than 4t∣∂K∣ visits from K and no more than 2 visits from [n]/K (the first hitting
of K and the first return to K).

Combining everything together, we see that after first reaching K (which a.a.s. all
particles do by time q) a.a.s. all particles leave K at most once by time t and during
such excursion they each spend at most 2q time units away from K. Taking C1 to be
large enough in terms of C2 concludes the proof. ∎

3.2 The coupling

Denote the transposition (x , y) by τx y . Consider two initial configurations σ and
σ ′ of the interchange process. We now define a coupling ((σt)t≥0 , (σ ′t)t≥0) of the
interchange processes starting from these initial states. We make the edges ring at
rate 2, but when an edge rings, it is ignored with probability 1/2. We use the same
clocks for both systems. If, at time t, an edge e = x y rings and σt−(x) = σ ′t−(y)
(where σt−(x) ∶= limδ→0+ σt−δ(x), as usual) or σt−(y) = σ ′t−(x), then with probability
1/2, we set σt = σt− ○ τe and σ ′t = σ ′t−; and with probability 1/2, we set σt = σt− and
σ ′t = σ ′t− ○ τe (either way, the number of disagreements decreases). If σt−(x) ≠ σ ′t−(y)
and σt−(y) ≠ σ ′t−(x), then with probability 1/2, we set σt = σt− ○ τe and σ ′t = σ ′t− ○ τe ;
and with probability 1/2, we set σt = σt− and σ ′t = σ ′t−.

We see that for all i once the particle labeled i is coupled in the two systems, it
remains coupled. That is, if σ−1

t (i) = (σ ′t)−1(i), then, for t′ > t, we also have σ−1
t′ (i) =

(σ ′t′)−1(i). Whenever the position of particle i is adjacent in one system is adjacent to
the current position of particle i in the other system (i.e., σ−1

t (i)(σ ′t)−1(i) ∈ En), the
infinitesimal rate in which they are coupled is 2.

Lemma 3.6 There exists a C such that

tmix(Cay(Sn , Sn(ε, un))) ≤
Cun4un

ε4 ,

under our usual assumption that ε > u−1/3
n .
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Proof Lemma 3.5 shows that a.a.s. indeed all particles in one system spend at least
2
3 of the time in K by time C1L/ε4 for any C1 sufficiently large. By a union bound,
this applies to both systems in the above coupling. On this event (occurring for both
systems), for each i , the particle labeled i has to spend at least 1/3 of the time by time
C1L/ε4 in K simultaneously in both systems. Since the particle gets coupled with rate
2 during these times, a standard argument shows that the conditional probability of
particle i not getting coupled is at most

exp(−cC1L/ε4) ≤ exp(−cC1L)
(∗)
≤ n−cC1 ,(3.11)

where the inequality marked by (∗) follows since L = u4u ≍ log n (see just above (3.3)).
If C1 is sufficiently large, this will be≪ 1/n and we may apply a union bound and get
that a.a.s. all particles are coupled by time C1L/ε4. As the initial states σ and σ ′ are
arbitrary, this implies that the mixing time is at most C1L/ε4 (see, e.g., [33, Theorem
5.4]). ∎

3.3 The perturbation

In this section, we analyze the perturbed versions of Sn , lower bound their mixing
time, and thus conclude the proofs of Theorems 1.1 and 1.2. The following convention
will be useful here and in other places in the paper. Thus, we make special note of it

Definition 3.7 We call an edge of H i that belongs to a path that is a stretching of a
left edge (of H′i ) a “left edge.” Similarly for right edges.

Do not be confused with the definition of g. It is still the case that g counts left edges
before stretching, not all left edges of H i .

Proof of Theorem 1.2 Recall that we are given a function 1≪ f (n) ≤ log log log n
and we need to construct generators Sn and weights Wn = (wn(s))s∈S satisfying 1 ≤
wn(s) ≤ 1 + ( f (n!)/ log log n)1/4 such that

tmix(Cay(Sn , Sn , Wn)) ≳ tmix(Cay(Sn , Sn)) f (n!).

