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Abstract

In the present paper, we make use of the method of asymptotic integration to get
estimates on those regions in the complex plane where singularities and critical
points of solutions of the Matrix-Riccati differential equation with polynomial co-
efficients may appear. The result is that most of these points lie around a finite
number of permanent critical directions. These permanent directions are defined
by the coefficients of the differential equation. The number of singularities outside
certain domains around the permanent critical directions, in a circle of radius r ,
is of growth 0(log r). Applications of the results to periodic solutions and to the
determination of critical points are given.

1. Introduction

Many problems in mechanics, control theory and system theory lead to a
nonlinear system of differential equations of the form

W' = A(z) + B(z)W+WC(z) + WD(z)W. (1 .1)

Here the coefficient matrices A, B, C, D are matrix polynomials (in the
complex variable z) of type mxn,mxm,nxn,nxm, respectively.
According to the existence theorem (see e.g. [6]), every solution W{z) of
(1.1) is a locally holomorphic m x n matrix. Following W. T. Reid [14] we
consider the linear system
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[2] Matrix-Riccati differential equations 113

Y' = £l(z)Y (1.2)

associated with (1.1), where

-C(z) ~D(z)
A(z) B(z)

As Q is a polynomial matrix of type (n + m) x (n + m), we get from [6]
that all solutions of (1.2) are entire, i.e. holomorphic in the complex plane.
Let U, V be matrices of type n x n, m x n respectively, where

•GO (1.4)

is a solution of (1.2). Then it is easy to see that W — VU is a solution
of (1.1) if U~l exists. To guarantee the existence, we may for example
take solutions Y of (1.2) with 7(0) = (E

v«), where En is the n-dimensional
identity matrix and Vo is arbitrary. On the other hand, given any solution W
of (1.1) with W(z0) = W0, zQeC, then we take the entire solution Y - (y)
of (1.2) with Y(z0) = ( ^ ) . According to the uniqueness of solutions of (1.1)
we get

W{z) = VU~\ (1.5)

As the right hand side is holomorphic in C, except for a discrete set of
singularities where detC/ = 0, (1.5) gives a meromorphic extension of the
given solution W. For what follows we have the important

REMARK 1.1. All solutions of (1.1) are meromorphic in C, i.e. given z0 e C,
a solution W has locally the Laurent representation

wk(z-zo)k> Wk€Cmx", peN0. (1.6)
k=-P

For p > 0 in (1.6) and W / 0 we say that W has a pole of order p in
zo-

In the scalar case of (1.1) it is easy to see that the order of almost all poles
is one (see [8, p. 219]). This is not true for the higher dimensional case, as
the following example shows.

The equation

has the solution
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114 Gerhard Jank [3]

/tanz\
-{tm2z)

which has infinitely many poles of second order.
It is a task of this paper to get information on the asymptotic distribution

of the poles of the solutions. Clearly, it depends on the coefficients in (1.1).
This can be done by characterising the regions where no singularities can ap-
pear. In these regions, we can derive uniformly asymptotic estimates for the
solutions. The method we use is the asymptotic integration which goes back
to L. W. Thome, H. Poincare and G. P. Birkhoff, and was further developed
by W. B. Jurkat [10], whose presentation we follow.

2. Preliminaries

In this section, we want to describe the tool of asymptotic integration for
linear systems in the irregular singular case, and how it can be applied to
the asymptotic representation of solutions of (1.1) in the neighborhood of
infinity. From [10, p. 32] and [2, p. 11] we get for the system (1.2) the
existence of a normalised formal fundamental system of the form

H(z) = T(zi/p)(zl/p)LeW(Q(zl/p)), (2.1)

with a suitable p e N ; here T, L, Q, denote n + m x n + m matrices. T
is a formal power series of the form

T(t) = T k t k + T l c _ / ~ i + --- + TQ + T _ l t ~ i + • • • , Tj:e c " + m x n + m ,

L is a constant matrix in Jordan canonical form and Q is a diagonal matrix
Q = diag(?,, . . . , qn+m), where qi, j = 1 , . . . , « + m , are polynomials with
^(0) = 0. Furthermore we have from [2, p. 11] that QL = LQ. Notice that
this condition implies that the polynomials in Q which belong to one specific
Jordan block of L are identical.

