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Abstract

This work is concerned with the existence of an optimal control strategy for the long-
run average continuous control problem of piecewise-deterministic Markov processes
(PDMPs). In Costa and Dufour (2008), sufficient conditions were derived to ensure
the existence of an optimal control by using the vanishing discount approach. These
conditions were mainly expressed in terms of the relative difference of the α-discount
value functions. The main goal of this paper is to derive tractable conditions directly
related to the primitive data of the PDMP to ensure the existence of an optimal
control. The present work can be seen as a continuation of the results derived in
Costa and Dufour (2008). Our main assumptions are written in terms of some integro-
differential inequalities related to the so-called expected growth condition, and geometric
convergence of the post-jump location kernel associated to the PDMP. An example based
on the capacity expansion problem is presented, illustrating the possible applications of
the results developed in the paper.
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1. Introduction

Piecewise-deterministic Markov processes (PDMPs) have been introduced in the literature
by Davis [4], [5] as a general class of stochastic models suitable for formulating optimization
problems in queueing and inventory systems, maintenance/replacement models, investment
scheduling, and many other areas of operations research. PDMPs are a family of Markov
processes involving deterministic trajectories punctuated by random jumps. On a state space
E the motion of a PDMP is determined by three parameters: the flow φ, the jump rate λ, and
the transition measure Q. Between two jumps, the trajectory of a PDMP follows the flow φ.
The jumps occur either spontaneously in a Poisson-like fashion with rate λ or when the flow
hits the boundary of the state space. In either case the location of the process at the jump time
is selected by the transition measure Q.
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Control of PDMPs has received considerable attention in the literature, and the interested
reader may consult the book by Davis [5] and the references therein for a complete view of
the general theory related to this class of processes. Costa and Dufour [2] studied the long-run
average continuous control problem of PDMPs taking values in a general Borel space. At each
point x of the state space, a control variable was chosen from a compact action set U(x) and
applied to the jump parameter λ and transition measure Q. The goal was to minimize the
long-run average cost, which was composed of a running cost and a boundary cost (which is
added each time the PDMP touches the boundary). Both costs were assumed to be positive
but not necessarily bounded. As far as the authors are aware, this was the first time that this
kind of problem was considered in the literature. The approach developed in [2] to study the
long-run average control problem of PDMPs was somehow related to the classical analysis of
Markov decision processes. In particular, sufficient conditions were derived in [2] to ensure
the existence of an optimal control by using the so-called vanishing discount approach. These
conditions were mainly expressed in terms of the relative difference hα(x) = JαD (x)− JαD (x0)

of the α-discount value functions JαD . Roughly speaking, it was shown in [2, Section 8] that
if there exists a fixed state x0 such that αJαD (x0) is bounded in a neighborhood of α = 0,
and if the relative difference hα satisfies −Kh ≤ hα(x) ≤ b(x) for a nonnegative constant Kh
and a measurable function b, then there exists an optimal control. From a practical point of
view, this result is not completely satisfactory due to the fact that these conditions depend on
the α-discount value function JαD , which may be difficult to obtain explicitly even for simple
examples.

The aim of the present work is to overcome this difficulty by providing tractable conditions
that are directly related to the primitive data (φ, λ,Q) of the PDMP to ensure the existence
of an optimal control. The problem of finding sufficient conditions based on the primitive
data of the process is well studied in the literature of the long-run average control problem
for Markov decision processes. We do not attempt to present an exhaustive panorama on this
topic, but refer the interested reader to [8], [9], [10], [11], [16], and the references therein for
detailed discussions on this problem. In this paper we present some assumptions based on
integro-differential inequalities related to positive test functions g and r̄ (see Assumption 3.1),
and on the geometric convergence of the post-jump location kernel associated to the PDMP
(see Assumption 3.2), so that, under these hypotheses, we can show that αJαD (x0) is bounded
in a neighborhood of α = 0 and that the relative difference of the α-discount value function hα
belongs to a weighted-norm space of functions, labeled Bg(E). Another important difference
with respect to [2] is that in the present work hα is not necessarily bounded below by a constant.
Indeed, this last property was crucial in [2] to show that there exists a solution to an average cost
optimality inequality (ACOI) having this same boundedness property, leading to the existence
of an optimal control for the PDMP. Here we can only show that a solution to the ACOI exists
but belongs to Bg(E). Consequently, the approach presented in [2] cannot be used in the present
context and has to be refined.