Define ε ∶= c1( f (n!)/ log log n)1/4, where c1 is a universal positive constant that will
be fixed soon (but let us already require c1 < 1

4 ). The requirement ε > u−1/3 will be
satisfied for n sufficiently large. We use the set Sn(u, ε) defined above with u = un and
this ε (we remind that un ≍ log log n).

Denote, for any δ > 0, W(δ, n) = (w(s))s∈Sn with

w(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 + δ, s is a left edge,
1, otherwise

(“otherwise” referring to both right edges and to edges of K). We will take δ = ε/c1 in
what follows. The notation W(δ, n) will be reused below in the proof of Theorem 1.1,
but there we will take δ = 3, so let us proceed under the assumption δ ≤ 3, which holds
under the definitions of δ and ε above too.

Recall the notation g(v) for the number of left children in a path from the root
to v (before stretching). Examine first an infinite binary tree where each left child has
weight 1 + δ for some δ > 0, and each right child has weight 1 (denote this object by
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Tδ). Let Yk be the last vertex in the kth level visited by random walk on it. By [26, Fact
4.1(2a)] (proved in the appendix of [26]), g(Yk) has the same distribution as the sum
of k independent {0, 1}-variables taking the value 1 with probability

√
1 + δ

1 +
√

1 + δ
= 1

2
+ δ/8 + O(δ2).

This fact holds also for random walk on Tδ started from either child of the root and
conditioned not to return to the root. The proof in [26] applies to this case verbatim.
Now, if c1 is sufficiently small, then

η ∶=
√

1 + ε/c1

1 +
√

1 + ε/c1
> 1

2
+ 3ε

(recall that δ = ε/c1 is bounded above by 3). Fix c1 to satisfy this property.
Still on the infinite tree Tδ , denote by Y∗k , the vertex where the walker is at on the

first time, it hits level k, in other words, the hitting point. It is straightforward to see
that P(∣g(Y∗k ) − g(Yk)∣ > λ) ≤ 2e−cλ for every λ, where the (nonnegative) constant c
is independent of ε.

Information on Y∗k can already be translated to our graphs H i , because random
walk on H i , when considered only at times when it reaches a vertex before stretching,
is identical to random walk on a piece of Tε/c1 (say, by Lemma 2.9). We get that a
random walk starting from a root of H i and conditioned not to go to H i−1 before
leaving H i (for i = 1, an unconditioned walker) has, when it exits H i that g is
distributed like Bin(s i , η) plus a quantity with a uniform exponential tail (uniform
in both i and the value attained by the Bin(s i , η) random variable).

A similar argument shows that, now on our graphs H i , if Z i is the first vertex, the
walker is in among the roots of H i+1 (which of course is also a leaf of H i ) and Z∗i is
the last vertex, the walker is in H i (say, before hitting the leaves of H i+1 or K for the
first time), then ∣g(Z i) − g(Z∗i )∣ is bounded with an exponential tail (uniformly in i).

We may now finish the proof of the theorem. Indeed, let X be the particle that was
at time 0 at the root of H1. Let T be the time X hits the leaves of H1. We see that, if
λ > 0 is some sufficiently small constant, then

P(T ≥ λu4u) > 1 − Ce−cs1 = 1 − Ce−cu ,

P(g(XT) > ( 1
2 + 2ε)s1) > 1 − Ce−cs1 ε2

> 1 − Ce−cu1/2
,

where the last inequality is due to ε ≳ (log log n)−1/4. In particular, with the same
probability XT is in B1. The same X still has that g > ( 1

2 + ε)s1 when leaving H1 (again
with probability > 1 − Ce−cs1 ε2

), and then hits the leaves of H2 after another at least
λu4u time units, and hits B2, and so on. We get that, at time λu24u , this particle is
still inside the gadget, with probability at least 1 − Cue−cu1/2

. This of course means the
walk on Sn is not yet mixed. Hence

tmix(Cay(Sn , Sn , Wn)) ≳ u24u .
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With Lemma 3.6, we get that

tmix(Cay(Sn , Sn , Wn)) ≳ u24u ≳ tmix(Cay(Sn , Sn)) ⋅ uε4 ≍ tmix(Cay(Sn , Sn)) f (n!)

