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Abstract

We study the relations between the tail order of copulas and hidden regular variation
(HRV) on subcones generated by order statistics. Multivariate regular variation (MRV)
and HRV deal with extremal dependence of random vectors with Pareto-like univariate
margins. Alternatively, if one uses a copula to model the dependence structure of a random
vector then the upper exponent and tail order functions can be used to capture the extremal
dependence structure. After defining upper exponent functions on a series of subcones,
we establish the relation between the tail order of a copula and the tail indexes for MRV
and HRV. We show that upper exponent functions of a copula and intensity measures
of MRV/HRV can be represented by each other, and the upper exponent function on
subcones can be expressed by a Pickands-type integral representation. Finally, a mixture
model is given with the mixing random vector leading to the finite-directional measure
in a product-measure representation of HRV intensity measures.

Keywords: Multivariate regular variation; tail dependence; upper exponent function; tail
order function; intermediate tail dependence
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1. Introduction

Extremal dependence of a random vector can be described by the relative decay rate of certain
joint tail probabilities of the random vector with respect to that of its margins. Such extremal
dependence can be analyzed using multivariate regular variation (MRV) or hidden regular
variation (HRV) (see Resnick (2007)), or, alternatively, using tail dependence or tail order
functions of copulas. To the best of our knowledge, Jaworski (2004) first explicitly proposed
the tail dependence functions for the bivariate case, and Jaworski (2006) studied an extension to
the multivariate case. Li and Sun (2009) studied the relation between MRV and tail dependence
functions. Joe et al. (2010) further studied tail dependence functions and their applications on
vine copulas, including the most detailed properties of tail dependence functions. In order to
quantify the strength of dependence in the tails for asymptotic independence structures, Hua
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and Joe (2011) introduced the concept of tail orders for copulas. The tail order corresponds to
the reciprocal of the tail coefficient η introduced in Ledford and Tawn (1996). The η is referred
to as the residual dependence index in Hashorva (2010), and the extreme residual coefficient in
de Haan and Zhou (2011). With the MRV or HRV methods, univariate marginal distributions
are usually transformed to Pareto-like distributions, whereas with the copula method, univariate
marginal distributions are transformed to the standard uniform distribution over [0, 1]. In this
paper, we aim to find the relation between these two approaches.

To explain the two approaches, the following notation will be used throughout the paper.
Let

Id := {1, . . . , d}, R̄
d+ := [0,∞]d , and R

d+ := [0,∞)d .

For any d-dimensional real vector x, x[i] denotes the ith largest component, and x(i) denotes
the ith smallest component. For a subset I ⊆ Id , |I | is the cardinality of I ; xI := (xi, i ∈ I ).
If (xj , j ∈ J ), J ⊆ Id , is a collection of the variables xj then (xJ )[i] is the ith largest of these
xj , and, similarly, (xJ )(i) is the ith smallest of these xj . For any two vectors x, y ∈ R

d , the
sum x + y, product xy, quotient x/y, and vector power and vector inequalities such as x ≤ y

are all operated componentwise.
For a measurable function g : R+ → R+, if, for any t > 0, limx→∞ g(xt)/g(x) = tα with

α ∈ R, then g is said to be regularly varying at∞ with variation exponent α, and we denote
this as g ∈ RVα (written as g ∈ RVα(0) if g is regularly varying at 0); if α = 0 then g is said
to be slowly varying at ∞ and we often specifically use � as a slowly varying function. For
two positive functions g and h, g(t) ∼ h(t) as t → t0 means that limt→t0 [g(t)/h(t)] = 1.
For l, m ∈ Id , E(l) := {x ∈ R̄

d+ : x[l] > 0} and, thus, E(m) ⊆ E(l) if l ≤ m. Also, define
E

(l)
0 := {x ∈ R

d+ : x[l] > 0}. Let νl(·) denote the corresponding limit measure (also known as
the intensity measure) for MRV on the subcone E(l). In what follows, we use−αl with αl > 0
as the corresponding exponent of regular variation on E(l) and we call αl > 0 its tail index.

Let X be a random vector with identical univariate margins Fi, 1 ≤ i ≤ d, which are
regularly varying with tail index α > 0 (i.e. F̄i ∈ RV−α). Roughly speaking, if the decay rate
of certain joint tail probabilities of X is comparable to the tail decay rate of the marginal survival
function 1− Fi , then the usual tail dependence (see, e.g. Joe (1997, p. 33)) appears. However,
if the dependence in the upper tail is not sufficiently strong then the joint tail probability
decays at a faster rate that may be comparable to that of a function g ∈ RV−α2 with a larger
tail index α2 > α, and so we need to use HRV to capture the dependence structure hidden
in the upper tail interior. Alternatively, we can use a copula C to capture the dependence
structure of X. In this paper, in order to avoid cumbersome technical arguments on copulas, we
assume that the univariate marginal distribution functions, the Fis, are all continuous, so that
the copula C is uniquely determined (see Sklar (1959)). However, note that the results on the
asymptotic analysis of copulas do not rely on the continuity assumption of margins. Let Ĉ be
the corresponding survival copula of X. If Ĉ(u, . . . , u) ∼ uκ�(u) as u→ 0+ then κ is referred
to as the upper tail order of C and κ ≥ 1 (see Hua and Joe (2011)). Here, a larger κ tends to lead
to a weaker dependence in the upper tail. In this paper we will show that, for the HRV case,
κ = α2/α. We will study the relation between the intensity measures of MRV or HRV and
the tail dependence/order functions of copulas; moreover, through defining an upper exponent
function on a subcone for copulas, we will explicitly obtain the expression that connects the
HRV intensity measure and tail order functions.

Recently, Mitra and Resnick (2010), (2011) employed order statistics to construct a product-
measure decomposition for characterizing HRV. Their approach overcomes the issue of infinite
angular measures for HRV, studied earlier in Maulik and Resnick (2004) or Section 9.4.1 of
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Resnick (2007). We find that the finite-directional measure studied in Mitra and Resnick (2010),
(2011) can also be used to characterize the upper exponent functions for copulas. Furthermore,
a mixture model for HRV is studied in which the distribution function of a mixing random
vector will be related to the finite-directional measure in the product-measure decomposition
for HRV.

The remainder of this paper is organized as follows. In Section 2 the relation between MRV
and the usual tail dependence or the upper tail order κ = 1 will be discussed. In Section 3
the relation will be extended to the comparison between HRV and the upper tail order κ .
The relation between the tail order function and a Pickands-type representation with finite-
directional measure for HRV will be investigated in Section 4. We present a mixture model for
HRV in Section 5, and, finally, in Section 6 we provide some remarks to conclude the paper.

2. Tail dependence for MRV

Let X := (X1, . . . , Xd) be a random vector with joint cumulative distribution function
(CDF) F and continuous univariate margins F1, . . . , Fd . Without loss of generality, we may
assume that X is nonnegative componentwise. Consider the standard case in which the survival
functions F̄i(x) := 1 − Fi(x), 1 ≤ i ≤ d , of the univariate margins are right tail equivalent,
that is,

F̄i(x)

F̄1(x)
= 1− Fi(x)

1− F1(x)
→ 1 as x →∞, 1 ≤ i ≤ d. (2.1)

The distribution F or the random vector X is said to be of MRV at∞with intensity measure
ν if there exists a scaling function h(t) ↑ ∞ and a nonzero Radon measure ν(·) such that, as
t ↑ ∞, the following vague convergence holds:

tP

(
X

h(t)
∈ ·

)
v→ ν(·) in cone R̄

d+ \ {0}; (2.2)

that is, tP(X/h(t) ∈ B)→ ν(B) for any relatively compact set B ⊆ R̄
d+ \ {0}, with ν(∂B) = 0.