The paper is organized in the following way. In Section 2 we introduce some notation, basic
assumptions, the problem formulation, and the one-stage optimization operators that will be
associated to the ACOI. In Section 3 we introduce several assumptions related to the continuity
of the parameters, the expected growth condition, and geometric convergence of the post-jump
location of the PDMP. The main results are presented in Section 4, which provides sufficient
conditions for the existence of a solution to the ACOI and an optimal control strategy for the
long-run average continuous control problem of a PDMP in terms of the parameters defining
the process. An example based on the capacity expansion problem is presented in Section 5,
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illustrating the possible applications of the results developed in this paper. For the sake of
clarity in exposition, most of the proofs are presented in Appendix A.

2. Notation, basic assumptions, and problem formulation

The purpose of this section is to present some standard notation and some basic definitions
related to the motion of a controlled PDMP {X(t)}, as well as the control problem and the
one-stage optimization operators associated to the ACOI that we will consider throughout the
paper. For further details and properties of a PDMP, we refer the reader to [5]. In Subsection
2.1, besides presenting some basic notation and assumptions, we define the set of admissible
control strategies U as well as the associated motion of the controlled process, and the long-run
average and discounted optimal control problems. In Subsection 2.2 we introduce the sets of
discrete-time relaxed and ordinary controls, which will be used in the definition of the one-
stage optimization operators. Roughly speaking, by relaxed control we mean control functions
that are probability measures on the control action space, while by ordinary control we mean
control functions that are deterministic functions on the control action space. On the one hand,
the advantage of considering relaxed controls is that they form a compact set, thus having
many important properties, but, on the other hand, we search for an optimal solution that is an
ordinary control. Owing to this, in Subsection 2.3 (Definition 2.1) we present two one-stage
optimization operators, namely Rα , which minimizes over the set of relaxed controls, and
Tα , which minimizes over the set of ordinary controls. Under the assumptions presented in
Section 3, it turns out that the two operators have the same value and, moreover, that the optimal
control can be written in a feedback form, that is, a control that depends (deterministically)
only on the state variable x (see Theorem A.2 in Appendix A).

2.1. Presentation of the control problem

We start this subsection by presenting some notation that will be used throughout the paper.
Let N denote the set of natural numbers, let R denote the set of real numbers, let R+ denote the
set of positive real numbers, and let R

d denote the d-dimensional euclidian space. We write η
as the Lebesgue measure on R. ForX a metric space, B(X) represents the σ -algebra generated
by the open sets of X. Let M(X) denote the set of all finite measures on (X,B(X)), and let
P (X) denote the set of all probability measures on (X,B(X)). Let X and Y be metric spaces.
The sets of all Borel measurable functions and all bounded functions fromX into Y are denoted
by M(X;Y ) and B(X;Y ), respectively. Moreover, for notational simplicity, we write M(X),
B(X), M(X)+, and B(X)+ for M(X; R), B(X; R), M(X; R+), and B(X; R+), respectively.
For g ∈ M(X) with g(x) > 0 for all x ∈ X, Bg(X) is the set of functions v ∈ M(X) such that
‖v(x)‖g = supx∈X |v(x)|/g(x) < +∞. We denote by C(X) the set of continuous functions
from X to R. For h ∈ M(E), h+ and h− respectively denote the positive and negative parts
of h.

The purpose now is to define the motion of a controlled PDMP as well as the long-run average
and discounted optimal control problems. LetE be a Borel subset of R

n, let ∂E be its boundary,
and let Ē be its closure. A controlled PDMP is determined by its local characteristics (φ, λ,Q),
as presented in the sequel. The flow φ(x, t) is a function φ : R

n × R+ → R
n continuous in

(x, t) and such that φ(x, t + s) = φ(φ(x, t), s). For each x ∈ E, the time the flow takes to
reach the boundary starting from x is defined as t∗(x) := inf{t > 0 : φ(x, t) ∈ ∂E}. For x ∈ E
such that t∗(x) = ∞ (that is, the flow starting from x never touches the boundary), we set
φ(x, t∗(x)) = �, where � is a fixed point on ∂E. We define the following space of functions
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absolutely continuous along the flow with limit towards the boundary:

M
ac(E) =

{
g ∈ M(E) : g(φ(x, t)) : [0, t∗(x)) �→ R is absolutely continuous for each

x ∈ E and, whenever t∗(x) < ∞, the limit lim
t→t∗(x)

g(φ(x, t)) exists
}
.