There is an algorithm for the determination of the polynomials # and the
eigenvalues of L up to an integer, which makes use of transformations of the
system (1.2) to an ordinary differential equation of order n+m , with rational
coefficients. This algorithm has been implemented using the computer algebra
system MAPLE (cf. [3], [4]). If all polynomials qx, ... , qn+m are equal, then
(1.2) can easily be transformed to the regular singular case, i.e. to the case
where Q = 0 in the representation (2.1). If not all polynomials in the
representation (2.1) are equal, then they define a set of Stokes directions.

Here we call 6 a Stokes direction if there exist two different polynomials
qt, qk in Q with the property that if

*,(*"') - qk{zllP) = zi/p(a, + O(z-1/P)), a,?0,
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[4] Matrix-Riccati differential equations 11S

then

| | 0, if p e ( 0 - e , 0),

for some e > 0. The set of all Stokes directions is discrete. If it is not empty,
then we denote the Stokes directions by y^ , n e Z and arrange them so that
yu < ym+l. With this we define (see [10]) the angular domains called normal
sectors

5|( = {z |y / ( _ 1 <aigz<y / l + 1 } (2.2)

and we put 5 = C for all fi, if there are no Stokes directions.
If we are given a solution matrix Y of (1.2), then we get from [5] that to

each normal sector S^ as defined in (2.2) there exists a matrix Cp 6 c("+m)*"
such that

Y(z) ~ / / (z)C; (2.3)

is an asymptotic representation of Y in S . This asymptotic relation (2.3)
should be understood in the way that to each sector S^ there is a fundamental
solution F (z) of (1.2) such that F (z) ~ H(z). If we truncate the formal
power series T in (2.1) at a power, say —n, and denote the resulting finite
series by T then the last ~ sign means

/ Q ( z 1 / " ) ) ( z 1 / f ' ) - L - Tn(z) = O(z-

as z-»oo in any closed subsector of S .
In order to define an asymptotic representation for solutions of (1.1) we

divide the n + mxn + m matrix H in (2.1) into two blocks H{, H2 of size
nxn + m,mxn + m respectively, such that

(2.4)

Now we give

DEFINITION 2.1. The mxn matrix *F(z) given by

is said to be an asymptotic representation of a solution W(z) of (1.1) in S ,

if there exists a solution Y = (%) of (1.2) with W = VU~l and with the
asymptotic representation

r i I i /~*

~ \H ) >*
in SM . Concisely we write W ~ *F.

This definition is analogous to the scalar case treated in [9].
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116 Gerhard Jank [5]

3. The distribution of poles

Before going into a detailed description of the asymptotic distribution of
the poles of a given solution W of (1.1), we want to give a crude estimate
on their number in a given circle of radius r.

Suppose that the polynomial matrix Q in (1.3) has the form

(3.1)

and Clg is a nilpotent matrix of degree k e N . Then it follows from [8, p.
214] that all solutions of (1.2) have an order of growth less than or equal to
g + 1 — \/k. If Q is not nilpotent, one has to put \/k — 0. From this it
follows for the growth order p of the determinant

p(degU)<g+l-l/k.

If we denote by N(r, W) and N(r, 0, dett/) the Nevanlinna counting func-
tions of the poles of a solution W of (1.1) and of the zeros of det U, re-
spectively, with U from (1.5), then we have

N(r,W)<N(r,0,detU). (3.2)

Now, with the first fundamental theorem of Nevanlinna theory (cf., e.g., [13],
[8, p. 50]) and the definition of order (see [8, p. 96]), the right-hand side can
be estimated for a given e and for sufficiently large r by

N(r,6,detU)<rg+1-i/k+e.