Note that, the MRV discussed in this section is actually the MRV on the cone E(1), and MRV can
also be defined on subcones in the sense of (3.1) below. The extremal dependence information
of X is encoded in the intensity measure ν that satisfies ν(tB) = t−αν(B) for all relatively
compact subsets B that are bounded away from the origin, where α > 0 is known as the tail index
for MRV (i.e.−α is the exponent of variation for MRV). Since the set B1 = {x ∈ R̄

d+ : x1 > 1}
is relatively compact within the cone R̄

d+ \ {0} with ν(∂B1) = 0 and ν(B1) > 0 under (2.1), it
follows from (2.2) that the scaling function h(t) can be chosen to satisfy F̄1(h(t)) = t−1, t > 0,
after appropriately normalizing the intensity measure by ν(B1). That is, h(t) can be chosen as
h(t) = F̄←1 (t−1) = F←1 (1− t−1) under condition (2.1), where F←i (t) := inf(x : Fi(x) ≥ t)

is the quantile function of Fi , and F←i is left continuous. Therefore, (2.2) can be equivalently
expressed as

lim
t→∞

P(X ∈ tB)

P(X1 > t)
= ν(B) for all relatively compact sets B ⊆ R̄

d+ \ {0}, (2.3)

satisfying ν(∂B) = 0. It follows from (2.3) and (2.1) that, for 1 ≤ i ≤ d,

lim
t→∞

P(Xi > ts)

P(Xi > t)
= ν((s,∞] × R̄

d−1+ ) = s−αν((1,∞] × R̄
d−1+ ) for all s > 0.
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That is, univariate margins have regularly varying right tails and F̄i ∈ RV−α . In general, a
Borel-measurable function g : R+ �→ R+ is regularly varying with exponent ρ ∈ R, denoted
as g ∈ RVρ , if and only if

g(t) = tρ�(t) with �(·) ≥ 0 satisfying lim
t→∞

�(ts)

�(t)
= 1 for s > 0. (2.4)

The function �(·) is slowly varying, that is, � ∈ RV0. Since F̄1 ∈ RV−α, 1/F̄1 ∈ RVα , by
Proposition 2.6(v) of Resnick (2007), the scaling function h in (2.2) satisfies h ∈ RVα−1 . Since
all the margins are tail equivalent, as assumed in (2.1), we have

F̄i(t) = t−α�i(t), where �i ∈ RV0 and
�i(t)

�j (t)
→ 1 as t →∞ for any i = j, (2.5)

which, together with F̄1(h(t)) = t−1, implies that

lim
t→∞ tP(Xi > h(t)s) = P(Xi > h(t)s)

F̄i(h(t))

F̄i(h(t))

F̄1(h(t))
= s−α, s > 0, 1 ≤ i ≤ d. (2.6)

More detailed discussions on univariate regular variation and MRV can be found in Bingham
et al. (1987) and Resnick (1987), (2007). The extension of MRV beyond the nonnegative orthant
can be done using the tail probability of ||X||, where || · || denotes a norm on R

d , in place of
the marginal tail probability in (2.3) (see Resnick (2007, Section 6.5.5)). The case in which the
limit in (2.1) is any nonzero constant can be easily converted into the standard tail-equivalent
case by properly rescaling margins. If the limit in (2.1) is 0 or ∞ then some margins have
heavier tails than others. One way to overcome this problem is to standardize the margins via
marginal monotone transforms.

A copula C is a multivariate distribution with standard uniformly distributed margins on
[0, 1]. Sklar’s theorem (see, e.g. Joe (1997, Section 1.6)) states that every multivariate
distribution F with univariate margins F1, . . . , Fd can be written as F(x1, . . . , xd) =
C(F1(x1), . . . , Fd(xd)) for some d-dimensional copula C. In the case of continuous univariate
CDFs, C is unique and

C(u1, . . . , ud) = F(F←1 (u1), . . . , F
←
d (ud)).

Let (U1, . . . , Ud) denote a random vector with Ui, 1 ≤ i ≤ d, being uniformly distributed on
[0, 1]. The survival copula Ĉ is defined as

Ĉ(u1, . . . , un) = P(1− U1 ≤ u1, . . . , 1− Un ≤ un) = C̄(1− u1, . . . , 1− un), (2.7)

where C̄ := 1+∑
∅=I⊆Id

(−1)|I |CI , is the joint survival function of C, where CI is the copula
for the I -margin. The lower and upper tail dependence functions, introduced in Jaworski (2006),
Klüppelberg et al. (2008), Nikoloulopoulos et al. (2009), and Joe et al. (2010), are defined as

bL(w;C) := lim
u→0+

C(uwi, 1 ≤ i ≤ d)

u
for all w > 0,

bU(w;C) := lim
u→0+

C̄(1− uwi, 1 ≤ i ≤ d)

u
for all w > 0, (2.8)

provided the limits exist. Since bL(w; Ĉ) = bU(w;C), a result on upper tail dependence can
be easily translated into a similar result for lower tail dependence, and, thus, we only focus on
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upper tail dependence in this paper. Instead of upper orthants used in (2.8), it is often more
convenient to work with the complements of lower orthants, leading to the upper exponent
function (see Nikoloulopoulos et al. (2009) and Joe et al. (2010)), that is,

aU(w;C) := lim
u→0+

P(
⋃d

i=1{Ui > 1− uwi})
u

, w ∈ E
(1)
0 , (2.9)

provided the limits exist. Note that exponent functions and tail dependence functions are
related through inclusion–exclusion relations. If the exponent function aU(·;C) exists for a
d-dimensional copula C then the exponent function aU(wI ;CI ) of any multivariate margin
CI (ui, i ∈ I ) of C also exists. Therefore, the existence of the exponent function aU(·;C)

implies that the upper tail dependence function bU(·;CI ) of any multivariate margin
CI (ui, i ∈ I ) of C exists (may be 0).

With the copula approach, the intensity measure ν in (2.3) can be decomposed, as was
shown in Li and Sun (2009), into the scale-invariant tail dependence and tail index. For
example, let X1, . . . , Xd be nonnegative random variables with survival functions F̄i satisfying
(2.1) and F̄1 ∈ RV−α . Suppose that X := (X1, . . . , Xd) is upper tail comonotonic (see
Hua and Joe (2012a), (2012b)) with copula C, that is, the upper tail dependence function
is bU(w1, . . . wd) = limu→0+ C̄(1− uw1, . . . , 1− uwd)/u = min{w1, . . . , wd} for wi >

0, i = 1, . . . , d. By definition, aU(w;C) =∑
∅=I⊆Id

(−1)|I |−1b(wI ;CI ). By Proposition 2
of Hua and Joe (2012b), b(wI ;CI ) = min{wi, i ∈ I }. Without loss of generality, let
w1 ≤ · · · ≤ wd . Then aU(w;C) =∑d−1

j=0
∑d−j

i=1 (−1)jwi

(
d−i
j

) = wd = max{w1, . . . , wd}.
Since upper tail comonotonicity corresponds to asymptotic full dependence, by Resnick (2007,
p. 196), the intensity measure ν satisfies ν([0, x]c) = (min{x1, . . . , xd})−α . Then, by The-
orem 2.3 of Li and Sun (2009), we shall have aU(w;C) = (min{w−1/α

1 , . . . , w
−1/α
d })−α =

max{w1, . . . , wd}, which is consistent with what we have derived.

3. Tail order for HRV on subcones

The regular variation property (2.3) defined on the cone R̄
d+ \ {0} employs the relatively

faster scaling h(t) that is necessary for convergence on the margins (see (2.6)), but such a
coarse normalization fails to reveal the finer dependence structure that may be present in the
interior. A scaling of smaller order is necessary for any regular variation properties resided or
hidden in a smaller cone E(l) for l = 2, 3, . . . , d. Precisely speaking, the MRV discussed in
Section 2 is the MRV on the cone E(1). MRV can also be defined on subcones (see Mitra and
Resnick (2010), (2011)). Let X be a nonnegative random vector. Then X possesses MRV on a
subcone E(l) if there exists a scaling function hl(t) ↑ ∞ and a nonzero Radon measure νl such
that

tP

(
X

hl(t)
∈ ·

)
v→ νl(·) in E(l), as t →∞. (3.1)

Moreover, if X also has MRV on a subcone E(m) that is a proper subset of E(l) then X is said
to possess HRV on E(m).

In order to illustrate the relation between the tail order of a copula and HRV, we first focus
on the simpler case where HRV is defined on the subcone E(2). A random vector X is said to
have HRV on E(2) if, in addition to (2.2), there exists an increasing scaling function h2(t) ↑ ∞
such that h(t)/h2(t)→ ∞ as t → ∞, and there exists a nonzero Radon measure ν2 on E(2)
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such that

tP

(
X

h2(t)
∈ B

)
→ ν2(B) as t →∞ (3.2)

for all relatively compact sets B ⊆ E(2) satisfying ν2(∂B) = 0. See Section 9.4 of Resnick
(2007) for more details on HRV on E(2).

