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Abstract

In this paper we shall give characterizations of the closed subsemigroups of a Clifford semigroup. Also,
we shall show that the class of all Clifford semigroups satisfies the strong isomorphism property and so is
globally determined. Thus the results obtained by Kobayashi [‘Semilattices are globally determined’,
Semigroup Forum 29 (1984), 217–222] and by Gould and Iskra [‘Globally determined classes of
semigroups’ Semigroup Forum 28 (1984), 1–11] are generalized.
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1. Introduction and preliminaries

The power semigroup, or global, of a semigroup S is the semigroup P(S ) of all
nonempty subsets of S equipped with the multiplication

AB = {ab : a ∈ A, b ∈ B} for all A, B ∈ P(S ).

A class K of semigroups is said to be globally determined if any two members of K
having isomorphic globals must themselves be isomorphic.

Tamura [18] asked in 1967 whether the class of all semigroups is globally
determined. The question was negatively answered in the class of all semigroups by
Mogiljanskaja [14] in 1973. Crvenković et al. [6] proved that involution semigroups
are not globally determined in 2001. Also, it is known that the following classes are
globally determined: groups [13, 22]; rectangular groups [19]; completely 0-simple
semigroups [20]; finite semigroups [21]; lattices and semilattices [10, 12], finite simple
semigroups and semilattices of torsion groups in which semilattices are finite [8];
completely regular periodic monoid with irreducible identity [9]; ∗-bands [23]; and
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integer semigroups [17]. Also, there are a series of papers in the literature considering
power semigroups and related varieties of semigroups (see [1–3, 15, 16]).

In this paper we shall study the question of global determinism of Clifford
semigroups and show that the class of all Clifford semigroups satisfies the strong
isomorphism property. Recall that a classK of semigroups is said to satisfy the strong
isomorphism property if, for any S , S ′ ∈ K , for every isomorphism ψ from P(S ) to
P(S ′) , ψ|S (the restriction of ψ to S ) is an isomorphism from S to S ′ [12], where S
(respectively, S ′) is considered to be a subset of P(S ) (respectively, S ′) by identifying
an element x of S (respectively, S ′) with the singleton {x}. It is proved by Kobayashi
in [12] that the class of semilattices satisfies the strong isomorphism property.

For a semigroup S , the set of idempotents of a semigroup S will be denoted E(S ),
and for each e ∈ E(S ) the maximal subgroupH-class of S containing e will be denoted
He(S ). A singleton member of P(S ) will frequently be identified with the element it
contains.

The following lemma will be useful to us, which implies that the class of all groups
satisfies the strong isomorphism property.

Lemma 1.1 (Lemma 2.1 in [8]). Let S be a semigroup and e an idempotent element in
S . Then He(P(S )) = He(S ).

Throughout this paper we shall always assume that S =
⋃

(Gα : α ∈ E) and S ′ =⋃
(G′β : β ∈ E′) are both semilattice of groups, that is, Clifford semigroups, where

E, E′ are semilattices and Gα,G′β are groups. Let ψ be an isomorphism from P(S )
onto P(S ′).

For convenience, we give some notation associated with S and S ′:

• We identify the semilattice E (respectively, E′) with the set of idempotents of S
(respectively, S ′), that is to say, E = E(S ) and E′ = E(S ′).

• The notation Ch(E) (respectively, Ch(E′)) denotes the set of all subchains of the
semilattice E (respectively, E′).

In the second section, we shall give the characterizations of the closed
subsemigroups of a Clifford semigroup. Starting from the study of closed
subsemigroups, we shall show in the third section that the restriction ψ|Ch(E) of ψ to
Ch(E) is a mapping from subset Ch(E) of P(S ) onto subset Ch(E′) of P(S ′). In the
last section we shall show that the class of all Clifford semigroups satisfies the strong
isomorphism property and so is globally determined. Thus the results obtained by
Kobayashi in [12] and Theorem 2.2 in [8] are generalized.

A few words on notation and terminology:

• For a set A, |A| denotes the cardinal number (or cardinality) of A.
• For a Clifford semigroup S =

⋃
(Gα : α ∈ E) (respectively, S ′ =

⋃
(G′β : β ∈

E′)) and α ∈ E (respectively, β ∈ E′), eα (respectively, e′β) denotes the identity
element of group Gα (respectively, G′β). Sometimes, we identify eα with α, and
identify e′β with β.
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• For X ∈ P(S ) and α ∈ E, Xα denotes the set X ∩ Gα and supp X the subset
{α ∈ E : Xα , ∅} of E.