This yields together with (3.2)

N(r,W)<rg+l-1/k+e. (3.3)

Denoting by n(r, W) the number of poles of W in the circle with radius
r, we get from [8, p. 103] that N(r, W) and n{r, W) have the same order,
and hence for e > 0 and sufficiently large r we have

n(r,W)<rg+l-l/k+E (3.4)

by (3.3).
After that crude estimation, we want to obtain estimates on the distribution

of the poles. As we already pointed out, the solutions Y of (1.2) are entire
and the poles of solutions of (1.1) represented by (1.5) are contained in the
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[6] Matrix-Riccati differential equations 117

set of zeros of det U. Henceforth we will give an asymptotic estimate of
detf/.

Suppose that W is a solution of (1.1) and 4* its asymptotic representation
in S according to Definition 2.1. In the following, we work in one specific
normal sector S and hence for simplicity we suppress the index ft. Then
we get from Definition 2.1,

U(z)~Hl(z)C, CeC{m+n)x". (3.5)

In a first step, we write the matrix elements of Hl in the form

(tf,)0.(z) = hu(z)expte/z1'")), / = 1 , . . . , « , j = 1 , . . . , « + m.

(3.6)

The elements A( in (3.6) are defined by (2.1) and (2.4). Then the matrix
elements of Hx(z)C are

n+m

(Hl(z)C)ij = £ hik(z)exp(qk(z
1/p))ckj, i,j=l,...,n, (3 .7)

k=l

where c. . denotes the matrix elements of C.
From this we get formally

n j=l \k=\ /

where a denotes a permutation of 1 , ... , n . To study this determinant
asymptotically, later on we have to truncate all the formal power series in the
formal expressions h,.. k(z). Before doing this we define the set M(Q) as
the set of all polynomials q of the form

where q. denotes the pairwise distinct polynomials from the matrix Q in
(2.1). Herewith the determinant in (3.8) can be written as

det(/f,C)= Y, hk(z)exp(pk(z
l/p)), (3.9)

where the nonvanishing expressions hk are sums of products of the expres-
sions haU)k(z) in (3.8).
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118 Gerhard Jank [7]

To the set of Stokes directions of the polynomials in Q, denoted by y ,
there is now an additional set of Stokes directions defined by the polynomials
in M{Q). This set can be ordered as before. Assume now that a is such a
Stokes direction with

V i < a < V i
and a_ its predecessor with

V i < " _ < « < V i •

Then we say a polynomial p. in (3.9) is leading in the angular domain

S~ = {z\a_ + e < a r g z < a } , e>0 (3.10)

if hj ̂  0, and if, for some & e (a_ , a) with z = reli> and for all polyno-
mials pk in (3.9) with hk^0, the quotient

tends to zero for k / j as r - t oo .
Notice now that if k ^ j , and if

Pk(z
1/P) -Pjiz1*) = az\\+o{\)), z^oo,

we have

lim - ^ —r^ ^ < 0 . (3.11)
\z\—»oo, a_<argz<a l^l

Assuming now that in (3.9) the polynomial /? is leading in S~, then we
write formally

; ^ j (3.12)

with
l/p) P(z1/P)E hk(z)exp(pk(z

l/p) -Pj(z
1/P)).

In order to get a useful asymptotic estimate for det U, with U from (3.5), we
need information about the asymptotic behavior of gj(z), hj(z) and hk{z),
respectively. If kj is an eigenvalue of multiplicity m,j of the matrix L in
(2.1), then we get together with (2.1), (2.4) and (3.6)

hij{z) = zX'lPPij{\ogz), (3.13)

where Ptj denotes a polynomial with formal power series as coefficients. It
has the maximal degree m. — 1.
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[8] Matrix-Riccati differential equations 119

Analogously to the definition of the set of polynomials M(Q), we now
define the set M(L) as the set of the complex numbers

where Xk denotes the eigenvalues of L in (2.1).
Herewith, together with (3.9) and (3.13), we can write the formal expres-

sion hk(z) as

**(*)= E ^
where the P. 's denote polynomials with formal power series as coefficients. If
we truncate this formal series at any power and denote the resulting functions
by Pj (log z), then there exists K > 0 such that for sufficiently large \z\ we
have

^ ( l o g z ) < \z\K ; (3.15)

hence we have together with (3.12)

\g](z)\< E \z\Ktxp(m[pk(z
l/p)-pJ(z

l/p)]). (3.16)

Here once again g*(z) denotes the resulting function after truncating the
formal series in the formal expressions gj(z) in (3.12).