Note that ν2 is necessarily homogeneous of order −α2 on E(2) for some α2 ≥ α.
Consider the set B∧ = {x ∈ R

d+ :
∧d

i=1 xi > 1}, which is relatively compact within E(2). Since
ν2(·) is nonzero and homogeneous, we must have ν2(B∧) > 0. Since (3.2) implies that
tP(

∧d
i=1 Xi > h2(t))→ ν2(B∧), we have

P(
∧d

i=1 Xi > h2(t)s)

P(
∧d

i=1 Xi > h2(t))
→ ν2(sB∧)

ν2(B∧)
= s−α2 as t →∞. (3.3)

Let F̄∧(t) := P(
∧d

i=1 Xi > t). Then the above limit shows that F̄∧ ∈ RV−α2 . The scaling
function h2(·) can be chosen to satisfy F̄∧(h2(t)) = t−1, t > 0, after appropriately normalizing
the hidden intensity measure by ν2(B∧). That is, h2(t) can be chosen as h2(t) = F←∧ (1− t−1),
where F←∧ (·) denotes the left-continuous inverse of F∧(·), and, thus, h2 ∈ RV

α−1
2

.

Remark 3.1. 1. The typical relatively compact sets in E(2) include subsets {xi > h2(t)wi, xj >

h2(t)wj }, wi > 0, wj > 0, i = j , whereas the topology on E(1) makes marginal events such
as {xi > h(t)wi} relatively compact. In order for P(Xi > h2(t)wi, Xj > h2(t)wj ) and
P(Xi > h(t)wi) to decay to 0 at a comparable speed, h(t) has to grow relatively faster than
h2(t) does to accommodate the relatively large marginal tail probability. Moreover, if both
(2.2) and (3.2) hold, then, for any w > 0 and B := (w,∞]2 × R̄

d−2+ ⊆ E(2) ,

ν(B) = lim
t→∞ tP(X ∈ h(t)B)

= lim
t→∞ t P

(
X

h2(t)
∈ h(t)

h2(t)
B

)

∼ ν2

(
h(t)

h2(t)
B

)
→ 0 as t →∞,

because h(t)/h2(t) → ∞ implies that h(t)B/h2(t) → ∅ as t → ∞. Thus, HRV on E(2)

implies asymptotic independence in the sense that ν(E(2)) = 0 (see Proposition 5.27 of Resnick
(1987) and Property 9.1 of Resnick (2007)).

2. If F has HRV on E(2) then the univariate margins Fi, 1 ≤ i ≤ d, have regularly varying
right tails with tail index α. In contrast, F could have lighter multivariate tails in the interior
with tail index α2. Geometrically, if α = α2 with h(t)/h2(t) → s > 0 (s is a constant),
marginal tails are in comparable magnitude with tails in the interior that link the marginal tails
together, resulting in dependence among multivariate extremes. If α < α2, tails in the interior
are lighter and decay faster than marginal tails, resulting in a lack of tail dependence among
random variables. In such a case, scaling that is comparable to lighter tails in the interior must
be used to reveal the extremal dependence structure in the interior.

HRV can also be analyzed using the copula method. Since the copula C of distribution F

satisfies

C̄(1− uwi, 1 ≤ i ≤ d) ≤ u min{w1, . . . , wd} for all 0 ≤ u ≤ 1, (w1, . . . , wd) ∈ R
d+,
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if the decay rate of the left-hand side with respect to u is faster than u as u → 0, then the
usual tail dependence function would be 0 (i.e. bU(w, C) ≡ 0), and in this case a higher-
order approximation with scaling uκ, κ > 1, must be used to reveal finer information about
extremal dependence. Considering this, an upper tail order function (see Hua and Joe (2011))
is introduced, i.e.

bU(w; κ) := lim
u→0+

C̄(1− uwi, 1 ≤ i ≤ d)

uκ�(u)
, wi > 0, 1 ≤ i ≤ d, (3.4)

if the limit exists for κ ≥ 1 and some nonnegative function �(u) that is slowly varying at 0
(i.e. �(t−1) ∈ RV0). The lower tail order function can be similarly defined.

The idea of the tail order function is to explore higher-order approximations to extremal
dependence in the upper tail from the tail of the uniform margin. If

C̄(1− uwi, 1 ≤ i ≤ d) ∼ uκ�(u)bU(w; κ) = [P(Fi(Xi) > 1− u�1/κ (u))]κbU(w; κ),

then, for small u > 0, bU(w; κ) can be used to capture the dependence structure emerged from
joint tails at the rate of κ times the rate of the marginal tail. The constant κ ≥ 1 is referred to
as the tail order. The case where κ = 1 and limu→0 �(u) = λ > 0 corresponds to the usual tail
dependence (2.8), and the case where d > κ > 1 may lead to intermediate tail dependence.
More precisely, when certain positive dependence assumptions hold (see Hua and Joe (2011)),
a copula C is said to have intermediate tail dependence if the limit (3.4) exists and is nonzero
for a scaling function uκ�(u) satisfying

uκ−1�(u) = uκ�(u)

u
→ 0 and uκ−d�(u) = uκ�(u)

ud
→∞ as u→ 0. (3.5)

That is, the scaling function uκ�(u) decays to 0 at a faster rate than that of the linear scaling u

used in (2.8), but slower than that of ud . When κ = d and �(u)→ k, a finite nonzero value,
we refer to this case as tail orthant independence. In this paper we will show that HRV may
not only lead to intermediate tail dependence or tail orthant independence, but may also give
rise to tail negative dependence (see Remark 4.2 below for a quick impression).

Similar to the situation for a tail dependence function (see Joe et al. (2010)), the existence
of the upper tail order function of a copula C does not in general ensure the existence of
upper tail order functions of its multivariate margins. Note that the upper tail order function
describes the relative decay rate of joint probabilities on upper orthants, whereas, for HRV
on different subcones E(l), 1 ≤ l < d, the corresponding intensity measure may have masses
on complements of lower orthants. That is, upper orthant sets may not contain all compact
subsets in E(l), 1 ≤ l < d, with an exception of the smallest subcone E(d), in which any
compact subset is contained in an upper orthant set. This is a key to establishing the relation
between the measure-theoretic MRV method and orthant-based copula approach (see Lemma
6.1 of Resnick (2007)). To this end, we introduce upper exponent functions on subcones. Let
U := (U1, . . . , Ud) have the copula C with Ui being uniformly distributed on [0, 1] for each
i. Define the upper exponent function on E(2) as

aU(w; 2, κ) := lim
u→0+

P(
⋃

i =j {Ui > 1− uwi, Uj > 1− uwj })
uκ�(u)

, w ∈ E
(2)
0 , (3.6)

provided the limit exists, where �(u) is slowly varying at 0. Note that the upper exponent
function aU (on E(1)) in (2.9) describes the tail dependence among univariate margins on
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[0, 1]d , whereas aU(w; 2, κ) describes the tail dependence among bivariate margins hidden
in E(2). Similarly, we can define the upper exponent function on a subcone E(l) as

aU(w; l, κ) := lim
u→0+

P(
⋃

i1 =i2 =···=il
{Ui1 > 1− uwi1 , . . . , Uil > 1− uwil })

uκ�(u)
, w ∈ E

(l)
0 ,

(3.7)
for 2 ≤ l ≤ d, provided the limit exists. Observe that, for I ⊆ Id with |I | = l, aU((wI , 0I c );
l, κ) = bU

I (wI ; κ), the tail order function of the multivariate marginal copula CI (ui, i ∈ I ).
The upper exponent function on E(2) and upper tail order functions for any multivariate

marginal copula CI with |I | ≥ 2 are related via inclusion–exclusion relations.

Proposition 3.1. If the exponent function aU(w; 2, κ) defined in (3.6) exists then the upper tail
order function bU

I (·; κ) of any multivariate margin CI with I ⊆ Id and 2 ≤ |I | ≤ d also exists.