For other notations and terminologies not given in this paper, the reader is referred to
the books [4, 5, 11].

2. The closed subsemigroups of a Clifford semigroup

Zhao in [7] and [24] introduced and studied the closed subsemigroups of a
semigroup S . To prove our main results in this paper, we shall give some
characterizations of closed subsemigroups of a Clifford semigroup. Recall that a
subsemigroup C of a semigroup S is said to be closed if

sat, sbt ∈ C ⇒ sabt ∈ C

holds for all a, b ∈ S , s, t ∈ S 1, where S 1 denotes the semigroup obtained from S
by adjoining an identity if necessary. It is easy to see that every subsemilattice of
a semilattice is closed. Let S be a semigroup and A a nonempty subset of S . We
denote by A the closed subsemigroup of S generated by A, that is, the smallest closed
subsemigroup of S containing A. In this section, unless stated otherwise, S always
denotes a Clifford semigroup

⋃
(Gα : α ∈ E).

Lemma 2.1 (Theorem 2.3 in [7]). Let A ∈ P(S ). Then A =
⋃
α∈supp A Gα, where supp A

denotes the (closed) subsemilattice of semilattice E(S ) generated by supp A.

Lemma 2.2. Let A ∈ P(S ) and A2 = A. Then the following statements are equivalent:

(i) aαA = bαA for any α ∈ supp A and any aα, bα ∈ Gα;
(ii) aαAα = bαAα for any α ∈ supp A and any aα, bα ∈ Gα;
(iii) Aα = Gα for any α ∈ supp A.

Proof. (i)⇒ (ii). Suppose that (i) holds. Assume that α ∈ supp A. Then we have that
eαA = cαA ⊆ A for any cα ∈ Aα, where eα denotes the identity element of group Gα,
since A2 = A. Also, it follows that aαAα ⊆ aαA = bαA for any aα, bα ∈ Gα.

Thus for any (but fixed) a ∈ aαAα, there exists dβ ∈ Aβ (β ≥ α) such that a = bαdβ =

bα(eαdβ) ∈ bαAα, since eαdβ ∈ A ∩Gα = Aα. This implies that aαAα ⊆ bαAα. Dually,
we can show that bαAα ⊆ aαAα. Thus (ii) holds, as required.

(ii)⇒ (iii). Suppose that (ii) holds. Assume that α ∈ supp A. Then it follows that
Aα = eαAα = aαAα for any aα ∈ Gα. Also, A2

α ⊆ Aα since A2 = A. This implies that Aα

is a subgroup of group Gα, and so Aα = Gα. We have shown that (iii) holds.
(iii)⇒ (i). Suppose that (iii) holds. Then it follows by Lemma 2 that A is a closed

subsemigroup of S since A2 = A. Also, it is easy to prove that

aαA =
⋃

β∈supp A, β≤α

Gβ = bαA

for any α ∈ supp A and any aα, bα ∈ Gα. We have shown that (i) holds. �
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By Lemma 2.1 and Lemma 2.2, we have the following result.

Theorem 2.3. Let A ∈ P(S ). Then A is a closed subsemigroup of S if and only if A
satisfies the following two conditions:

(i) A2 = A;
(ii) eαA = gαA for any α ∈ supp A and any gα ∈ Gα.

Proposition 2.4. Let A ∈ P(S ). Then S A, AS are both closed subsemigroups of S and
S A = AS =

⋃
γ∈Γ Gγ, where Γ = {γ ∈ E : (∃ α ∈ supp A) γ ≤ α}.

Proof. The proof is routine and is omitted. �

Corollary 2.5. Let A ∈ P(S ) and let eα be the identity element of Gα for any α ∈ E.
Then

eαS = AS ⇒ eαA = A.

Proof. By Proposition 2.4,

supp A ⊆ supp (AS ) = supp (eαS ) = {γ ∈ E : γ ≤ α}.

Thus β ≤ α for any β ∈ supp A, and so eαA = A. �

Lemma 2.6. Let A, B ∈ P(S ). Then supp A · supp B = supp (AB).

Proof. The proof is routine and is omitted. �

Lemma 2.7. Let A, B ∈ P(S ) and AH B. Then supp A = supp B.

Proof. Suppose that A H B for some A, B ∈ P(S ). Then there exist C, D ∈ (P(S ))1

such that A = CB, B = DA. Thus by Lemma 2.6,

supp A = supp C · supp B and supp B = supp D · supp A.