For g ∈ M
ac(E) and z ∈ ∂E for which there exists x ∈ E such that z = φ(x, t∗(x)) where

t∗(x) < ∞, we define g(z) = limt→t∗(x) g(φ(x, t)) (note that the limit exists by assumption).
As shown in Lemma 2 of [1], for g ∈ M

ac(E), there exists a function Xg ∈ M(E) such that,
for all x ∈ E and t ∈ [0, t∗(x)),

g(φ(x, t))− g(x) =
∫ t

0
Xg(φ(x, s)) ds.

The local characteristics λ and Q depend on a control action u ∈ U, where U is a compact
metric space (there is no loss of generality in assuming this property for U—see Remark 2.8 of
[2]), in the following way: λ ∈ M(Ē × U)+ and Q is a stochastic kernel on E given Ē × U.
For each x ∈ Ē, we define the subsets U(x) of U as the sets of feasible control actions that
can be taken when the state process is in x ∈ Ē, that is, the control action that will be applied
to λ and Q must belong to U(x). The following assumptions, based on the standard theory of
Markov decision processes (see, for example, [10]), will be made throughout the paper.

Assumption 2.1. For all x ∈ Ē, U(x) is a compact subspace of U.

Assumption 2.2. The set K = {(x, a) : x ∈ Ē, a ∈ U(x)} is a Borel subset of Ē × U.

We now present the definition of an admissible control strategy and the associated motion
of the controlled process. A control policy U is a pair of functions (u, u∂) ∈ M(N × E ×
R+; U)× M(N × E; U) satisfying u(n, x, t) ∈ U(φ(x, t)) and u∂(n, x) ∈ U(φ(x, t∗(x))) for
all (n, x, t) ∈ N × E × R+. The class of admissible control strategies will be denoted by U.
Consider the state space Ê = E×E×R+×N. For a control policyU = (u, u∂), let us introduce
the following parameters for x̂ = (x, z, s, n) ∈ Ê: the flow φ̂(x̂, t) = (φ(x, t), z, s+ t, n), the
jump rate λ̂U (x̂) = λ(x, u(n, z, s)), and the transition measure

Q̂U (x̂, A× B × {0} × {n+ 1}) =
{
Q(x, u(n, z, s);A ∩ B) if x ∈ E,
Q(x, u∂(n, z);A ∩ B) if x ∈ ∂E,

for A and B in B(E). From [5, Section 25], it can be shown that, for any control strategy
U = (u, u∂) ∈ U, there exists a filtered probability space (�,F , {Ft }, {PUx̂ }

x̂∈Ê) such that
the PDMP {X̂U (t)} with local characteristics (φ̂, λ̂U , Q̂U ) may be constructed as follows. For
notational simplicity, the probability PU

x̂0
will be denoted by PU(x,k) for x̂0 = (x, x, 0, k) ∈ Ê.

Take a random variable T1 such that

PU(x,k)(T1 > t) :=
{

e−	U(x,k,t) for t < t∗(x),
0 for t ≥ t∗(x),

where, for x ∈ E and t ∈ [0, t∗(x)),	U(x, k, t) := ∫ t
0 λ(φ(x, s), u(k, x, s)) ds. IfT1 is equal to

∞ then, for t ∈ R+, X̂U (t) = (φ(x, t), x, t, k). Otherwise, independently select an Ê-valued
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random variable (labeled X̂U1 ) having distribution

PU(x,k)(X̂
U
1 ∈ A× B × {0} × {k + 1} | σ {T1})

=
{
Q(φ(x, T1), u(k, x, T1);A ∩ B) if φ(x, T1) ∈ E,
Q(φ(x, T1), u∂(k, x);A ∩ B) if φ(x, T1) ∈ ∂E.

The trajectory of {X̂U (t)} starting from (x, x, 0, k) for t ≤ T1 is given by

X̂U (t) :=
{
(φ(x, t), x, t, k) for t < T1,

X̂U1 for t = T1.

Starting from X̂U (T1) = X̂U1 , we now select the next inter-jump time T2 − T1 and post-jump
location X̂U (T2) = X̂U2 in a similar way. Let us define the components of the PDMP {X̂U (t)}
by X̂U (t) = (X(t), Z(t), τ (t), N(t)). From the previous construction, it is easy to see that
X(t) corresponds to the trajectory of the system, Z(t) is the value ofX(t) at the last jump time
before t , τ(t) is the time elapsed between the last jump and time t , and N(t) is the number of
jumps of the process {X(t)} at time t . As in [5, p. 60], we consider the following assumption
to avoid any accumulation point of the jump times.

Assumption 2.3. For any x ∈ E, U = (u, u∂) ∈ U, and t ≥ 0, we have

EU(x,0)

[ ∞∑
i=1

1{Ti≤t}
]
< ∞.

The cost of our control problem will contain two terms, a running cost f and a boundary
cost r , satisfying the following properties.

Assumption 2.4. We have f ∈ M(Ē × U)+ and r ∈ M(∂E × U)+.