Proof. We prove the statement by induction. When d = 2, aU(·; 2, κ) = bU(·; κ). Suppose
that the statement is true for dimension d− 1 (≥ 1) or less. We need to show that the statement
is true for dimension d . If aU(w; 2, κ) exists then the upper exponent function aU

I (wI ; 2, κ)

for any multivariate margin CI (ui, i ∈ I ) with I ⊆ Id and 2 ≤ |I | < d also exists. The
induction hypothesis implies that the upper tail order function bU

I (·; κ) of any multivariate
margin CI (ui, i ∈ I ) of C, I ⊂ {1, . . . , d}, |I | ≥ 2, exists. We now need to show that the tail
order function bU(w; κ) of C exists.

When d ≥ 3, for w ∈ E
(2)
0 ,

P

(⋃
i =j

{Ui > 1− uwi, Uj > 1− uwj }
)

= P

( d⋃
i=1

{Ui > 1− uwi}
)
−

d∑
i=1

P

(
{Ui > 1− uwi} ∩

(⋂
j =i

{Uj ≤ 1− uwj }
))

.

For any given i ∈ Id ,

P(Ui > 1− uwi, Uj ≤ 1− uwj for all j = i)

= P(Ui > 1− uwi)− P

(
{Ui > 1− uwi} ∩

( ⋃
j∈Id\{i}

{Uj > 1− uwj }
))

= P(Ui > 1− uwi)−
∑

∅=J⊆Id\{i}
(−1)|J |−1

P

(⋂
j∈J
{Ui > 1− uwi, Uj > 1− uwj }

)

= P(Ui > 1− uwi)−
∑
j =i

P(Ui > 1− uwi, Uj > 1− uwj )+ · · ·

+ (−1)d−1
P(U1 > 1− uw1, . . . , Ud > 1− uwd).

In addition,

P

( d⋃
i=1

{Ui > 1− uwi}
)
=

∑
∅=J⊆Id

(−1)|J |−1
P(Uj > 1− uwj , j ∈ J ).
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Therefore,

P

(⋃
i =j

{Ui > 1− uwi, Uj > 1− uwj }
)

= H(uw1, . . . , uwd)− (−1)d−1(d − 1)P(U1 > 1− uw1, . . . , Ud > 1− uwd),

where H(uw1, . . . , uwd) is a linear function of P(Uj > 1−uwj , j ∈ I ), I ⊂ {1, . . . , d}, with
d > |I | ≥ 2. As the upper tail order function bU

I (·; κ) of any multivariate margin CI (ui, i ∈ I )

of C, I ⊂ {1, . . . , d}, d > |I | ≥ 2, exists, the limit limu→0+ H(uw1, . . . , uwd)/(uκ�(u))

exists. Thus,

bU(w; κ) = (−1)d(d − 1)−1
[
aU(w; 2, κ)− lim

u→0+
H(uw1, . . . , uwd)

uκ�(u)

]

exists.

Remark 3.2. 1. Similarly, if the upper exponent function aU(w; l, κ) on E(l) defined in (3.7)
exists, then the upper tail order function bU

I (·; κ) of any marginal copula CI with I ⊆ Id and
l ≤ |I | ≤ d also exists. In particular, aU(w; d, κ) = bU(w; κ) in the smallest subcone E(d).

2. In general, the upper exponent function aU(w; l, κ) ≡ 0 on E(l) if and only if the upper tail
order functions bU

I (·; κ) are nonzero for at least one |I |-dimensional margin CI with |I | = l.

Relations between the tail order and HRV can be established by Propositions 3.2 and 3.3
below. The proofs of the two propositions need repeated use of some operating properties
of regularly varying functions. We refer the reader to Proposition 2.6 of Resnick (2007) for
references.

The following result establishes the relation between HRV on E(2) and the upper exponent
function aU(·; 2, κ) on E(2), where the κ is determined by the tail index α for MRV on E(1)

and the tail index α2 for MRV on E(2).

Proposition 3.2. Let X = (X1, . . . , Xd) be a nonnegative random vector with distribution
F , continuous margins F1, . . . , Fd satisfying (2.1), and copula C. Assume that F is regularly
varying with intensity measure ν and tail index α. If F has HRV on E(2) with intensity measures
ν2 and tail index α2, then the upper exponent function aU(w; 2, κ) of C exists, where κ = α2/α

and

aU(w; 2, κ) = ν2({x ≥ 0 : (w1/αx)[2] > 1}) for all continuity points w ∈ E(2).

Thus, the upper tail order function bU
I (·; κ) for CI exists, where CI is the copula for the I -margin

with 2 ≤ |I | ≤ d , and, in particular, bU(w1, w2; κ) = ν2((w
−1/α
1 ,∞] × (w

−1/α
2 ,∞]).

Proof. HRV on E(2) implies that there exists a function h2 ∈ RV
α−1

2
that satisfies (3.2).

Then the left-continuous inverse h2
←(·) ∈ RVα2 , and, thus, the reciprocal of the inverse can

be written as [h2
←(t)]−1 = t−α2�0(t) for some �0 ∈ RV0. Combining this expression with

(3.2) yields
P(X ∈ t B)

[h2
←(t)]−1 =

P(X ∈ t B)

t−α2�0(t)
→ ν2(B) as t →∞ (3.8)

for all relatively compact sets B ⊆ E(2) satisfying ν2(∂B) = 0.
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Since F̄1 ∈ RV−α, F̄←1 (u) is regularly varying at 0 with exponent −1/α. That is,

tu := F̄←1 (u) = u−1/α�1(u) (3.9)

for some function �1(·) that is slowly varying at 0. Note that u→ 0 if and only if tu→∞.
Let �(u) := [�1(u)]−α2�0(u

−1/α�1(u)). It follows from Proposition 2.6(iv) of Resnick
(2007) that �0(u

−1/α�1(u)) is slowly varying at 0, and, thus, �(u) is slowly varying at 0.
For any fixed w ∈ E

(2)
0 , κ = α2/α, consider

aU
u (w; 2, κ) = P(

⋃
i =j {Ui > 1− uwi, Uj > 1− uwj })

uκ�(u)

= P(
⋃

i =j {Fi(Xi) > 1− wiu, Fj (Xj ) > 1− wju})
[u−1/α�1(u)]−α2�0(u−1/α�1(u))

= P(
⋃

i =j {Xi > F̄←i (wiu), Xj > F̄←j (wju)})
t
−α2
u �0(tu)

. (3.10)

Since the margins are continuous and F̄i(x)/F̄1(x)→ 1 as x → ∞, F̄←i (u)/F̄←1 (u)→ 1 as
u→ 0+. Since F̄i(x) = x−α�i(x) for x ≥ 0, F̄←i (u) is regularly varying at 0 with exponent
−α−1, or, more precisely, F̄←i (us)/F̄←i (u)→ s−1/α as u → 0+ for any s > 0. Thus,
F̄←i (wiu)/F̄←1 (u)→ w

−1/α
i as u → 0+, and, for any small ε > 0, when u is sufficiently

small (see, e.g. Proposition 2.6 of Resnick (2007)),

(1− ε)w
−1/α
i <

F̄←i (wiu)

F̄←1 (u)
< (1+ ε)w

−1/α
i for any 1 ≤ i ≤ d.

Combining these inequalities with (3.9) and (3.10), we have, for any ε > 0, when u is
sufficiently small,

P(
⋃

i =j {Xi > tuw
−1/α
i (1− ε), Xj > tuw

−1/α
j (1− ε)})

t
−α2
u �0(tu)

≥ aU
u (w; 2, κ)

≥ P(
⋃

i =j {Xi > tuw
−1/α
i (1+ ε), Xj > tuw

−1/α
j (1+ ε)})

t
−α2
u �0(tu)

. (3.11)

When wi = 0, w
−1/α
i is treated as∞. Let

A := {x ≥ 0 : xi > w
−1/α
i , xj > w

−1/α
j , for some i = j}

= {x ≥ 0 : (w1/αx)[2] > 1}, w ∈ E(2),

which is relatively compact on E(2). Then, for any continuity set A with ν2(∂A) = 0, (3.8)
implies that

ν2((1+ ε)A) ≤ lim inf
u→0+

aU
u (w; 2, κ) ≤ lim sup

u→0+
aU
u (w; 2, κ) ≤ ν2((1− ε)A)

for any small ε > 0. Since ν2 is homogeneous of order −α2, the above chain of inequalities
becomes

(1+ ε)−α2ν2(A) ≤ lim inf
u→0+

aU
u (w; 2, κ) ≤ lim sup

u→0+
aU
u (w; 2, κ) ≤ (1− ε)−α2ν2(A),
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from which it follows, with ε→ 0+, that limu→0+ aU
u (w; 2, κ) exists, and

aU(w; 2, κ) = lim
u→0+

aU
u (w; 2, κ)

= ν2(A)

= ν2({x ≥ 0 : (w1/αx)[2] > 1}), w ∈ E(2), (3.12)

as desired. Then Proposition 3.1 implies that the upper tail order functions bU
I exist for |I | ≥ 2,

which completes the proof.