In the following we will show that supp A = supp B.
Suppose that α ∈ supp A. Then there exists β ∈ supp B such that α ≤ β since

supp A = supp C · supp B. Also, β ≤ γ for some γ ∈ supp D since supp B = supp D ·
supp A. Thus α ≤ γ, and so α = γα ∈ supp D · supp A = supp B. Therefore we have
shown that supp A ⊆ supp B. Dually, we can show that supp B ⊆ supp A. This shows
that supp A = supp B, as required. �

Lemma 2.8. Let A, B ∈ P(S ) and AH B. Then AS = S A = S B = BS .

Proof. Suppose that A, B ∈ P(S ) such that A H B. Then it follows that S A = AS ,
S B = BS , and S A, S B are both closed semigroups of S by Proposition 2.4. To prove
that AS = S A = S B = BS , it suffices to show that supp (S A) = supp (S B) by Lemma
2.1. In fact, by Lemmas 2.6 and 2.7,

supp (S A) = supp S · supp A = supp S · supp B = supp (S B).

The proof is completed. �

Proposition 2.9. Let S =
⋃

(Gα : α ∈ E) and S ′ =
⋃

(G′β : β ∈ E′) be Clifford
semigroups and ψ an isomorphism from P(S ) onto P(S ′). Then ψ(S A) (respectively,
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ψ−1(S ′B)) is a closed subsemigroup of S ′ (respectively, S ) for any A ∈ P(S )
(respectively, B ∈ P(S ′)).

Proof. Let β ∈ E′ and e′β, g′β ∈ G′β. Then by Lemma 1.1,

e′β HP(S ′) g′β ⇒ ψ−1(e′β)HP(S ) ψ
−1(g′β)

⇒ ψ−1(e′β)S = ψ−1(g′β)S (by Lemma 2.8)

⇒ ψ−1(e′β)S A = ψ−1(g′β)S A
⇒ e′βψ(S A) = g′βψ(S A).

On the other hand, it follows by Proposition 2.4 that S A is a closed subsemigroup
of S , and so (S A)2 = S A. This implies that

ψ(S A) = ψ((S A)2) = ψ(S A)2.

Therefore, we can show by Theorem 2.3 that ψ(S A) is a closed subsemigroup of S ′.
By using the above reasoning, we can show that ψ−1(S ′B) is a closed subsemigroup

of S , since ψ−1 is also an isomorphism. �

Corollary 2.10. Let S =
⋃

(Gα : α ∈ E) and S ′ =
⋃

(G′β : β ∈ E′) be Clifford
semigroups and ψ an isomorphism from P(S ) onto P(S ′). If A, B ∈ P(S ) such that
supp A = supp B, then Aψ−1(S ′) = Bψ−1(S ′).

Proof. Suppose that A, B ∈ P(S ) such that supp A = supp B. Let ψ−1(C) = A. Then

Aψ−1(S ′) = ψ−1(C)ψ−1(S ′) = ψ−1(CS ′) = ψ−1(S ′C).

Thus it follows by Proposition 2.9 that Aψ−1(S ′) is a closed semigroup of S . Similarly,
Bψ−1(S ′) is also a closed semigroup of S . On the other hand, by Lemma 2.6,

supp (Aψ−1(S ′)) = supp (Bψ−1(S ′))

since supp A = supp B. Thus we have shown that Aψ−1(S ′) = Bψ−1(S ′), as
required. �

3. On the restriction of ψ to Ch(E)

In this section we shall show that the restriction ψ|Ch(E) of ψ to Ch(E) is a mapping
from the subset Ch(E) of P(S ) onto the subset Ch(E′) of P(S ′). For this aim, the
following lemmas are needed.

Lemma 3.1. Let D ∈ Ch(E) and Y ∈ P(S ) such that Y2 = D. Then the following
statements are true:

(i) supp Y = D and Y2 = supp Y;
(ii) Y · supp Y = Y = YD;
(iii) Y H D;
(iv) (∀α ∈ supp Y) |Yα| = 1.
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Proof. Suppose that D ∈ Ch(E) and Y ∈ P(S ) such that Y2 = D.

(i) It follows immediately by Lemma 2.6 that

α = α2 ∈ (supp Y)2 = supp Y2 = supp D = D

for any α ∈ supp Y . This shows that supp Y ⊆ D, and so supp Y is a subchain of
D, since D ∈ Ch(E). Thus supp Y = (supp Y)2 = D and Y2 = supp Y , as required.