In the same way as in [9] we can now estimate the right-hand side in (3.16).

LEMMA 3.1. If a is a Stokes direction of the polynomials Pj and pk, with
nonvanishing h, and hk, respectively, in (3.16) and leading pi in S~, then
there exists d > 0 such that

) = o(exp(-\zf)),

as z -* oo in Se \A(a), where A is defined by

Me

and ee(0 , a-a_).

a) = {z = rei6\\e-a\ < r~1/2plogr}, (3.17)

PROOF. Put for ; fixed pk = ± deg(Pj-pk), p = maxA^opfc and Pj(zl/p)-

pk(z
x'p) = dkz

Pk H (lower order terms). Herewith we define
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120 Gerhard Jank [9]

Then there exists A > 0 , such that for sufficiently large \z\ = r and for all
k in (3.16) with hk # 0

\pk{zl/p)-Pj(z
1/p)-dkz

p'\ <Arp-l/p. (3.18)

If

then 2/? > 0, because Pj is leading and there are no zeros of the functions
y/k{6) in (a_ , a). Otherwise we would have a further Stokes direction in
this interval. From y/k(6) = y/k(a) + y/'k(a)(6-a)+o(6-a), with \f/k{a) > 0,
we get for sufficiently large \z\ = r outside A(a), the estimate

Vk(0)>{lr-l/2plogr. (3.19)

All these properties are easily to be seen if one keeps in mind that the func-
tions y/j and y/k are "cosine-lines". Hence together with (3.18) we get with
8 l/48 = /p

\z\Kexp(9Mpk(z
i/p)-pj(z

i/p)])

logr + Arp-i/p + Klogr) = o(exp(-r<5))

for sufficiently large \z\ — r, outside A(a). This proves the lemma since /?
is independent of k and together with (3.16) we have

; |z| ')), z ^ o o , (3.21)

in S;\A(a).

DEFINITION 3.1. Let W be a solution of (1.1) in the form W = VU~XU ~
Hl C in a normal sector S^ . The set of polynomials

C(W)=\J {pk € M(Q) \hk*0in (3.9)}

defines a subset of Stokes directions of the set of Stokes directions belonging
to M(Q). A Stokes direction which is defined by the polynomials pk e C{W)
is called a permanent critical direction of W; the half ray through the origin
in this direction is called a permanent critical line of W.

With respect to the distribution of poles of a solution of (1.1) we have
now

THEOREM 3.1. The poles of a solution W o/(l.l) are—except for a number
n,(r, W) < O(logr)—located in a finite number of domains A, defined in

https://doi.org/10.1017/S0334270000007402 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007402


[10] Matrix-Riccati differential equations 121

(3.17), around the permanent critical lines of W. Here with nx(r, W) we
denote the number of poles of W in the circle of radius r and outside all the
domains A around the permanent critical directions.

Notice that the permanent critical directions can be computed from the
coefficient matrices A, B, C, D of (1.1), by computing the Stokes directions
of the formal solution in (2.1). These directions do not depend on the initial
value of the regarded solution W.
PROOF. Suppose that W is a solution (1.1) given as W = VU~X which,
according to Definition 2.1, has an asymptotic representation in a normal
sector S^ with the matrix Cfl = C .

In the first step we derive the formal expression (3.12) and an asymptotic
estimate of the "remaining term" (3.16). In the second step we have to find an
asymptotic estimate for the function hUz) defined by the formal expression
hj(z) in (3.12) after truncating the formal series at certain powers. From
(3.14) we see that A can be written as

hj(z)= £ zk"+K"{Qi/{\ogz) + Rv{\ogz)), (3.22)

where the polynomials Qv have constant coefficients and the coefficients of
the polynomials Rv ^ 0 are still formal series, but all of them are starting
with a negative power of z1 / p . If Qv — 0, then Rv = 0.