Proposition 3.3 proves that existence of aU(w; 2, κ) and asymptotically equivalent regularly
varying univariate margins will lead to HRV on E(2).

Proposition 3.3. Let X = (X1, . . . , Xd) be a nonnegative random vector with distribution F ,
continuous margins F1, . . . , Fd satisfying (2.1), and copula C. Assume that F̄1 ∈ RV−α . If, for
some κ ≥ 1, limit (3.6) exists with uκ�(u)/u→ 0, then the distribution of X, F(x1, . . . , xd) =
C(F1(x1), . . . , Fd(xd)), has HRV on E(2).

Proof. For any w ∈ E
(1)
0 \E(2)

0 , aU(w;C) is clearly well defined. For any w ∈ E
(2)
0 , let

A1 := ⋃d
i=1{Ui > 1− uwi} and A2 :=⋃

i =j {Ui > 1− uwi, Uj > 1− uwj }. It follows
from the inclusion–exclusion relation that

P(A1) =
d∑

i=1

P(Ui > 1− uwi)− P(A2) = u

( d∑
i=1

wi

)
− P(A2). (3.13)

Then (3.6) together with (3.13) implies that

aU(w;C) = lim
u→0+

P(A1)

u
=

d∑
i=1

wi − lim
u→0+

P(A2)

uκ�(u)

uκ�(u)

u
= w1 + · · · + wd

exists for any w ∈ E
(2)
0 . Therefore, owing to Theorem 2.3 of Li and Sun (2009), F is MRV

on E(1) with tail index α, and the corresponding intensity measure ν satisfies ν(A2) = 0
(asymptotic independence), and, moreover, the convergence (i) of Proposition 9.5 of Resnick
(2007) follows: for all z = (z1, . . . , zd) ∈ R

d+\{0},

lim
t→∞ tP

(
max

1≤i≤d
{ziXi} > h(t)s

)
= s−αaU(zα;C), s > 0.

It follows from Proposition 3.1 that the upper tail order function bU
I (·; κ) of any multivariate

margin CI with I ⊆ Id and 2 ≤ |I | ≤ d also exists. For any w ≥ 0, I ⊆ Id, and 2 ≤ |I | ≤ d,
consider

bU
u (wI ; κ) := P(

⋂
i∈I {Ui > 1− uwi})

uκ�(u)
= P(

⋂
i∈I {Xi > F̄←i (uwi)})

P(X1 > F̄←1 (uκ�(u)))
, (3.14)

and assume that bU
I (wI ; κ) = limu→0+ bU

u (wI ; κ) exists for κ ≥ 1. Here F̄←i ∈ RV−1/α(0)

implies that, for any small ε > 0 and 1 ≤ i ≤ d, as u→ 0+,

F̄←i ((1− ε)wiu)

F̄←1 (u)
→ (1− ε)−1/αw

−1/α
i ,

F̄←i ((1+ ε)wiu)

F̄←1 (u)
→ (1+ ε)−1/αw

−1/α
i .
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For any small ε > 0, when u > 0 is sufficiently small,

F̄←i ((1+ ε)wiu) ≤ w
−1/α
i F̄←1 (u) ≤ F̄←i ((1− ε)wiu), 1 ≤ i ≤ d,

which, together with (3.14), implies that (when wi = 0, w
−1/α
i is treated as∞)

bU
I ((1− ε)wI ; κ) ≤ lim inf

u→0+
P(

⋂
i∈I {Xi > w

−1/α
i F̄←1 (u)})

P(X1 > F̄←1 (uκ�(u)))

≤ lim sup
u→0+

P(
⋂

i∈I {Xi > w
−1/α
i F̄←1 (u)})

P(X1 > F̄←1 (uκ�(u)))

≤ bU
I ((1+ ε)wI ; κ).

Since bU
I (·; κ) is homogeneous of order κ , the above chain of inequalities becomes

(1− ε)κbU
I (wI ; κ) ≤ lim inf

u→0+
P(

⋂
i∈I {Xi > w

−1/α
i F̄←1 (u)})

P(X1 > F̄←1 (uκ�(u)))

≤ lim sup
u→0+

P(
⋂

i∈I {Xi > w
−1/α
i F̄←1 (u)})

P(X1 > F̄←1 (uκ�(u)))

≤ (1+ ε)κbU
I (wI ; κ).

Let t := u−κ . As ε→ 0, the limit

lim
t→∞

P(
⋂

i∈I {Xi > w
−1/α
i F̄←1 (t−1/κ )})

P(X1 > F̄←1 (t−1�(t−1/κ )))
= bU

I (wI ; κ)

exists for all w ≥ 0. Let g(t−1) := t−1�(t−1/κ ), with g(t−1) eventually decreasing to 0.
Observe that �(t−1/κ ) ∈ RV0, and, thus, we have g(t−1) ∈ RV−1. Set s−1 = g(t−1), leading
to t−1 ∼ g←(s−1) as s →∞, where g←(·) denotes the left-continuous inverse of g(·). Thus,
we have

lim
s→∞

sP(
⋂

i∈I {Xi > w
−1/α
i F̄←1 ([g←(s−1)]1/κ )})

sP(X1 > F̄←1 (s−1))
= bU

I (wI ; κ).

Let h2(s) := F̄←1 ([g←(s−1)]1/κ ) and h(s) := F̄←1 (s−1). Define α2 := κα ≥ α. Then h(s) ∈
RV1/α and h2(s) ∈ RV1/α2 . On the other hand, clearly, sP(X1 > h(s))→ 1 as s →∞. Thus,
for w ≥ 0,

lim
t→∞ tP

(
X

h2(t)
∈

∏
i∈I

(w−1
i ,∞]

)
= bU

I (wα
I ; κ).

Rephrasing this limit differently, we have, for any I ⊆ Id and 2 ≤ |I | ≤ d,

lim
t→∞ tP

(
min
i∈I {wiXi} > h2(t)s

)
= bU

I

((
wI

s

)α

; κ
)
= s−α2bU

I (wα
I ; κ), s > 0,

where α2 = κα, leading to convergence (ii) of Proposition 9.5 of Resnick (2007), when only
components with indexes in I are finite. By Proposition 9.5 of Resnick (2007), F is MRV
on E(2).
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Remark 3.3. The proof of Proposition 3.3 also yields an interpretation for the functions c(·)
and d(·) in Proposition 9.5 of Resnick (2007) in terms of upper exponent and tail order functions
of the underlying copula C. That is, if κ = α2/α then, for the functions c(z) and d(z),

1. c(z) = aU(zα;C) for all z ∈ R
d+\{0};

2. d(z) = bU
I (zα

I ; κ) if only components of z with indexes in I are finite, I ⊆ Id, and
2 ≤ |I | ≤ d .

For a subspace E ⊆ R̄
d+, let M+(E) denote the class of the nonnegative Radon measures

on E. Mitra and Resnick (2011) provided a representation of MRV on a general subcone E(l)

for l = 1, . . . , d. In contrast to the previous study on norm-based polar transforms for MRV
on subcones, the method in Mitra and Resnick (2011) fixes directions on an order-statistics-
based unit envelope δNl := {x ∈ E(l) : x[l] = 1} that wraps all open portions of the boundaries
of subcone E(l) from within. Note that δNl is always compact within E(l), and this leads to
a product-measure representation for the intensity measure νl(·) of MRV on E(l), where the
spectral or directional measure Sl(·) is always finite. We refer the reader to Proposition 3.1 of
Mitra and Resnick (2011) for more details.