(ii) It is easy to see that Y ⊆ Y · supp Y . To prove that Y · supp Y ⊆ Y , suppose that
aβ ∈ Yβ and α ∈ supp Y . Then α and β are comparable since supp Y = D is a
subchain of E. If β ≤ α, then

eαaβ = eα(eβaβ) = (eαeβ)aβ = eβ aβ = aβ ∈ Y.

If α < β, then aβaβ = eβ and yαaβ = eα for any yα ∈ Yα, since Y2 = supp Y . Thus

eαaβ = (yαaβ)aβ = yα(aβaβ) = yαeβ = yα ∈ Y.

This shows that Y · supp Y ⊆ Y , and so Y · supp Y = Y and YD = Y , as required.
(iii) Since Y2 = D and YD = DY = Y , it follows immediately that Y H D.
(iv) Suppose that α ∈ supp Y and aα, bα ∈ Yα. Then

aαaα = eα = aαbα

since Y2 = supp Y . This implies that aα = bα, and so |Yα| = 1, as required. �

Lemma 3.2. If D ∈ Ch(E) and X ∈ P(S ′) such that X2 = ψ(D), then the following
statements are true:

(i) X H ψ(D);
(ii) X ⊆ ψ(D)⇒ X = ψ(D).

Proof. Suppose that D ∈ Ch(E) and X ∈ P(S ′) such that X2 = ψ(D).

(i) It follows that there exists Y ∈ P(S ) such that X = ψ(Y), since ψ is an
isomorphism. Thus ψ(Y2) = ψ(Y)2 = X2 = ψ(D). This implies that Y2 = D.
Therefore, we can conclude by Lemma 3.1 that Y H D, and so X H ψ(D),
as required.

(ii) It is easy to see that ψ(D)2 = ψ(D2) = ψ(D). Thus ψ(D) is an idempotent and so
the identity element in itsH-class.

If X ⊆ ψ(D), then
ψ(D) = X2 ⊆ ψ(D) · X = X ⊆ ψ(D),

since X ∈ Hψ(D)(P(S ′)). Thus X = ψ(D), as required. �

Lemma 3.3. If D ∈ Ch(E), then every (ψ(D))α (α ∈ supp ψ(D)) is a periodic subgroup
of group G′α and ψ(D) is a Clifford semigroup.

Proof. Suppose that D ∈ Ch(E). Then D2 = D, and so (ψ(D))2 = ψ(D). This implies
that ψ(D) is a subsemigroup of Clifford semigroup S ′, and so every (ψ(D))α (α ∈
supp ψ(D)) is a subsemigroup of G′α.
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We shall show that every subsemigroup (ψ(D))α (α ∈ supp ψ(D)) is periodic; that
is, for any a ∈ (ψ(D))α, there exists a positive integer n such that an = e′α, where e′α is
the identity element of group G′α. Suppose, on the contrary, that the order of element
a is infinite. Set X = ψ(D) \ {a3}. It is clear that X2 ⊆ ψ(D)2 = ψ(D2) = ψ(D). Also,
it follows that ψ(D) ⊆ X2. In fact, for any b ∈ ψ(D), there exist c, d ∈ ψ(D) such that
b = cd, since ψ(D) = ψ(D)2. To show that b ∈ X2, we consider the following cases:

• If c, d ∈ X, then b = cd ∈ X2.
• Assume that c ∈ X and d = a3. Then b = ca3 = (ca)a2 = (ca2)a. If ca = ca2, then

ca3 = ca2 = ca, and so b = cd = ca3 = ca ∈ X2. Otherwise, ca , ca2. Hence, we
might as well say that ca2 is not equal to a3. Thus b = (ca2)a ∈ X2.

• If d ∈ X and c = a3, we can similarly show that b = a3d ∈ X2.
• If c = d = a3, then b = cd = a6 = a2 a4 ∈ X2.

Thus we have shown that b ∈ X2. That is to say, ψ(D) ⊆ X2. Therefore, it follows that
X2 = ψ(D), contradicting Lemma 3.2. This shows that every (ψ(D))α (α ∈ supp ψ(D))
is a periodic subsemigroup of group G′α and so is a subgroup of group G′α.

Since every (ψ(D))α (α ∈ supp ψ(D)) is a subgroup of group G′α and ψ(D)
is a subsemigroup of Clifford semigroup S ′, it follows immediately that ψ(D) =⋃

((ψ(D))α : α ∈ supp ψ(D)) is a semilattice of groups. �

Lemma 3.4. If D ∈ Ch(E) and α, β ∈ supp ψ(D) such that α < β, then (ψ(D))α = {e′α}.
In particular, if there is no any maximal element in semilattice supp ψ(D), then
ψ(D) = supp(ψ(D)).