To get asymptotic estimates, we have to truncate the formal series in Rv .
We take only the first nonvanishing term of each series and denote the re-
mainder by i?*(logz). Since by construction all coefficients of this function
contain a negative power of z , we get

Rl{logz) = o(l), z ^ o o . (3.23)

This together with (3.22) gives

h]iz)= £ zK+K"{Qv{\ogz) + o{\)). (3.24)

If we denote by K the maximum of yK(kv + KV) in (3.24), then with xv = 3AV

we get from (3.24)

h*{z) = zK £ z't-'((2I/(logz) + o(l)). (3.25)

Here we used the boundedness of the terms z'T" in an angular domain. If
we now denote by s the maximum degree of the polynomials Qv in (3.25),
then we can write (3.25) as

hj(z) = zK(logz)s Wcvz
ix- +o(l) | , (3.26)
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122 Gerhard Jank [11]

where the sum has to be taken over all v with ?K{\V + KU) = K , Qv ^ 0,
deg Qv = s. The function

h' (3.27)

in (3.26) changes, with the usual transformation z — e", into an exponential
sum

O £/"T". (3.28)
The order of g is one and its type is finite; hence by the first fundamental
theorem of Nevanlinna theory (cf., e.g., [8] p. 47 ff. and p. 103 Theorem
11.4), we get for the number of zeros of g in a circle of radius R

n(R,0;g) = O(R), R^oo,
and hence with R — logr + o(l)

n(r,0;f) = O(\ogr). (3.29)

From [12, p. 267] we get from a theorem concerning almost periodic func-
tions such as any finite exponential sum g that for any d > 0 there exists
m{6)> 0, such that

\g(u)\ > m(S)
in a strip |3w| < h and outside the circles of radius 8 around the zeros uk

of g. This gives for / in (3.27) the estimate

1/(2)1 > m{6) (3.30)
outside the sets Bk{5) = {z\ | log z — uk\ <d}.

If we apply Rouche's theorem (cf., e.g., Ahlfors [1], p. 153) to (3.26) and
/ in (3.27), then we get together with (3.27) that h*(z) in (3.26) and / have
the same number of zeros in the sets Bk{8). From (3.5), (3.12) together with
(3.21), (3.26) and (3.27) we have

= exp(/>.(z1/p))[zK(logz)s(/(z) + 0 ( l ) ) + o{e-^)] (3.31)

- exp(^(z1/p))z'c(logz)J(/(z) + o(l)) , z - oo, z e S~\A.

This, together with (3.29) and (3.30), gives the desired result of Theorem 3.1,
since we have at most a finite number of sectors S~ , and we get analogous
estimates in the corresponding finite number of sectors S* = {z\a < argz <
a + — e} , where a+ denotes the Stokes direction following a .

It is quite clear from the proof that the existence of an infinite number of
poles, outside the domains A around the permanent critical lines depends on
the existence of an infinite number of zeros of the sum in (3.26). In general,
this depends on the matrix C in (3.5), and hence on the initial value of the
specific solution W of (1.1). In some special situations, however, the sum in
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[12] Matrix-Riccati differential equations 123

(3.26) has at most a finite number of zeros in any domain S~\A and S*\A.
If, for example, all the eigenvalues Xt of the matrix L in the formal solution
(2.1) are real, then its imaginary parts T; are zero and the corresponding sum
/ in (3.27) reduces to a constant.

4. Growth estimates and critical points

If we use the matrix norm

7=1 1=1

for any solution of (1.1), then we get a general estimate of || W|| outside the
critical domains.

THEOREM 4.1. Suppose that W is a solution o/( l . l ) and

max

where q^ denotes the polynomials in the matrix Q in (2.1). Then for some
constant K > 0 and sufficiently large \z\ = r we have

log+||W(z)|| <K{r" + log r) (4.2)

for z outside the domains A around the permanent critical directions and
outside the domains Bk{8) defined in (3.30).