The order-statistics-based homogeneous transform also yields a representation of Pickands
type for the upper exponent function on E(l). The following result illustrates the idea with the
subcone E(2).

Proposition 3.4. Let X = (X1, . . . , Xd) be a nonnegative random vector with distribution F

and continuous marginal CDFs F1, . . . , Fd satisfying (2.1). Assume that F has HRV on E(2)

with intensity measure ν2 and tail index α2. Then

aU(w; 2, κ) =
∫

δN2

[(w1/αs)[2]]α2S2(ds),

where α2 = κα and S2(·) is a finite-directional measure.

Proof. By Proposition 3.2, for any w ∈ E(2),

aU(w; 2, κ) = ν2({x ≥ 0 : (w1/αx)[2] > 1}) =: ν2(A).

Noting that δN2 := {x ∈ E(2) : x[2] = 1}, let T : E(2)→ (0,∞)× δN2 be a transform such
that

T (y) =
(

y[2],
y

y[2]

)
=: (r, s), (3.15)

with the left inverse T −1(r, s) = rs. Consider

ν2(A) = ν2 ◦ T −1(T (A)) = ν2 ◦ T −1
({

(r, s) : r >
1

(w1/αx)[2]
, s ∈ δN2

})
.

By Proposition 3.1 of Mitra and Resnick (2011), there exists a finite measure S2 such that
ν2 ◦ T −1(dr, ds) = α2r

−α2−1 drS2(ds). Since both measures are finite, we can apply Fubini’s
theorem to obtain

ν2(A) =
∫

δN2

∫ ∞
1/(w1/αx)[2]

α2r
−α2−1 drS2(ds) =

∫
δN2

[(w1/αs)[2]]α2S2(ds),

which completes the proof.
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All of the above results on E(2) can be extended to subcone E(l), 3 ≤ l ≤ d. For example,
if F has HRV on E(l) with intensity measure νl and tail index αl , then

aU(w; l, κ) =
∫

δNl

[(w1/αs)[l]]αl Sl(ds), (3.16)

where αl = κα and Sl(·) is a finite-directional measure.

4. Tail order functions

Tail order functions are directly related to upper exponent functions (see Remark 3.2).
Based on representation (3.16), the upper exponent function can be derived from a finite
measure Sl . Since the upper tail order function of a d-dimensional copula C coincides with
its upper exponent function on E(d), we can construct the upper tail order function from the
finite-directional measure Sd as well; this will be studied in Section 4.1 with the bivariate case.
However, for HRV on E(l) with 1 < l < d, there is an inclusion–exclusion relation between
aU(w; l, κ) and upper tail order functions, and the related discussions and examples will be
given in Section 4.2.

4.1. Bivariate cases

When d = 2, aU(w1, w2; 2, κ) = b(w1, w2; κ), where b is the upper tail order function that
is homogeneous of order κ . The support of the measure S2 is {(s2, 1), (1, s1) : 1 ≤ s1, s2 ≤ ∞},
which is the union of a horizontal line and a vertical line that meet at the corner point (1, 1).
Let H1 be a finite measure defined on the vertical line [(1, 1), (1,∞)], and let H2 be a finite
measure defined on the horizontal line [(1, 1), (∞, 1)]. We can write (since κ = α2/α)

aU(w1, w2; 2, κ) =
∫

(1,∞]
min{wκ

1 , sα2wκ
2 }H1(ds)+

∫
(1,∞]

min{wκ
2 , sα2wκ

1 }H2(ds)

+min{wκ
1 , wκ

2 }S({(1, 1)}). (4.1)

For w1 = 1 and w2 = w > 1,

b(1, w; κ) = aU(1, w; 2, κ)

= H1((1,∞])+
∫

(1,w1/α]
sα2H2(ds)+ wκH2((w

1/α,∞])+ S({(1, 1)}). (4.2)

If H2 is absolutely continuous with respect to the Lebesgue measure and h2 is the density, then
b(1, w; κ) is differentiable in w, and by Leibniz’s rule for integrals,

∂b(1, w; κ)

∂w
= κwκ−1H2((w

1/α,∞]).
Therefore, H2 has the representation

H2((w
1/α,∞]) = κ−1w1−κ ∂b(1, w; κ)

∂w
=: κ−1w1−κg2(w), 1 < w ≤ ∞. (4.3)

By symmetry, if H1 is absolutely continuous with respect to the Lebesgue measure then

H1((w
1/α,∞]) = κ−1w1−κ ∂b(w, 1; κ)

∂w
=: κ−1w1−κg1(w), 1 < w ≤ ∞. (4.4)

Now we examine how to relate the tail order function to the strength of dependence.
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Example 4.1. Let b(w1, w2; κ) = w
ξ
1w

κ−ξ
2 , where 1 < κ < 2 and 0 < ξ < κ . It can be an

upper tail order function from the survival copula of a bivariate extreme value copula. Then

b(1, w; κ) = wκ−ξ , g2(w) = (κ − ξ)wκ−ξ−1,

b(w, 1; κ) = wξ , g1(w) = ξwξ−1.

Therefore, by (4.3) and (4.4),

H2((w
1/α,∞]) = κ−1w1−κ(κ − ξ)wκ−ξ−1 = κ−1(κ − ξ)w−ξ ,

H1((w
1/α,∞]) = κ−1w1−κξwξ−1 = κ−1ξwξ−κ .

Then the densities of the measures H2 and H1 are

h2(w) = αξ(κ − ξ)κ−1w−αξ−1, h1(w) = αξ(κ − ξ)κ−1wα(ξ−κ)−1,

respectively. Moreover, (4.2) implies that

S({(1, 1)}) = b(1, w; κ)−H1((1,∞])−
∫

(1,w1/α]
sα2H2(ds)− wκH2((w

1/α,∞])

= wκ−ξ − κ−1ξ − κ−1ξ(wκ−ξ − 1)− κ−1(κ − ξ)wκ−ξ

≡ 0.

Example 4.2. Let b(w1, w2; κ) = (w1 + w2)
κ − wκ

1 − wκ
2 , where 1 < κ < 2. It can be an

upper tail order function from a bivariate Archimedean copula (see Hua and Joe (2011)). Then

b(1, w; κ) = b(w, 1; κ) = (1+w)k−1−wκ, g1(w) = g2(w) = κ(1+w)κ−1−κwκ−1.

Therefore, by (4.3) and (4.4),

H1((w
1/α,∞]) = H2((w

1/α,∞])
= κ−1w1−κ [κ(1+ w)κ−1 − κwκ−1]
= (1+ w−1)κ−1 − 1,

and h1(w) = h2(w) = α(κ − 1)(w−α + 1)κ−2w−α−1. Therefore, by (4.2),

S({(1, 1)}) = [(1+ w)k − 1− wκ ] − (2κ−1 − 1)− [(1+ w)κ−1 − 2κ−1]
− wκ [(1+ w−1)κ−1 − 1]

≡ 0.

Remark 4.1. Choosing ξ = κ/2 in Example 4.1, the densities h1, h2 ∈ RV−1−α2/2. For
Example 4.2, the densities h1, h2 ∈ RV−1−α . Also, 1 < κ < 2 and κ = α2/α imply that
−1−α2/2 > −1−α. Note that from (4.1), with the same corresponding tail order κ , the upper
tail of a bivariate Archimedean copula may be more dependent than the lower tail of a bivariate
extreme value copula in the sense that the tail order function for the Archimedean copula is
relatively larger.

https://doi.org/10.1239/jap/1395771412 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771412


52 L. HUA ET AL.

Example 4.3. (Geometric mixtures of comonotonicity and independence.) Let b(w1, w2; κ) =
(w1 ∧ w2)

2−κ(w1w2)
κ−1, 1 < κ < 2. This is a geometric mixture of tail order functions of

comonotonicity and independence. Then

b(1, w; κ) = b(w, 1; κ) = wκ−1, g1(w) = g2(w) = (κ − 1)wκ−2.