Proof. Suppose that α, β ∈ supp ψ(D) such that α < β. Assume that X = ψ(D) \ {e′α}. If
(ψ(D))α , {e′α} , that is, Xα , ∅, then it is easy to verify that X2 = ψ(D), contradicting
Lemma 3.2. The remaining part is easily verified. �

Lemma 3.5. If D ∈ Ch(E), then supp(ψ(D)) ∈ Ch(E′).

Proof. Suppose, on the contrary, that there exist α, β ∈ supp ψ(D) such that αβ is
neither α nor β. Set X = ψ(D) \ {e′αβ}. Then we have that e′αβ = e′αe′β ∈ X2. Also, for
any a ∈ (ψ(D))αβ \ {e′αβ}, we have

a = ae′αβ = (ae′α)e′β = ((ae′αβ)e
′
α)e′β = (a(e′αβe

′
α))e′β = (ae′αβ)e

′
β = ae′β ∈ X2,

since a, e′β ∈ X. This shows that (ψ(D))αβ ⊆ X2. It is easy to see that X2 also
contains the subgroup (ψ(D))γ of group G′γ, for all γ ∈ supp ψ(D) such that γ , αβ.
Thus it follows that X2 = ψ(D), contradicting Lemma 3.2. We have shown that
supp(ψ(D)) ∈ Ch(E′), as required. �

Lemma 3.6. If G is a group and |G| > 2, then (G \ {e})2 = G, where e denotes the identity
element of G.

Proof. The proof is omitted. �
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Proposition 3.7. ψ|Ch(E) is a mapping from the subset Ch(E) of P(S ) onto the subset
Ch(E′) of P(S ′).

Proof. Suppose that D ∈ Ch(E). Then we know by Lemma 3.5 that supp(ψ(D)) is a
subchain of the semilattice E′. If there is no maximal element in the chain supp ψ(D),
then by Lemma 3.4 ψ(D) ∈ Ch(E′). Thus we only need to prove that (ψ(D))α = {e′α}
if α is the maximal element in the chain supp(ψ(D)), since (ψ(D))β = {e′β} for all
β ∈ supp ψ(D) \ {α} (see Lemma 3.4).

Let α be the maximal element in chain supp(ψ(D)). If |(ψ(D))α| > 2, then it follows
immediately by Lemma 3.6 that, for A = ψ(D) \ {e′α}, we have A2 = ψ(D), contradicting
Lemma 3.2. Thus we have shown that |(ψ(D))α| ≤ 2.

Suppose that (ψ(D))α = {e′α, aα} , {e
′
α}.

Assume that A = ψ(D) \ {e′α} and B = supp(ψ(D)). Then it is easy to verify
that Aψ(D) = Bψ(D) = ψ(D), and so ψ−1(A)D = ψ−1(B)D = D. On the other hand,
it follows by Corollary 2.10 that Aψ(S ) = Bψ(S ) = ψ(D)ψ(S ), and so ψ−1(A)S =

ψ−1(B)S = DS , since supp A = supp B = supp(ψ(D)).
Now, for any (but fixed) β ∈ supp ψ−1(A),

β ∈ supp (ψ−1(A)S ) = supp (DS ),

since ψ−1(A)S = DS , and so β ≤ δ for some δ ∈ D by Proposition 2.4. This implies
that bβ = bβeβ = bβeδ for any bβ ∈ (ψ−1(A))β, and so bβ = bβeδ ∈ ψ−1(A)D = D. Thus
we have shown that ψ−1(A) ⊆ D; that is, ψ−1(A) is a subchain of chain D. Similarly,
we can show that ψ−1(B) is also a subchain of chain D.

Also, it is easy to verify that A2 = B and BA = AB = A. Thus it follows that AH B in
P(S ′), and so ψ−1(A)H ψ−1(B) in P(S ). This implies that supp ψ−1(A) = supp ψ−1(B),
by Lemma 2.7.

Summarizing the above results, we can show that

ψ−1(A) = supp ψ−1(A) = supp ψ−1(B) = ψ−1(B),

and so A = B, which is a contradiction. This shows that |ψ(D)α| = 1, and so ψ(D) ∈
Ch(E′), as required. �

4. Main results

To show that the class of all Clifford semigroups satisfies the strong isomorphism
property, we need the following notations:

• E(P(S )) = {X ∈ P(S ) : X2 = X};
• E(P(E)) = {X ∈ P(E) : X2 = X}.