PROOF. Once again we start with the representation W — VU~X . The ma-
trix elements vtj of V have, according to Definition 2.1, an asymptotic
representation

n+m
hn+i,k(z) eM<lk(z

l/P))ckj, i = 1, • • • , m, j = 1, .. . , n
t = 1 (4.3)

in a normal sector 5^ . This leads in any normal sector immediately to

|t>,.,.(z)| < | z | V | z " , (4.4)

for some constants K, T > 0 and for sufficiently large \z\. Now let the
l be represented as

aiJ = Uji/detU, (4.5)

matrix elements atj of U~l be represented as
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124 Gerhard Jank [13]

where Ujt denotes the adjoint elements to w- of the matrix U. From (3.31)
we get

(4.6)

From (3.30) we have | / (z ) | > m(S) and hence for sufficiently large \z\,

\f{z) + o{\)\>\m{d)

outside the domains Bk{8). This gives

|det£/(z)| > e x p ^ / z ' ^ J I z r i l o g z r ^ , (4.7)

for sufficiently large z in S~\A and outside Bk{6).
Since the adjoint elements U.. are determinants of elements of U we get

for each of them an analogous representation like (4.6). If we notice now
that any function / is bounded in an angular domain, say by a constant
c > 0, then we get for sufficiently large z in S~\A and some p e M(Q), ic
and s

\Ujt{z)\ < 2cexpOK/>(z1/;)))|z|*|logzr (4.8)

The estimates (4.7) and (4.8), together with (4.5), then give

K,-|<|z|V|z|', (4.9)

for suitable constants K, x > 0 and for sufficiently large \z\ with z out-
side the sets A around the permanent critical directions and outside the sets
Bk{8). Now (4.4) and (4.9), together with (1.5) and (4.1), give (4.2). Es-
timates of this type for differential equations with constant coefficients are
given in [11].

Notice that the exceptional domains Bk(S) can be omitted in Theorem 4.1
if we are dealing with a differential equation (1.1) having for example only
real eigenvalues in the matrix L of (2.1). Next we want to get information
on the critical point of (1.1), i.e. on the zeros of W'.

THEOREM 4.2. Let a differential equation (1.1) be given and Q the associated
matrix in the formal fundamental system (2.1), q.- , i = 1 , . . . , / , thepairwise

Ji

distinct polynomials in Q. Define the set of polynomials Mx (Q) as

aih • ^ = 0, ±1, a] +••

Then the critical points of any solution W (i.e. the points with W' = 0) are—
except for O(logr) many—located in the union of a finite number of domains
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[14] Matrix-Riccati differential equations 125

A, defined in (3.17), around the Stokes directions defined by the polynomials
in MX(Q), and the sets Bk(S) as defined by (3.30).

PROOF. Analogously to the proof of Theorem 3.1. we get from (4.3), if #
is thought to be leading, with appropriate constants K • , s.

= const.exV{qj{z
Xlp))zK<"'(logz)'"{Jv] + o(l)), z - oo, z e S"\A,

(4.10)

where y^. denotes a function as in (3.27). From (3.31) we now get the
determinant of U and, as the adjoint elements in (4.5) are of the same type,
we get a quotient of functions of type (3.31) as an asymptotic representation
of otjj in (4.5). Together with (1.5), if we denote the elements of W by
wvj, we see that there exists a polynomial qvj e M{{Q), leading in S~\X

d h

(logz)

and constants KV ., svj such that

l/ K ,, .5 fvj\
Z)

"(logz) •" ^̂z ) + 0 ( 1 )

(4.11)
where / and fvj are functions of type (3.27), respectively. Since we are
dealing with the polynomials q e Af,(Q) we have to partition the normal
sectors (defined by the polynomials Q) by introducing additional Stokes di-
rections defined by the polynomials in MX{Q). Now S~ in (4.10), (4.11)
has to be defined with respect to this new set of Stokes directions.

Diiferentiating in (4.11) and collecting the resulting terms yields in the
case of degq^j < p

Svj\
Z) + °\\)

where gv. denotes some new function of the type as defined in (3.27). If in
(4.11) m = degqUJ > p, then we get analogously

r - K » , Z G 5 £ " \ A , ziBk{8).