Define, for α ≥ 0, t ∈ R+, and U ∈ U,

J α(U, t) =
∫ t

0
e−αsf (X(s), u(N(s), Z(s), τ (s))) ds

+
∫ t

0
e−αsr(X(s−), u∂(N(s−), Z(s−))) dp∗(s),

where p∗(t) = ∑∞
i=1 1{Ti≤t} 1{X(Ti−)∈∂E} counts the number of times the process hits the

boundary up to time t , and, for notational simplicity, set J (U, t)= J 0(U, t). The long-run
average cost we want to minimize overU is given byA(U, x)= limt→+∞(1/t)EU(x,0)[J (U, t)],
and we set JA(x) = infU∈U A(U, x). For the α-discounted case, with α > 0, the cost we want
to minimize is given byDα(U, x)= EU(x,0)[J α(U,∞)], and we setJαD (x)= infU∈U Dα(U, x).

2.2. Discrete-time relaxed and ordinary controls

In this subsection we present the definitions of the discrete-time ordinary and relaxed
control sets used in the formulation of the one-stage optimization operators, to be presented in
Subsection 2.3.

Consider C(U) equipped with the topology of uniform convergence and M(U) equipped
with the weak∗ topology σ(M(U),C(U)). For x ∈ E, define Px(U) as the set of measures
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µ ∈ P (U) satisfying µ(U(φ(x, t∗(x)))) = 1. Here P (U) and Px(U) for x ∈ E are subsets of
M(U) and are equipped with the relative topology.

Let Vr and Vr (x) for x ∈ E be the sets of all η-measurable functions µ defined on R+ with
values in P (U) such that µ(t,U) = 1 η-almost everywhere and µ(t,U(φ(x, t))) = 1 η-almost
everywhere, respectively. It can be shown (see Subsection 3.1 of [2]) that Vr (x) is a compact
set of the metric space Vr . In this case a sequence (µn)n∈N in Vr (x) converges to µ if and
only if, for all g ∈ L1(R+; C(U)),

lim
n→∞

∫
R+

∫
U(φ(x,t))

g(t, u)µn(t, du) dt =
∫

R+

∫
U(φ(x,t))

g(t, u)µ(t, du) dt.

The sets of relaxed controls can be defined as follows: V
r (x) = Vr (x)× Px(U) for x ∈ E and

V
r = Vr × P (U). The set of ordinary controls, denoted by V (or V(x) for x ∈ E), is defined

as above except that it is composed of deterministic functions instead of probability measures.
More specifically, we have V(x) = {ν ∈ M(R+,U) : ν(t) ∈ U(φ(x, t)) for all t ∈ R+},
V(x) = V(x) × U(φ(x, t∗(x))), and V = M(R+,U) × U. Consequently, the set of ordinary
controls is a subset of the set of relaxed controls V

r (or V
r (x) for x ∈ E) by identifying any

control action u ∈ U with the Dirac measure concentrated on u. Thus, we can write V ⊂ V
r

(or V(x) ⊂ V
r (x) for x ∈ E), and from now on we will consider V (or V(x) for x ∈ E) to be

endowed with the topology generated by V
r . The necessity to introduce the class of relaxed

controls V
r is justified by the fact that in general there does not exist a topology for which V

and V(x) are compact sets. However, from the previous construction, it follows that V
r and

V
r (x) are compact sets.
As in [10, p. 14], we need the set of feasible state/relaxed control pairs to be a measurable

subset of B(E)× B(Vr ), that is, we need the following assumption.

Assumption 2.5. We have K := {(x,�) : � ∈ V
r (x), x ∈ E} ∈ B(E)× B(Vr ).

A sufficient condition is presented in [2, Proposition 3.3] to ensure that Assumption 2.5
holds.

2.3. One-stage optimization operators

In this subsection we present some important operators associated to the ACOI, which we
will call one-stage optimization operators (see Definition 2.1, below). We also introduce the
set of measurable selectors associated to these minimization problems and, in particular, the
one of special interest called ordinary feedback measurable selectors.

We consider the following notation: for x ∈ Ē, µ ∈ P (U), h ∈ M(E)+, and w ∈
M(Ē × U)+, set

w(x,µ) :=
∫

U

w(x, u)µ(du),

Qh(x, µ) :=
∫

U

∫
E

h(z)Q(x, u; dz)µ(du),

and λQh(x, µ) :=
∫

U

λ(x, u)

∫
E

h(z)Q(x, u; dz)µ(du).