It is clear that Ch(E) ⊆ E(P(E)) ⊆ E(P(S )). Define a relation ≤ on E(P(S )) by

X ≤ Y ⇔ X = XY = YX.

Then it is easy to see that ≤ is a partial ordering relation on E(P(S )).
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By identifying an idempotent element e of the semigroup S with the singleton set
{e}, we can find that the restriction ≤ |E of ≤ to E is exactly the natural partial order on
the semilattice E. That is to say,

(∀e, f ∈ E) {e} ≤ { f } ⇔ e ≤ f .

Recall that for e, f ∈ E we say that f covers e in the semilattice E if e < f and if
there is no g ∈ E such that e < g < f . In such a case we write e ≺ f . Similarly, for
X, Y ∈ E(P(E)), we write X � Y (respectively, X� Y) if X < Y and if there is no
Z ∈ E(P(E)) (respectively, Z ∈ Ch(E)) such that X < Z < Y .

Remark 4.1. It is clear that X � Y implies X� Y .

Remark 4.2. Every singleton member in P(E) is a chain in the semilattice E. However,
for any e, f ∈ E, neither e� f nor e� f holds since if e < f , then e < {e, f } < f .

Proposition 3.7 tells us that ψ|Ch(E) is a bijection from the poset Ch(E) onto the poset
Ch(E′). Also, it is easy to see that ψ|Ch(E) is order-preserving. The following lemma
shows that ψ|Ch(E) is also cover-preserving.

Lemma 4.3. Let X, Y ∈ Ch(E). If X� Y, then ψ(X)� ψ(Y).

Proof. Suppose that X, Y ∈ Ch(E) such that X � Y . If ψ(X) ≤ Z ≤ ψ(Y) for some
Z ∈ Ch(E′), then X ≤ ψ−1(Z) ≤ Y , since ψ−1|Ch(E′) is order-preserving. Also, we have
by Proposition 3.7 that ψ−1(Z) ∈ Ch(E). Thus it follows that ψ−1(Z) = X or ψ−1(Z) = Y ,
since X� Y . That is to say, Z = ψ(X) or Z = ψ(Y), as required. �

The following three lemmas are analogous to corresponding statements in
Kobayashi in [12]. They will be useful to prove our main result.

Lemma 4.4. Let D ∈ Ch(E) and α ∈ D. If α is not the maximal element of D, then
D� D \ {α}.

Proof. Let D ∈ Ch(E) and α ∈ D. Clearly, D \ {α} is a subchain of chain D. Suppose
that α is not the maximal element of D. Then it is easy to verify that D(D \ {α}) = D,
that is, D < D \ {α}. If D ≤ A ≤ D \ {α} for some A ∈ E(P(E)), that is,

D = DA and A = (D \ {α})A,

then A ⊆ D, since A = (D \ {α})A ⊆ DA = D. Also, we have that for any (but fixed)
d ∈ D \ {α}, there exists a ∈ A such that d ≤ a, that is, d = da, since D = DA. Thus we
have shown that D \ {α} ⊆ (D \ {α})A = A ⊆ D. Therefore, A is equal to either D or
D \ {α}. This shows that D� D \ {α}. �

Lemma 4.5. Let D ∈ Ch(E) and β be a maximal element of D. If β ≺ γ for some γ ∈ E,
then D� D ∪ {γ}.
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Proof. Let D ∈ Ch(E) and β be a maximal element of D. Suppose that β ≺ γ for some
γ ∈ E. Then it is clear that γ < D, since β is a maximal element of D. Also, it is easy
to verify that D < D ∪ {γ}. If D ≤ A ≤ D ∪ {γ} for some A ∈ Ch(E), that is,

D = DA and A = (D ∪ {γ})A,

then it follows immediately that D is a subchain of A, since

A = (D ∪ {γ})A = (DA) ∪ (γA) = D ∪ (γA).

Assume that D , A, that is, D is a proper subchain of A. Then there exists an element
α ∈ A \ D. If β ≥ α, then α = βα ∈ DA = D, which is a contradiction. Thus we have
that β < α, since A ∈ Ch(E). Also, it follows that α = γη for some η ∈ A, and so α ≤ γ,
since A = D ∪ (γA). This shows that β < α ≤ γ. Therefore, we have that α = γ, and so
A = D ∪ {γ}, since β ≺ γ. This shows that D� D ∪ {γ}. �

Lemma 4.6. Let e ∈ E. Then the following statements are true:

(i) if f ∈ E satisfies e ≺ f , then e� {e, f };
(ii) if Y ∈ Ch(E) satisfies e� Y, then Y = {e, f } for some f ∈ E and e ≺ f .