From (4.12) and (4.13), together (3.30) it follows that—except for a finite
number—the zeros of W1 which are not in the domain 57 \A, and not in
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the domains Bk(d) as denned in (3.30), have to be zeros of the functions
SVj + o(l) o r fVj + °(1) • Since these functions are once again of the type
as denned in (3.27), we get analogously to the proof of Theorem 3.1 that
there are at most 0(log r) such zeros. Since we have at most a finite number
of sectors S~ and at most a finite number of sectors S*, where we get
analogous estimates, the theorem is proved.

5. Periodic solutions

In this section, we will study how asymptotic methods can be used to get
results on the possible periodicity of solutions not only of equations with
polynomial coefficients but even on Matrix-Riccati equations with certain
periodic coefficients. The existence of periodic positive semidefinite solutions
of a Matrix-Riccati equation with periodic coefficients is studied in [7].

We start with an example of an equation of type (1.1) with nonconstant
polynomial coefficients, having a periodic solution.

The differential equation

(wl, w2)' = 2{wx, w2) - {wx ,w2)[^ 2°z j - (wx, ^

has the periodic solution

(tw,, w2) = (ez, 0).

In general the solutions of a Matrix-Riccati equation will not be entire. For
periodic solutions of (1.1) with poles we have

T H E O R E M 5 . 1 . Let W be a nonentire periodic solution of (I. I) with period
to e C\{0}.

Then argeu = y^, where y is one of the Stokes directions defined in the
preliminary part.

PROOF. If co is a period and zQ a pole of a given solution W of (1.1),
then W has poles in z0 + lew, k e Z . Now define a small angular domain
VE = {z e C| arg&> - e < argz < argto + e} and denote by ne(r, W) the
number of poles of W in Ve n {z\ \z\ < r} . Then there exists k0 e N , such
that for all k > k0 the poles z0 + kw are in Ve and hence there exists a
constant K > 0 such that

ne(r,W)>Kr. (5.1)

Assume that argeo ^ y for all fi e Z . Then Ve n A(y ) , A(y ) defined in
(3.17), is empty or bounded for all fi and hence contains at most a finite
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number of poles of W. On the other hand, it follows from Theorem 3.1.
that the number of poles in \z\ < r and ^ \ A ( ^ ) is at most O(logr). This
contradicts (5.1).

If a periodic solution W has no poles, there is one specific situation where
Theorem 5.1. still can be applied.

REMARK 5.1. If W is a nonconstant periodic entire solution of (1.1) with
period to, and if W is a matrix of type n x n, then

where y^ denotes the Stokes directions for the equation Y' = Q, Y with

Q A + BWQ+W0C+W0DW0

-D -C-DWQ

and WQ = W(z0) for some z0 e C.
PROOF. The matrix function V — {W—WQ)~ is w-periodic with poles and
is a solution of

V' = -D-{C + DWQ)V - V(B + WQD) - V{A + BWQ + WQC + WQDW0)V,

because V' = -VW'V, which is of type (1.1). Using (1.3) we get (5.2).
Finally we want to point out that this result can be applied to a specific class

of Matrix-Riccati differential equation with periodic coefficients. Though the
theory of asymptotic integration would yield results for a larger class of coef-
ficients (i.e. for rational coefficients), we want to stay here within the frame-
work of this paper, that means to ensure that (1.1) has globally meromorphic
solutions.

Suppose the coefficients of (1.1) to be of the form:

CM . ±C, (e*p (^ Z )y , *(.) -±Dt (exp ( £
7=1 v ' j=\

where A-, B., C , D- are constant matrices.
With the transformation £ = e x p ( ^ z ) we get that

are polynomials with a zero in 0.
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If we also transform the differential equation (1.1) and (1.2) accordingly,
we get from (1.2)

—CY1 = Q(QY

with

-C(C) -D(C)\
A(Q B(Q ) •

Since | ^ (C) is still a polynomial matrix, our previous theory applies in that
case.