as claimed (in the last “≍” we used u ≍ log log n). This concludes the proof. ∎

Proof of Theorem 1.1 Recall from the proof sketch Section 1.3 that S′n is created
by adding to each path of Sn that came from stretching a left edge, edges between
even vertices (initially at distance two from one another). The parallel–serial laws
show that the resistance of a path of length 2N to which such edges have been
added is 2

3 N . Examining a walker only at times where it is in vertices that were not
added in the stretching process, we see that its walk is exactly identical to a walk on
Cay(Sn , Sn , W(3, n)), where W(3, n) is from the previous proof. Hence choosing
ε = 3c1, we get, as in the previous proof, tmix(Cay(Sn , S′n)) ≳ u24u .

This almost finishes the proof of Theorem 1.1. The only remaining issue to address
is that Theorem 1.1 is formulated in discrete time, while we worked all along in
continuous time. This is not a problem. Indeed, if P is a transition matrix and I is
the identity matrix, then the total variation mixing time tδ lazy

mix of the δ-lazy chain with
transition matrix δI + (1 − δ)P and that of the continuous-time chain with generator
L = P − I, denoted by tct

mix, satisfy

δ
C(1 − δ)(t

δ lazy
mix − cδ) ≤ tct

mix ≤
C

(1 − δ)(t
δ lazy
mix + cδ)(3.12)

for an absolute constant C > 0 and a constant cδ > 0, independent of the Markov chain.
The case δ = 1/2 follows directly from [33, Theorem 20.3] and the argument extends to
all δ ∈ (0, 1). For much finer relations between the two mixing times in the reversible
setup, see [6, 13, 27].

In our case, we estimated the continuous time mixing time with the rates equal to
1, while the generator L has rates 1/∣Sn ∣ or 1/∣S′n ∣, as the case may be. Multiplying all
the rates by a constant changes the mixing time by the same constant, so we get

tmix(Cay(Sn , Sn))
(3.12)
≲ ∣Sn ∣tct

mix(Cay(Sn , Sn)) ≲ ∣Sn ∣u4u ≍ n2 log n

tmix(Cay(Sn , S′n))
(3.12)
≳ ∣S′n ∣tct

mix(Cay(Sn , Sn , W(3, n))) ≳ ∣S′n ∣u24u ≍ n2 log n log log n.

The theorem is thus proved. ∎

4 Proof of Theorem 1.3

Recall that we wish to construct a sequence of graphs Gn with bounded degrees and
weights with 1 ≤ wn(e) ≤ 1 + o(1) such that the mixing time of Gn is significantly
smaller than the mixing time of the weighted version.

As a building block in our construction, we will need the auxiliary graph described
in the following lemma, whose proof is deferred to Section 4.4.

Lemma 4.1 There exists an absolute constant μ > 0 such that, for every m, there exists
a graph H of maximal degree 6 with ∣H∣ ≍ 210m containing two disjoint sets of vertices B
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and W of sizes ∣B∣ = 2m and ∣W ∣ = 210m such that lazy SRW on H satisfies that

Pb[TB/{b} < TW] ≲ 2−4m ∀b ∈ B,(4.1)

Eh[TB/{h}] ≍ ∣H∣/2m ∀h ∈ H,(4.2)

Ph[TB/{h} > ∣H∣/2m] ≳ 1 ∀h ∈ H,(4.3)

Pb[TW < Tb ∣TW < TB/{b}] ≥ μ ∀b ∈ B.(4.4)

Moreover, the last probability is the same for all b ∈ B. Lastly, for all w ∈W starting from
w the hitting distribution of B uniform.

As usual, TW , TB , etc. are the hitting times of B, W, etc.