The following operators will be associated to the optimality equations of the discrete-time
problems that will be presented in the sequel. For � = (µ,µ∂) ∈ V

r , (x,A) ∈ E × B(E),
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and α ∈ R, define

	µ(x, t) :=
∫ t

0
λ(φ(x, s), µ(s)) ds

Gα(x,�;A) :=
∫ t∗(x)

0
e−αs−	µ(x,s)λQ 1A(φ(x, s), µ(s)) ds

+ e−αt∗(x)−	µ(x,t∗(x))Q(φ(x, t∗(x)), µ∂ ;A).
For h ∈ M(E)+, we define Gαh(x,�) := ∫

E
h(y)Gα(x,�; dy) and, for x ∈ E, � =

(µ,µ∂) ∈ V
r , v ∈ M(E × U)+, w ∈ M(∂E × U)+, and α ∈ R, set

Lαv(x,�) :=
∫ t∗(x)

0
e−αs−	µ(x,s)v(φ(x, s), µ(s)) ds,

Hαw(x,�) := e−αt∗(x)−	µ(x,t∗(x))w(φ(x, t∗(x)), µ∂).

For h ∈ M(E),
Gαh(x,�) = Gαh

+(x,�)−Gαh
−(x,�)

and, for v ∈ M(E × U),

Lαv(x,�) = Lαv
+(x,�)− Lαv

−(x,�),

provided that the difference has a meaning. It will be useful in the sequel to define the function
Lα(x,�) as follows: Lα(x,�) := Lα 1E×U(x,�). In particular, for α = 0, we write, for
simplicity,G0 = G, L0 = L,H0 = H , and L0 = L. Measurability properties of the operators
Gα , Lα , and Hα are shown in [2, Proposition 3.4].

We now present the definitions of the one-stage optimization operators.

Definition 2.1. Letα ∈ R+, ρ ∈ R, andh ∈ M(E). Assume that, for anyx ∈ E andϒ ∈ V(x),
−ρLα(x,ϒ)+Lαf (x,ϒ)+Hαr(x,ϒ)+Gαh(x,ϒ) is well defined. The (ordinary) one-stage
optimization operator is defined by

Tα(ρ, h)(x) = inf
ϒ∈V(x)

{−ρLα(x,ϒ)+ Lαf (x,ϒ)+Hαr(x,ϒ)+Gαh(x,ϒ)}.

Assume that, for any x ∈ E and � ∈ V
r (x), −ρLα(x,�) + Lαf (x,�) + Hαr(x,�) +

Gαh(x,�) is well defined. The relaxed one-stage optimization operator is defined by

Rα(ρ, h)(x) = inf
�∈Vr (x)

{−ρLα(x,�)+ Lαf (x,�)+Hαr(x,�)+Gαh(x,�)}.

In particular, for α = 0, we write, for simplicity, T0 = T and R0 = R.

The sets of measurable selectors associated to (U(x))x∈E , (V(x))x∈E , and (Vr (x))x∈E are
defined by

SU = {u ∈ M(Ē,U) : u(x) ∈ U(x) for all x ∈ Ē, },
SV = {(ν, ν∂) ∈ M(E,V) : (ν(x), ν∂(x)) ∈ V(x) for all x ∈ E},

and SVr = {(µ,µ∂) ∈ M(E,Vr ) : (µ(x), µ∂(x)) ∈ V
r (x) for all x ∈ E}.

For α ∈ R+, ρ ∈ R, and v ∈ M(E), the one-stage optimization problem associated to the
operator Tα(ρ, v) or Rα(ρ, v) consists of finding a measurable selectorϒ ∈ SV or, respectively,
� ∈ SVr such that, for all x ∈ E,

Tα(ρ, v)(x) = −ρLα(x,ϒ)+ Lαf (x,ϒ)+Hαr(x,ϒ)+Gαv(x,ϒ)
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or, respectively,

Rα(ρ, v)(x) = −ρLα(x,�)+ Lαf (x,�)+Hαr(x,�)+Gαv(x,�).

We note that there exist two natural mappings from SU to SV and from SU to U (see
Propositions 3.8 and 3.10 of [2] for measurability properties), as presented in the next definitions.

Definition 2.2. For u ∈ SU, we define the measurable mapping uφ of the space E into V by
uφ : x → (u(φ(x, ·)), u(φ(x, t∗(x)))).
Definition 2.3. For u ∈ SU, we define the measurable mapping Uuφ of the space N ×E × R+
into U × U by Uuφ : (n, x, t) → (u(φ(x, t)), u(φ(x, t∗(x)))).