Proof. Let e ∈ E.
(i) Suppose that f ∈ E satisfies e ≺ f . Then it is easy to see that e < {e, f }. If

A ∈ Ch(E) such that e ≤ A ≤ {e, f }, that is,

e = eA and A = {e, f }A,

then it follows immediately that e ∈ A and a ≤ f for any a ∈ A, since

A = {e, f }A = eA ∪ ( f A) = {e} ∪ ( f A).

Also, we conclude that e ≤ a for any a ∈ A, since e = eA. This shows that e ≤ a ≤ f .
Thus we have shown that a = e or a = f , since e ≺ f . That is to say, A = {e} or
A = {e, f }, as required.

(ii) Assume that Y ∈ Ch(E) such that e� Y . Then eY = e and so e ≤ y for any
y ∈ Y . Thus it is easy to verify that e < {e} ∪ Y ≤ Y . This implies that {e} ∪ Y = Y ,
since e� Y . Hence, we have that e ∈ Y . Also, it follows immediately that Y \ {e} , ∅,
since e� Y . Thus for any f ∈ Y \ {e}, setting Z = {y ∈ Y : y ≤ f }, we conclude that
e < Z ≤ Y . This implies that Y = Z, Hence, we have shown that Y is a two-element
chain, say Y = {e, f }.

It remains to prove that e ≺ f . Suppose that g ∈ E such that e < g < f ,
then e < {e, g} < {e, f } = Y , contradicting e� Y . This shows that e ≺ f , as
required. �

Let X, Y, Z, W ∈ Ch(E) and Y , Z. We use the notions of a topknot which is
introduced in [12] and a quasitopknot to describe configurations of arrows as shown
on the diagrams below. In such a diagram, the ordinary arrows (between X and Y , say)
means (in the ‘plain text mode’) X� Y .

It is obvious that every topknot of X is a quasitopknot of X.
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Figure 1. A topknot of X.

Figure 2. A quasitopknot of X.

Theorem 4.7. The class of Clifford semigroups satisfies the strong isomorphism
property.

Proof. Suppose that S =
⋃

(Gα : α ∈ E) and S ′ =
⋃

(G′β : β ∈ E′) are both Clifford
semigroups, and ψ is an isomorphism from P(S ) onto P(S ′). Recall that we may
identify the identity eα of group Gα with α for any α ∈ E, and so E and the set E(S )
of all idempotents of S are interchangeable. To show that ψ|S is an isomorphism of S
onto S ′, we need only to prove by Lemma 1.1 that ψ(eα) ∈ E′ for any α ∈ E. Assume
that A = ψ(eα) for some α ∈ E. Then we have by Proposition 3.7 that A ∈ Ch(E′). In
the following we shall prove that A is a singleton member in P(E′).

Claim 1. If e′β ∈ A and e′β is not maximal in A, then |G′β| = 1.
Let e′β ∈ A. If |G′β| ≥ 2, then there exists g′β ∈ G′β \ {e

′
β}. Let B = (A \ {e′β}) ∪ {g

′
β}.

Then it is easy to see that supp B = supp A. By Corollary 2.10,

Aψ(S ) = Bψ(S )⇒ eαS = ψ−1(B)S
⇒ eαψ−1(B) = ψ−1(B) (by Corollary 2.5)
⇒ AB = B.

If e′β is not maximal in A, then there exists e′γ ∈ A such that e′β < e′γ. Thus it follows
immediately that e′β = e′βe

′
γ ∈ AB = B, contradicting e′β < B. The claim is proved.
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Figure 3. A topknot of A.

Figure 4. A quasitopknot of ψ−1(A).

Claim 2. The second claim is |A| ≤ 2.
Suppose, on the contrary, that |A| ≥ 3. Then A contains at least three elements, say,

e, f , g, such that e < f < g. Thus it follows by Lemma 4.4 that A has the topknot (given
in Figure 3). Applying ψ−1 to Figure 3, we can get the quasitopknot of ψ−1(A) = eα (see
Figure 4) by Proposition 3.7, Lemma 4.3 and Lemma 4.6, where ψ({eα, eβ}) = A \ {e},
ψ({eα, eγ}) = A \ { f }, ψ(W) = A \ {e, f } and eα ≺ eβ, eα ≺ eγ.