4.1 The construction

Let G = Gn((log log n)−1/8), i.e., the graph from the construction of Theorem 1.2 with
the parameter ε from the construction taken to be (log log n)−1/8 (G is the graph on
which the interchange process is performed, so E(G) is a set of transpositions of Sn).
Let m satisfy that 2m−1 < ∣E(G)∣ ≤ 2m . Let H be the graph from Lemma 4.1 with this
m (so ∣H∣ ≍ 210m ≍ n20). Let A ⊆ B (B from the statement of Lemma 4.1) be some
arbitrary set of size ∣E(G)∣, and let τ ∶ A→ E(G) be some arbitrary bijection.

We now construct our graph, which we denote by L. We take the vertex set to
be H ×Sn . We define the edges implicitly by describing the transition probabilities
of the random walk. Let {a, b} ∈ E(H). If a /∈ A, we set P ((a, σ) , (b, σ)) = 1

deg a
for all σ ∈Sn , where deg a is the degree of a in H. If a ∈ A and b ∈ H/A, we
set P ((a, σ) , (b, σ)) = 1

2 deg a , while P ((a, σ) , (a, σ ○ τa)) = 1
2 (recall that τa is the

transposition corresponding to a). No other transitions have positive probability.
Below, we consider the mixing time of the continuous time version of P or the discrete
time mixing time of 1

2 (I + P). We shall denote either mixing time by tmix(L).
This chain (Xt , σt)t≥0 can be described as follows: We have a random walk (Xt)t≥0

on H and an “interchange process” σt on G which evolves in slow motion. Whenever
the walk Xt on H is at some vertex a ∈ A, it either stays put or makes a random walk
step on H. If it stays put in a ∈ A, then it also makes one step of the interchange process,
updating its state to σt ○ τa .

4.2 Analysis of the example

We first define a sequence of random times. Recall the set W from the construction of
H in Lemma 4.1. Let S1 ∶= inf{t ≥ 0 ∶ Xt ∈W} and T1 ∶= inf{t > S1 ∶ Xt ∈ B}. Induc-
tively, set

S i+1 ∶= inf{t > Ti ∶ Xt ∈W} and Ti+1 ∶= inf{t > S i ∶ Xt ∈ B}.

Let J be the event that, for all i ≤ n4 , the walk does not visit B/{XTi} between time Ti
and S i+1. By (4.1), Py(J) > 1 − O(n−4) for all y ∈ L.

Let Z i ∶= XTi and σ̂i ∶= σTi (σt being the second coordinate of the chain (Xt , σt)).
By Lemma 4.1, we have that Z1 , . . . , Zn4 are i.i.d. uniform on B. Under J, the behavior
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of the permutation σ in the time interval [Ti , Ti+1) is quite simple: if Z i ∈ B/A, then
it does not change at all in this interval, and if Z i ∈ A, then it is composed with τZ i

with probability 1
2 for each time t ∈ [Ti , Ti+1) when Xt = Z i . This, together with (4.4)

imply that, still under J, (σ̂i)n4

i=1 evolves precisely like a lazy version of the discrete-
time interchange process on G. The laziness has two sources: the probability to hit
B/A (which gives laziness ∣B/A∣/∣B∣, which is bounded above by 1

2 ), and an additional
laziness coming from the event of applying the transposition τZ i an even number of
times between Ti and S i+1. We use here the fact that the probability in (4.4) is the same
for all a ∈ A. In other words, we have a coupling of σ̂i and lazy interchange on G which
succeeds (i.e., the two processes are the same) with probability 1 − O(n−4).

Let r be the 1
4 total variation mixing time of this lazy discrete-time interchange

process on G. To estimate r, note that by Lemma 3.6, the mixing time of the interchange
process is at most Cu4u ε−4 ≍ log n(log log n)1/2 (recall that u4u ≍ log n). Using (3.12),
we may translate this to the mixing time of the lazy discrete-time interchange process
and get that r ≲ n2 log n(log log n)1/2 (recall that ∣E(G)∣ ≍ n2). In particular, r < n4 for
all sufficiently large n.

Thus, under J, we have that XTr+1 has its first coordinate uniform on B and its
second approximately uniform onSn and independent of the first coordinate. Remov-
ing the requirement that we are on J, the distribution of XTr+1 is still approximately
uniform (in the TV distance) on the same set, simply because P(J) > 1 − Cn−4.