Remark 2.1. The measurable selectors of the kind uφ given in Definition 2.2 will be called
ordinary feedback measurable selectors in the class SV ⊂ SVr , and the control strategies of
the kind Uuφ given in Definition 2.3 will be called ordinary feedback control strategies in the
class U.

3. Assumptions on the parameters of the PDMP

As mentioned in the introduction, we want to obtain sufficient conditions for the existence
of an optimal control for the long-run average control problem of a PDMP posed in Section 2.
This is done by assuming a hypothesis on the parameters of the PDMP, instead of, as in [2],
considering assumptions which are based on the α-discount value functions JαD . The purpose
of this section is to introduce these assumptions. The basic idea is that they will yield tractable
conditions that may be easier to check in practice.

The following assumption is related to the so-called expected growth condition (see, for
instance, Assumption 3.1 of [9] for the discrete-time case, or Assumption A of [8] for the
continuous-time case). It will be used, among other things, to guarantee uniform boundedness
of αJαD(x) with respect to α (see Theorem 4.1, below).

Assumption 3.1. There exist b ≥ 0, c > 0, δ > 0, M ≥ 0, g ∈ M
ac(E), g ≥ 1, and

r̄ ∈ M(∂E), r̄(z) ≥ 0, satisfying, for all x ∈ E,

sup
a∈U(x)

{Xg(x)+ cg(x)− λ(x, a)[g(x)−Qg(x, a)]} ≤ b, (3.1)

sup
a∈U(x)

{f (x, a)} ≤ Mg(x), (3.2)

and, for all x ∈ E with t∗(x) < ∞,

sup
a∈U(φ(x,t∗(x)))

{r̄(φ(x, t∗(x)))+Qg(φ(x, t∗(x)), a)} ≤ g(φ(x, t∗(x))), (3.3)

sup
a∈U(φ(x,t∗(x)))

{r(φ(x, t∗(x)), a)} ≤ M

c + δ
r̄(φ(x, t∗(x))). (3.4)

In the next assumption note that, for any u ∈ SU, G(·, uφ; ·) can be seen as the stochastic
kernel associated to the post-jump location of a PDMP. This assumption is related to geometric
ergodic properties of the operator G (see, for example, the comments on page 122 of [11] or
Lemma 3.3 of [9] for more details on this kind of assumption). This assumption is very important
because it will be used in particular to ensure that the relative difference of the α-discount value
functions, hα , defined by hα(x) = JαD (x)− JαD (x0), belong to the weighted-norm space of
functions Bg(E) (see Theorem 4.2, below).
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Assumption 3.2. For eachu ∈ SU, there exists a probability measure νu such that νu(g) < +∞
and

|Gkh(x, uφ)− νu(h)| ≤ a‖h‖gκkg(x)
for all h ∈ Bg(E) and k ∈ N, with a > 0 and 0 < κ < 1 independent of u.

Assumptions 3.3, 3.4, 3.5, and 3.6, below, were introduced in [2]. They are needed to
guarantee some convergence and semi-continuity properties of the one-stage optimization
operators, the equality between the operators Tα and Rα , and the existence of an ordinary
feedback measurable selector (see Subsection A.3 and, in particular, Theorem A.2).

Assumption 3.3. We assume that

(i) for each x ∈ E, the restriction of λ(x, ·) to U(x) is continuous,

(ii) there exists λ̄ ∈ M(Ē)+ such that, for all x ∈ E and a ∈ U(x), λ(x, a) ≤ λ̄(x), and for
t ∈ [0, t∗(x)),

∫ t
0 λ̄(φ(x, s)) ds < ∞, and if t∗(x) < ∞ then

∫ t∗(x)
0 λ̄(φ(x, s)) ds < ∞.

Assumption 3.4. There exists a sequence of measurable functions (fj )j∈N in M(Ē×U)+ such
that, for all y ∈ Ē, fj (y, ·) ↑ f (y, ·) as j → ∞ and the restriction of fj (y, ·) to U(y) is
continuous. There exists a sequence of measurable functions (rj )j∈N in M(∂E×U)+ such that,
for all z ∈ ∂E, rj (z, ·) ↑ r(z, ·) as j → ∞ and the restriction of rj (z, ·) to U(z) is continuous.

Assumption 3.5. For all x ∈ Ē andh ∈ B(E), the restriction ofQh(x, ·) to U(x) is continuous,
and the restriction of Qg(x, ·) to U(x) is continuous.

The next definition will be important to characterize the optimal feedback measurable
selector and optimal control strategy for our problem.