Equations (4.3) and (4.4) imply that

H1((w
1/α,∞]) = H2((w

1/α,∞]) = κ−1w1−κ [(κ − 1)wκ−2] = κ−1(κ − 1)w−1,

and h1(w) = h2(w) = ακ−1(κ − 1)w−α−1. Therefore, by (4.2),

S({(1, 1)}) = [wκ−1] − [κ−1(κ − 1)] − [κ−1(wκ−1 − 1)] − wκ [κ−1(κ − 1)w−1]
= 2κ−1 − 1.

Given any finite measure on δN2 with sufficient regularity conditions (or, equivalently,
given that H1, H2, and S({(1, 1)}) are finite, and H1 and H2 are absolutely continuous), we
now study whether the b function based on (4.2) and a parallel expression for b(w, 1; κ) is
always an appropriate tail order function; more specifically, whether

b(w1, w2; κ) =

⎧⎪⎪⎨
⎪⎪⎩

wκ
1 b

(
1,

w2

w1
; κ

)
, 0 < w1 < w2,

wκ
2 b

(
w1

w2
, 1; κ

)
, 0 < w2 ≤ w1,

(4.5)

is a tail order function with tail order κ . Note that, from (4.1), b(1, 1; κ) is consistent for
b(1, w; κ) and b(w, 1; κ), so we can consider expression (4.5). If such a function b is a tail
order function for the bivariate case then b(w1, w2) must be positively homogeneous of order
2, increasing in each argument, and also 2-increasing. By construction, it is homogeneous of
order κ . It is easy to verify that b(w1, w2) is increasing in w1 and w2 by (4.3) and (4.4). Now
we check the 2-increasing requirement. Differentiate (4.5) with respect to w1 and w2. We show
the details only for 0 < w1 < w2 as the other case is symmetric:

∂b(w1, w2)

∂w2
= wκ−1

1 g2

(
w2

w1

)
and

∂2b(w1, w2)

∂w1∂w2
= (k − 1)wκ−2

1 g2

(
w2

w1

)
− w2w

κ−3
1 g′2

(
w2

w1

)
.

Note that ∂b(w1, w2)/∂w2 is homogeneous of order κ − 1 and

h(w1, w2) := ∂2b(w1, w2)

∂w1∂w2

is homogeneous of order κ − 2. Let w := w2/w1 > 1. Then, without loss of generality,

h(w1, w2) = h

(
1,

w2

w1

)
wκ−2

1

= wκ−2
1

[
(k − 1)g2

(
w2

w1

)
−

(
w2

w1

)
g′2

(
w2

w1

)]
= wκ−2

1 [(k − 1)g2(w)− wg′2(w)].
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By (4.3), g2(w) = κwκ−1H2((w
1/α,∞]). Therefore,

(κ − 1)g2(w)− wg′2(w) = (κ − 1)κwκ−1H2((w
1/α,∞])− (κ − 1)κwκ−1H2((w

1/α,∞])
+ κ

α
h2(w

1/α)wκ+1/α−1

= κ

α
h2(w

1/α)wκ+1/α−1

≥ 0.

Therefore, h(w1, w2) ≥ 0, that is, we have proved that the function b is 2-increasing, and, thus,
b is a tail order function.

Moreover, depending on the measures of H1 and H2, b(1, w; κ) and b(w, 1; κ) can be
bounded or unbounded as w→∞. For example, based on (4.2), if H2 is a probability measure
defined on (1,∞] with FH2(·) as the distribution, and FH2 ∈ RV−α2−ε, then b(1, w; κ) is
bounded (unbounded) as w → ∞ when ε > 0 (ε < 0). Examples 4.1, 4.2, and 4.3 have
unbounded b(1, w; κ). Given a tail dependence function bU as defined in (2.8), b(w1, w2; κ) :=
bU(wκ

1 , wκ
2 )/bU(1, 1) can be a tail order function. Since bU(1,∞) ≤ 1, if bU(1, 1) = 0, that

is, the tail dependence parameter λU in the sense of Section 2.1.10 of Joe (1997) satisfies
0 < λU ≤ 1, then the tail order function b(w1, w2; κ) also satisfies b(1,∞; κ) < ∞; that is,
b(1, w; κ) is bounded.

4.2. Multivariate cases

For multivariate cases with dimension d ≥ 3, Proposition 2(2) of Hua and Joe (2011) implies
that κI ≤ κJ if I ⊆ J ⊆ Id . It follows from the proof of Proposition 3.1 that, when we analyze
HRV on E(2), we can determine the tail order κ and the slowly varying function � used in (3.6)

based on all the bivariate margins. The smallest κ among the tail orders for all the bivariate
margins and its associated slowly varying functions would be used for (3.6); if more than one
bivariate margin has smallest κ , then the tail order κ and the largest slowly varying function for
these bivariate margins would be used for (3.6). In this case, the upper exponent function on
E(2) exists, and, by Proposition 3.1, all the upper tail order functions exist, but some of them
could always be 0.

If, for all multivariate margins CI with I ⊂ Id and 1 < |I |, the corresponding upper
tail orders are the same and the associated slowly varying functions are tail equivalent up to
some finite constants at 0+, then HRV on E(2) suffices; see Example 4.4 below for such a
case with an Archimedean copula. Otherwise, we need to seek HRV on the other subcones
E(i), i = 3, . . . , d; Example 4.5 below shows such a case with a Gaussian copula.

Example 4.4. (Archimedean copula based on the Laplace transform of the inverse gamma
(also known as the ACIG copula; see Hua and Joe (2011)).) A positive continuous random
vector X := (X1, . . . , Xd) that has an ACIG copula with the dependence parameter β > 1, and
tail equivalent univariate margins F̄i ∈ RV−α, i ∈ Id , has HRV on E(2), because of Proposition
3.3 and the fact that all bivariate margins have upper tail order κ = min{2, β}. The interesting
thing is, if 1 < β < 2 then, for any marginal copula CI with I ⊆ Id , the upper tail order
is κ(CI ) = β. Moreover, by reviewing the proof of Proposition 6 of Hua and Joe (2013),
the associated slowly varying functions for upper tail order functions of the ACIG copula are
constants. Therefore, by Proposition 3.1, all the upper tail order functions for CI exist and are
not 0, so there is no HRV on E(i), i = 3, . . . , d.
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Example 4.5. (Gaussian copula..) For the Gaussian copula

C(u1, . . . , ud) := ��(�−1(u1), . . . , �
−1(ud)),

we assume that all the correlation coefficients are ρ. From Hua and Joe (2011), the tail order
for such a copula is κ = 1d�−11�d = d/[1+ (d − 1)ρ], and all bivariate margins have upper
tail order κ{ij} = 2/(1+ ρ). If a positive, continuous random vector X has the Gaussian copula
and the univariate margins Xi ∈ RV−α, i ∈ Id , then X has HRV on E(2) by Proposition 3.3.
The HRV structure here is different than that in Example 4.4. The Gaussian copula has
different upper tail orders for margins with different dimensions, and there are still HRVs
on E(3), . . . , E(d). The upper exponent function on E(2) leads to the upper tail order functions
always being 0 for CI with 3 ≤ |I | ≤ d , and cannot provide useful information for the interior
of E(2), so we need to seek HRV on the other subcones. Note that if some of the correlation
coefficients are different then the smallest κ{ij} = 2/(1+ρij ) (corresponding to the largest ρij )
will be used in (3.6), and the upper exponent function becomes

aU(w; 2, κ)

:= lim
u→0+

P(
⋃
{i =j : ρij=max{ρkl ,k =l}}{Ui > 1− uwi, Uj > 1− uwj })

uκ�(u)
, w ∈ E

(2)
0 .

Remark 4.2. Note from the bivariate Gaussian copula with a negative ρ that HRV on E(2) can
even lead to κ = α2/α > 2. That is, HRV may lead to upper tail negative dependence. It is the
ratio between the tail index for HRV and the tail index for MRV on E(1) that determines the
value of the upper tail order, and, thus, the pattern of dependence in the upper tail.

5. A mixture representation

In this section we present a general mixture representation that can be used to generate tail
order functions. One special case of the mixture representation corresponds to the Pickands-
type representation (3.16). In comparison, the previous section just has tail order functions from
some known copula families. If we were to use the tail order function for tail risk analysis or
inferences on joint tail probabilities, it is important to have large classes of tail order functions
as potential models.