In the language of [34], Tr+1 is an approximate forget time. As we recall below, by
combining results from [2] and [34], this implies that

tmix(L) ≲max
y

Ey(Tr+1)
(4.2)
≍ (r + 2) ∣H∣

2m ≲ n20 log n
√

log log n(4.5)

(we have r + 2 rather than r + 1 in the third expression, to account for the time until
the walk hits B for the first time. This is also why we formulated (4.2) for every h ∈ H
and not just for b ∈ B).

Thus, we need only describe briefly the results of [2] and [34]. In [34], the authors
define the mixing time differently from us (see the definition of H in [34, Section
2.3]). We will adopt their notation and call this quantity H. (We will not define H

here as this would take too much space. The reader can find the definition, together
with many illuminating examples, in [34].) As for the approximate forget time, it is
denoted in [34] by Fε (also in Section 2.3 there). Finally, the result that Fε ≍H is a
combination of Theorems 3.1 and 3.2 in [34].

As for [2], it defines τ1 which is the continuous time mixing time, and τ2 which is
the same as H, and [2, Theorem 5] states that τ1 ≍ τ2 (see also [41] where H is denoted
by tstop). Thus, we get

tmix(L) = τ1 ≍ τ2 =H ≍ Fε ≲max
y

Ey(Tr+1),

which justifies the first inequality of (4.5) and finishes the estimate of tmix(L).
Remark 4.2 An alternative proof that replaces the results of [34] with a coupling
argument is a follows. Using the specific construction of the graph H, the expectation
of the time required in order to couple the H coordinate is at most maxb∈B Eb[TW]
(cf. the coupling for lazy SRW on a finite d-ary tree in [33, Section 5.3.4]). The above
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analysis allows one to then couple the Sn coordinate with the additional amount of
time required having expectation at most Cn20 log n

√
log log n.

4.3 The perturbation

Recall from the previous section, the stopping times Ti and S i , the notation Z i = XTi ,
σ̂i ∶= σTi and the event J. For every a ∈ A such that the edge that corresponds to τa is
a left edge (recall Definition 3.7), we increase the weight of the edges ((a, σ), (a, σ ○
τa)) to 1 + θε for some θ sufficiently large, to be fixed later. Here, ε is as in Section 4.1,
namely, (log log n)−1/8.

To analyze the effect of this perturbation fix i < n4, assume Z i ∈ A, and denote
(a, σ) ∶= (Z i , σ̂i). We need to examine the number of times the walker traversed the
edge ((a, σ), (a, σ ○ τa)) between Ti and S i+1. Denote this number by N. Clearly, if N
is even, then σ̂i+1 = σ and, otherwise, it is σ ○ τa . Let peven be the probability that N is
even. Let q ∶= P[XTi+1 = a ∣ XTi = a]. Let β be the probability that after jumping away
from a the walk returns to a before hitting W. By a first-step analysis,

peven = q(1 − peven) + (1 − q) (1 − β(1 − peven)) .

Solving yields that

peven = 1 − q
1 + q − (1 − q)β .

Conveniently, the perturbation does not affect β, it only affects q, increasing it from 1
2

to q0 ∶= (1 + θε)/(2 + θε). Hence

d
dq

peven = −
1 − β

(1 + q − (1 − q)β)2 .

The last derivative is negative and is bounded away from 0.
It follows from this that the perturbation decreases the probability peven by an

additive term which is Θ(θε). Thus, we see that the effect of this perturbation on the
induced random walk on Cay(Sn , Sn) is to increase the probability that left edges are
taken by Θ(θε). Recall from the proof of Theorem 1.2, the notation W(δ, n) for the
weights on Sn which give added weight δ to the left edges. Denote

δ = q0

1 + q0 − (1 − q)β /
1/2

3/2 − β/2 − 1 = O(θε).

Again, this gives a coupling between σ̂i to a random walk on Cay(Sn , Sn , W(δ, n))
which succeeds with probabilityP(J) = 1 − O(n−4) (the probability of J is not affected
by the perturbation).