Definition 3.1. Consider w ∈ M(E) and h ∈ Bg(E). We define

(D1) û(w, h) ∈ SU as the measurable selector satisfying

inf
a∈U(x)

{f (x, a)− λ(x, a)[w(x)−Qh(x, a)]}
= f (x, û(w, h)(x))− λ(x, û(w, h)(x))[w(x)−Qh(x, û(w, h)(x))],

inf
a∈U(z)

{r(z, a)+Qh(z, a)} = r(z, û(w, h)(z))+Qh(z, û(w, h)(z)),

(D2) ûφ(w, h) ∈ SV as the measurable selector derived from û(w, h) through Definition 2.2.

Note that, from Assumption 3.5 and Lemma 8.3.7 of [11], Qh(x, ·) is continuous in U(x).
From this and Assumptions 3.3(i) and 3.4, we find that the existence of û(w, h) in (D1) follows
from Proposition D.5 of [10].

The final assumption is as follows.

Assumption 3.6. There exist λ ∈ M(E)+, f̄ ∈ M(E)+, and Kλ ∈ R+ such that

(a) λ(y, a) ≥ λ(y) and f (y, a) ≤ f̄ (y) for all y ∈ E and a ∈ U(y),

(b)
∫ t∗(x)

0 exp{ct − ∫ t
0 λ(φ(x, s)) ds} dt ≤ Kλ for all x ∈ E,

(c) limt→+∞ exp{ct − ∫ t
0 λ(φ(x, s)) ds} = 0 for all x ∈ E with t∗(x) = +∞,

(d) limt→+∞ exp{− ∫ t
0 λ(φ(x, s)) ds}g(φ(x, t)) = 0 for all x ∈ E with t∗(x) = ∞,

(e)
∫ t∗(x)

0 exp{− ∫ t
0 λ(φ(x, s)) ds}f̄ (φ(x, t)) dt < ∞.
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Remark 3.1. Note the following consequences of Assumption 3.6.

(i) Assumption 3.6(c) implies that

Gα(x,�;A) =
∫ t∗(x)

0
e−αs−	µ(x,s)λQ 1A(φ(x, s), µ(s)) ds

and Hαw(x,�) = 0 for any x ∈ E with t∗(x) = +∞, A ∈ B(E), α ≥ −c, � =
(µ,µ∂) ∈ V

r (x), and w ∈ M(∂E × U).

(ii) Assumption 3.6(a) and (b) imply that Lα(x,�) ≤ Kλ for any α ≥ −c, x ∈ E, and
� ∈ V

r (x).

4. Main results

In this section we present the main results of the paper, supposing that the assumptions
on the parameters of the PDMP presented in Section 3 are satisfied. Our first main result,
Theorem 4.1, consists of showing that there exists a fixed state x0 such that αJαD (x0) is
bounded in a neighborhood of α = 0. Note that this property was considered to be an
assumption in [2], while in the present paper this is a consequence of the assumptions made in
the primitive data of the PDMP. Our second main result, Theorem 4.2, states that the relative
difference, hα(x) = JαD (x)− JαD (x0), of the α-discount value function JαD belongs to Bg(E).
As mentioned in the introduction, this is the major difference between our results and those
presented in [2], where the stronger hypothesis that hα(x) was bounded below by a constant
was assumed. Next, as a consequence of Theorems 4.1 and 4.2, it is shown in Proposition 4.1
that there exists a pair (ρ, h) satisfying the ACOI, h ≥ T (ρ, h), where ρ ∈ R+ and h ∈ Bg(E).
Here we again have some important differences between our results and those obtained in [2]
since the hypothesis imposed there, that hα(x)was bounded below by a constant, implied that a
solution for the ACOI was also bounded below by a constant. From this, we could easily prove
the existence of an optimal control for the average cost control problem of PDMPs. In our case
we impose only the condition that h(x) is bounded below by −Cg(x) for some C > 0 and,
consequently, the approach developed previously by the authors cannot be used. To overcome
this difficulty, we show in Proposition 4.2 that, under the assumptions presented in Section 3,
we can obtain, for û ∈ SU,

lim
t→+∞

1

t
lim
m→∞ E

Uûφ
(x,0)[Tα(ρ, h)(X(t ∧ Tm))] ≥ 0.

This technical result will lead in Theorem 4.3 to the main result of the paper, which is the
existence of an optimal ordinary feedback control strategy for the long-run average-cost problem
of a PDMP.

In order to prove the first two main theorems, several intermediate and technical results are
required. For the sake of clarity in exposition, the proofs of these intermediate results and of
these two main theorems are presented in Appendix A.

The following theorem states that, for any discount factor α and any state x ∈ E, αJαD(·) is
bounded.