If the complex variable z is considered to be real, the treated nonau-
tonomous differential equation (1.1) occurs for example in linear-quadratic
control problems or in Nash-games. It turns out that the asymptotic behavior
of the solutions will be quite different depending on whether the positive real
axis points in a Stokes direction of (1.1) or not. Furthermore in the latter
case, the eigenvalues of the matrix L in (2.1) can be used to decide if there
is a uniformly asymptotic behavior of a solution or not. The influence of
the initial data on the asymptotic behavior of solutions is not studied in this
paper.

6. Examples

To illustrate the results of the preceding parts, we shall give two examples.
The first example shows that there are differential equations which may have
solutions with an infinite number of poles, located outside the domains A
around the permanent Stokes directions. Their number must be of growth
O(log r). The second example shows that there exist equations with solutions
which have at most a finite number of poles outside these regions.

The necessary computational effort is—except for some trivial cases—
relatively high; hence we use a program package (implemented within the
computer algebra system MAPLE). This package, called ELISE, is described
in [4] and implemented on a 68020-processor based UNIX workstation.

1. EXAMPLE. The equation

' \ -
9J

A=( \f \(
w2) \4z2 + 2z + 9J \4z2 + z + 12 z2 + 6j\w2
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leads together with (1.2) and (1.3) to the linear system

0 1 0
0 0 1

-4z2-2z-9 - 4 z 2 - z - 1 2 -z 2 - 6

and the solutions can be written as

'1/ •* \V2S

Now ELISE gives the following expressions for the formal fundamental sys-
tem in (2.1):

«- ± z 3 - 2 z 0 0
0 -2z 0

0 0 -2z ,
and for the eigenvalues of L (mod an integer),

A, = - 3 , A2 = - i , A3 = i .

The Stokes directions are n/6, n/2 (mod 27t/3). The CPU-time used from
ELISE was 9 seconds. According to Theorem 3.1., the poles of solutions are,
except for a number of O(log r), in domains A around that 6 directions.

Note that, together with the asymptotic existence theorem, there exist so-
lutions (u,vl,v — 2) with an asymptotic representation such that

u(z) = (l+o(l))e-2zzk(clz
i + c2z-i), c,, c2 € C.

This shows that there are solutions of the Matrix-Riccati equation with in-
finitely many poles outside the domains A around the critical lines. The
location of this <9(log r) many poles depends on the constants c{, c2, i.e. on
the initial value of the solution.

EXAMPLE 2. Here we start with an equation

(u;,, w2)' = ( i z 3 - 3z - 32/3, - z 2 + 4/3) - (3z + 8)(w,, w2)

r + 8
Vvi'w2>\2z+ 1<

This gives the system

"12 V / - ? ^ 3 + ^ + 32/3 z 2 - 4 / 3 z + 8 \ / " n «,2
"21 "22 I = -§z 3 + 6z + 9/3 2 z 2 - 2 z - 8 / 3 2z+19 (M2 1 M22
v\ V2 / \ ^ z 3 - 3 z - 3 2 / 3 - z 2 + 4/3 3z + 8 / \ v\ vi
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with the solutions

M21 M 22

In the formal fundamental system we have from ELISE

((-&* + ¥ o o
exp<2(zI/p = exp o - z 2 0

U 0 0 -z\
and the 12 Stokes directions from M{Q) are given by y, = 7i/8, y2 — n/4,
yy = 37T/8 (mod n/2). The eigenvalues of the matrix L in (2.1) are zero
(mod an integer). The CPU-time for ELISE was 17 seconds.

Since we have only real eigenvalues, from the remark at the end of Section
3 and (3.31), for any solution we have at most a finite number of poles
outside the A-domains around the Stokes directions. Notice now that M(Q)
and M{(Q) here define the same set of Stokes directions; hence the critical
points of any solution are—except for a finite number—in the same regions
as the poles. Furthermore, neither in Theorem 4.1 nor in Theorem 4.2 the
unpleasant domains Bk{8) appear in this example.
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