Since eα ≺ eβ and eα ≺ eγ, we have that eβeγ = eα, and so

{eα, eβ}{eα, eβ, eγ} = {eα, eβ}

⇒ (A \ {e}) ψ({eα, eβ, eγ}) = A \ {e}

⇒ (A \ {e}) · supp ψ({eα, eβ, eγ}) = A \ {e} (by Lemma 2.6) (4.1)
⇒ A \ {e} ≤ supp ψ({eα, eβ, eγ}). (4.2)

Similarly, we can derive

A \ { f } ≤ supp ψ({eα, eβ, eγ}). (4.3)

On the other hand, it follows by Figure 4 that

{eα, eβ}W = {eα, eβ} and {eα, eγ}W = {eα, eγ}.
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Thus

{eα, eβ, eγ}W = {eα, eβ, eγ}
⇒ (ψ({eα, eβ, eγ})) (A \ {e, f }) = ψ({eα, eβ, eγ})
⇒ [supp ψ({eα, eβ, eγ})](A \ {e, f }) = supp ψ({eα, eβ, eγ})

(by Lemma 2.6)
⇒ supp ψ({eα, eβ, eγ}) ≤ A \ {e, f }. (4.4)

Summarizing the above, we have

supp ψ({eα, eβ, eγ}) = A \ {e, f }, (4.5)

since A \ {e}� A \ {e, f }, A \ { f }� A \ {e, f }. In the following, we shall show that
ψ({eα, eβ, eγ}) = A \ {e, f }. Consider the following two cases.

Case (i). If A has no the maximal element, then it follows by Claim 1 that |G′δ| = 1 for
any e′δ ∈ A. This implies that

ψ({eα, eβ, eγ}) = supp ψ({eα, eβ, eγ}),

and so ψ({eα, eβ, eγ}) = A \ {e, f } by (4.5).

Case (ii). If A has the maximal element e′ω, then it follows by Claim 1 that |G′δ| = 1 for
any e′δ ∈ A such that e′δ , e′ω. So, by (4.5),

ψ({eα, eβ, eγ}) = (A \ {e, f , e′ω}) ∪ Bω,

where Bω is a subset of G′ω. Also, for any bω ∈ Bω, by (4.1),

bω = e′ωbω ∈ (A \ {e}) · Bω ⊆ (A \ {e}) · ψ({eα, eβ, eγ}) = A \ {e},

and so bω = e′ω, that is to say, ψ({eα, eβ, eγ}) = A \ {e, f }.
Thus we have shown that in either case ψ({eα, eβ, eγ}) = A \ {e, f }, and so

{eα, eβ, eγ} = ψ−1(A \ {e, f }) = W. However, W = ψ−1(A \ {e, f }) ∈ Ch(E) by
Proposition 3.7, and {eα, eβ, eγ} < Ch(E), since eβeγ = eα, which is a contradiction.
This shows that the claim is true.

Claim 3. The third claim is |A| = 1.
By Claim 2, we have |A| ≤ 2. Suppose that |A| = 2. Then A = {e, f } for some

e, f ∈ E′ such that e < f . It follows immediately by Lemma 4.4 that

A� f ⇒ eα� ψ−1( f )) (by Lemma 4.3)
⇒ (∃ eµ ∈ E)(eα ≺ eµ, ψ−1( f ) = {eα, eµ}) (by Lemma 4.6)
⇒ ψ−1( f )� eµ (by Lemma 4.4)
⇒ f � ψ(eµ) (by Lemma 4.3)
⇒ (∃ g ∈ E′)( f ≺ g, ψ(eµ) = { f , g}) (by Lemma 4.6).
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Figure 5. A quasitopknot of A.

Figure 6. A quasitopknot of ψ−1(A).

Thus by Lemmas 4.3–4.6, we get a quasitopknot of A (see Figure 5). Applying ψ−1

to Figure 5, we can get a quasitopknot of ψ−1(A) (see Figure 6) by Proposition 3.7
and Lemma 4.6, where ψ({eα, eν}) = {e, f , g}, ψ({eα, eµ}) = f , ψ(eµ) = { f , g}, and
f ≺ g, eα ≺ eµ, eα ≺ eν.

It follows that eµeν = eα, since eα ≺ eµ and eα ≺ eν. Therefore, we have that
eµ {eα, eν} = {eα}, contradicting {eα, eν}� eµ. The proof is completed. �
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