Let B ∼ Bernoulli(π), 0 < π < 1, Z ∼ Pareto(α2), R := (R1, . . . , Rd) be a random
vector with CDF FR with each margin being defined on [1,∞], and let X1, . . . , Xd be
independent Pareto(α2) random variables. Suppose that B, Z, X1, . . . , Xd , and (R1, . . . , Rd)

are all mutually independent. Moment assumptions on the Rj are given below. Consider

Yj := BRjZ + (1− B)X
γ

j , j = 1, . . . , d, 1 < γ < d. (5.1)

We will show that the random vector Y := (Y1, . . . , Yd) has HRV on E(d) and the upper tail
order is κ = γ . Moreover, for the bivariate case, if the probability measure generated by FR

only puts mass on δN2 then FR1 and FR2 correspond to the measures of H1 and H2 in Section 4,
respectively, up to some normalization constants.

For each univariate margin,

P(Yj > y) = π

∫ ∞
1

(
1+ y

r

)−α2

dFRj
(r)+ (1− π)(1+ y1/γ )−α2 .

Assume that
∫∞

1 rα2 dFRj
(r) <∞, that is, E[Rα2

j ] is finite. Then F̄Yj
∈ RV−α2/γ , and, as

u → 0, F̄−1
Yj

(u) ∼ [u/(1− π)]−γ /α2 . Let α := α2/γ . Then, for each univariate margin Yj ,
F̄Yj
∈ RV−α .
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For the joint survival probability,

P(Yj > yj , j = 1, . . . , d) = π

∫ ∞
1

[
1+max

j

{
yj

rj

}]−α2

dFR(r)+ (1−π)

d∏
j=1

(1+y
1/γ

j )−α2 .

The survival copula for Y is

C(u) = P(Yj > F̄−1
Yj

(u), j = 1, . . . , d)

= π

∫ ∞

1

[
1+max

j

{ F̄−1
Yj

(u)

rj

}]−α2

dFR(r)+ (1− π)

d∏
j=1

(1+ [F̄−1
Yj

(u)]1/γ )−α2 .

Then

lim
u→0+

C(uw)

uγ

= lim
u→0+

π
∫ ∞

1 [1+maxj {F̄−1
Yj

(uwj )/rj }]−α2 dFR(r)+(1−π)
∏d

j=1(1+[F̄−1
Yj

(uwj )]1/γ )−α2

uγ

= lim
u→0+

π
∫ ∞

1 [1+maxj {F̄−1
Yj

(uwj )/rj }]−α2 dFR(r)

uγ

= π(1− π)−γ

∫ ∞

1

[
min

j
{wγ/α2

j rj }
]α2

dFR(r) (5.2)

= π(1− π)−γ

∫ ∞

1

[
min

j
{w1/α

j rj }
]α2

dFR(r). (5.3)

To get (5.2), a sufficient condition is that E[(minj∈{1,...,d} Rj )
α2 ] <∞. Therefore, the tail order

κ satisfies 1 < κ = γ , and, by Proposition 3.3, Y has HRV on E(2).
Comparing (5.3) to (3.16) with l = d , we find that the Ri here may play a similar role to

the measure Sd . For the bivariate case, the upper tail order function coincides with the upper
exponent function on E(2). Then, letting κ = γ > 1,

b(w1, w2; κ) = π(1− π)−κ

∫ ∞
1

∫ ∞
1

min{wκ
1 r

α2
1 , wκ

2 r
α2
2 } dFR(r). (5.4)

Note that in the mixture representation (5.1), we do not specify the dependence structure
between the Rj s. If in the bivariate case the probability measure generated by the distribution
FR of R1 and R2 only puts mass on the L-shape line δN2, then FR1 and FR2 correspond
to the H1 and H2 measures in (4.4) and (4.3), respectively, up to some finite normalization
constants. More generally, consider polar coordinates with angle θ ∈ [0, π/2], radial variable
z with r1 = z cos θ and r2 = z sin θ , and random variables (Z, �) obtained from (R1, R2).
The moment condition on E[(min{R1, R2})α2 ] implies a moment condition on Z. Also, note
that

wκ
1 r

α2
1 ≤ wκ

2 r
α2
2 ⇐⇒ r

α2
1 ≤

(
w2

w1

)κ

r
α2
2

⇐⇒ r
α2
2 ≥ r

α2
1

(
w1

w2

)κ

⇐⇒ (tan θ)α2 ≥
(

w1

w2

)κ

.

https://doi.org/10.1239/jap/1395771412 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771412


56 L. HUA ET AL.

Let ϑ(w1, w2) := arctan[(w1/w2)
κ/α2 ], E2(θ) := E(Z1+α2 | � = θ), and F� be the CDF of

the angle � obtained from FR . Then (5.4) implies that

b(w1, w2; κ)

π(1− π)−κ
=

∫ ϑ(w1,w2)

0

∫ ∞
z=1

wκ
2 zα2(sin θ)α2z dFZ,�(z, θ)

+
∫ π/2

ϑ(w1,w2)

∫ ∞
z=1

wκ
1 zα2(cos θ)α2z dFZ,�(z, θ)

= wκ
2

∫ ϑ(w1,w2)

0
E2(θ)(sin θ)α2 dF�(θ)

+ wκ
1

∫ π/2

ϑ(w1,w2)

E2(θ)(cos θ)α2 dF�(θ).

Hence, b(·) depends on FR only through E2(θ) and F�.
If R1 and R2 are comonotonic then (5.4) provides an upper bound for all bivariate upper tail

order functions for random vectors that have the representation (5.1), that is, after appropriate
normalization, min{wκ

1 , wκ
2 } can be an upper bound for all such bivariate upper tail order

functions. Interesting tail order functions can result by taking specific parametric families for
R1 and R2, for example, if R1 and R2 are independent Weibull random variables then the tail
order function (hence, the associated intensity measure ν2 in Proposition 3.2) could incorporate
negative as well as positive dependence, in the sense that X1 and X2, with the induced survival
function

F̄X1,X2(x1, x2) := b(x−1
1 , x−1

2 )

b(1, 1)
= ν2((x1,∞)× (x2,∞))

ν2((1,∞)× (1,∞))
,

can be positively or negatively dependent.
For dimension d ≥ 3, the upper tail order function coincides with the upper exponent

function on E(d). Then (5.3) can still be used to explain the measure Sd for HRV on E(d). That
is, if the probability measure FR only puts mass on δNd then FR corresponds to the measure Sd ,
up to some normalization constants. However, for HRV on E(l) with 2 ≤ l < d and d ≥ 3, the
mixture representation (5.1) is not suitable to explain the measure Sd , and a related discussion
for this case is already given in Section 4.2.

6. Concluding remarks

Depending on the tail index of univariate margins and the tail index for MRV on subcones
of E(i), i = 2, . . . , d, the upper tail order κ of the underlying copula can take any value
greater than or equal to 1. This means, in addition to the usual tail dependence, MRV may also
incorporate the cases of intermediate tail dependence, tail orthant independence, and even tail
negative dependence. If a d-dimensional random vector X has MRV on E(1) with copula C

and tail equivalent Pareto-like univariate margins with tail index α, then the upper tail order
for the marginal copula CI with I ⊆ Id and 2 ≤ |I | ≤ d is determined by the ratio of the tail
index α|I |, if it exists, of MRV on E(|I |) and the tail index α for MRV on E(1).

Upper exponent functions on subcones for copulas have been introduced, and connections
between those upper exponent functions and the intensity measures νi for HRV on the subcones
have been established. The representations of Pickands type for upper exponent functions
on subcones were obtained using an order-statistics-based product-measure decomposition.
A mixture model for HRV on E(d) was constructed, for which, after appropriate normalization,
the upper tail order function (i.e. the upper exponent function on E(d)) can be represented by
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an integral with respect to a mixing probability measure that resembles the finite-directional
measure in the Pickands representation.

We have built in this paper a bridge between the measure-theoretic MRV/HRV theory and
the copula method for analyzing extremal dependence. On the one hand, the methods already
developed in the MRV/HRV theory can be used to analyze tail dependence of copulas. On the
other hand, there are many existing parametric copula families, and it is also relatively easier to
create new parametric copula families. Therefore, the copula approach allows rich parametric
distribution families to facilitate statistical analysis for multivariate heavy tail phenomena.
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