The only condition to apply the analysis of Theorem 1.2 is ε/c1 ≤ δ ≤ 3, where c1 is
from the proof of Theorem 1.2. Taking θ sufficiently large will ensure the condition
δ ≥ ε/c1 while the condition δ ≤ 3 holds for n sufficiently large. Fix θ to satisfy this
requirement. Thus, the analysis of the proof of Theorem 1.2 shows that the particle
that was at the root of H1 at time 0 (H1 from the construction of G, and unrelated
to the H from Lemma 4.1) is still in the gadget after r′ ∶= cn2u24u ≍ n2 log n log log n
steps of the induced random walk, for c sufficiently small. Since the coupling between
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Figure 2: The clock graph. The triangles emanating from vertices of B are the trees, the area
above them is the swamp.

σ̂i and the interchange process succeeds with high probability, this shows the same
behavior for σ̂i . This of course means that the random walk on L is not mixed. Using
(4.3), we see that with high probability, by time cr′∣H∣/2m , the induced walk still did
not do r′ steps, so we get

tmix(L, perturbed weights) ≳ cr′∣H∣/n2 ≍ n20 log n log log n

proving Theorem 1.3. ◻

4.4 Proof of Lemma 4.1

Let s ∈N. For 0≤ �≤ s, we denote A� ∶= {uk
i1 , . . . , i� ∶ i1 , . . . , i� ∈ [4], k ∈ [2s−�]} (for � = 0,

this simply means A0 = [2s]). For all � ≤ s − 1, i1 , . . . , i� ∈ [4] and k ∈ [2s−�−1], we
connect both uk

i1 , . . . , i� and uk+2s−�−1

i1 , . . . , i� to uk
i1 , . . . , i� ,1, uk

i1 , . . . , i� ,2, uk
i1 , . . . , i� ,3, and uk

i1 , . . . , i� ,4.
We start the construction of G with 2m binary trees of depth 4m. The set B is taken

to be the collection of the 2m roots. We label the union of the leaves of these trees by
[25m] so that each tree occupies an interval of values and identify it with A0 (with s =
5m, of course). Denote W ∶= A5m . This terminates the construction of the graph from
the statement of Lemma 4.1, denoted by H. The construction is depicted in Figure 2
with the trees depicted as triangles. The area above them, nicknamed “the swamps of
forgetfulness,” is composed of elements as in Figure 2, namely, two vertices below, four
vertices above and all edges between them. These elements have the property that the
particle forgets one bit whenever it traverses such an element, be it in the up or down
direction. When the particle has traversed the swamp fully, it has completely forgotten
its starting point. This construction is borrowed from [25, Section 6.2].

All of (4.1)–(4.4) follow because the distance from the roots behaves like random
walk on N with a drift. Equation (4.1) follows because this requires to get to distance
4m from the roots and then back up. Equations (4.2) and (4.3) follow because with
positive probability the walker hits W and then needs to back up 9m levels. Equation
(4.4) is the easiest of the four, given (4.1).

Lastly, the claim that from every v ∈W , the hitting distribution of B is uniform
follows from the symmetries of the graph. Indeed, let ε1 , . . . , ε5m ∈ {0, 1}, and let φk
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be the map of adding the ε i to the binary digits, namely,

φk(
�−1
∑
i=0

b i 2i) =
�−1
∑
i=0
(b i + ε i mod 2)2i .

Then it is easy to check that the map ψ that takes uk
i1 , . . . , i� to uφ5m−�(k)

i1 , . . . , i� is an automor-
phism of ⋃A� (as a graph). If, in addition, ε1 = ⋯ = ε4m = 0 then this map, restricted
to A0, has the property that if i and j are leaves of the same binary tree, then so are
ψ(i) and ψ( j), and then ψ may be extended to an automorphism of the graph H. By
appropriately choosing ε4m+1 , . . . , ε5m , one may get an automorphism ψ that takes b
to b′ for any two points of B. This shows the uniformity claim.
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