Theorem 4.1. For any α > 0 and x ∈ E,

JαD(x) ≤ M

c + α
g(x)+ Mb

cα
. (4.1)

Proof. See Appendix A.
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Now, it is shown that, for any state y fixed in E, the difference JαD(·)− JαD(y) belongs
to Bg(E).

Theorem 4.2. For any α > 0, x ∈ E, and y ∈ E,

|JαD(x)− JαD(y)| ≤ aM ′

1 − κ
(1 + g(y))g(x).

Proof. See Appendix A.

The purpose of the next result is to show that, by combining the two previous theorems, there
exists a pair (ρ, h) in R+ × Bg(E) satisfying the optimality inequality h ≥ T (ρ, h). A crucial
intermediate result to show this is TheoremA.2, presented inAppendixA for the sake of clarity of
exposition, which states that, for any function h ∈ Bg(E), the one-stage optimization operators
Rα(ρ, h)(x) and Tα(ρ, h)(x) are equal, and that there exists an ordinary feedback measurable
selector for the one-stage optimization problems associated to these operators. This theorem
can be seen as an extension of the results obtained in [2] for the case in which the functions
under consideration are not necessarily bounded below, as supposed in [2], but instead belong
to Bg(E). It must be pointed out that this generalization is not straightforward.

Proposition 4.1. Set ρα = αJαD (x0) and hα(·) = JαD (·)− JαD (x0) for a fixed state x0 ∈ E.
Then the following statements hold.

(i) There exists a decreasing sequence of positive numbers αk ↓ 0 such that ραk → ρ and,
for all x ∈ E, limk→∞ αkJ

αk
D (x) = ρ.

(ii) h defined by h = limk→∞ hαk belongs to Bg(E) and satisfies, for any x ∈ E,

h(x) ≥ T (ρ, h)(x)

= −ρL(x, ûφ(x))+ Lf (x, ûφ(x))+Hr(x, ûφ(x))+Gh(x, ûφ(x)),

where û = û(T (ρ, h), h) and ûφ = ûφ(T (ρ, h), h) (see Definition 3.1).

Proof. Item (i) is a straightforward consequence of Theorem 4.1. Now, from Theorem 4.2,
we find that there exists a constant C independent of k and x such that |hαk (x)| ≤ Cg(x). This
implies that h = limk→∞ hαk belongs to Bg(E). Following the same arguments as in the proof
of Proposition 8.4 of [2], it can be shown that h(x) ≥ R(ρ, h)(x). Applying Theorem A.2, it
follows that

h(x) ≥ T (ρ, h)(x)

= −ρL(x, ûφ(x))+ Lf (x, ûφ(x))+Hr(x, ûφ(x))+Gh(x, ûφ(x)),

where û is defined by û(T (ρ, h), h). This shows item (ii) and completes the proof.

In what follows recall the definition of Uûφ in Definition 2.3. Next we need to derive a
technical result, which is

lim
t→+∞

1

t
lim
m→∞ E

Uûφ
(x,0)[T (ρ, h)(X(t ∧ Tm))] ≥ 0,

in order to obtain the existence of an optimal control for the PDMP (this would be easily
obtained if hwas bounded from below). Proposition 4.2, below, provides this result, but before
stating and proving this proposition we need the following lemma.
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Lemma 4.1. Consider an arbitrary u ∈ SU, and let uφ and Uuφ be as in Definitions 2.2 and
2.3, respectively. For all x ∈ E, define ĝ(x) = −bL−c(x, uφ(x)) + G−cg(x, uφ(x)). Then
ĝ ∈ Bg(E) and Uuφ satisfies

E
Uuφ
(x,0)[ĝ(X(t ∧ Tm))] ≤ e−ctg(x)+ b

c
(1 − e−ct )+ a‖ĝ‖gg(x)κm + ‖ĝ‖gνu(g)+ bKλ.

Proof. From Corollary A.1 with α = −c and recalling that r̄(z) ≥ 0, we obtain

−bL−c(x, uφ(x))+G−cg(x, uφ(x)) ≤ g(x).

Clearly, ĝ ∈ M(E) is bounded from below by −bKλ from Assumption 3.6(b) and, thus,
ĝ ∈ Bg(E). Since ĝ ∈ M(E) is bounded from below, it is easy to show that

−b E
Uuφ
(x,0)

[∫ t∧Tm

0
ecs ds

]
+ E

Uuφ
(x,0)[ec(t∧Tm)ĝ(X(t ∧ Tm))] ≤ g(x),

by using the same arguments as in the proof of Proposition 4.4 of [2]. Combining Fatou’s
lemma and Assumption 2.3, we obtain

E
Uuφ
(x,0)[ĝ(X(t))] ≤ e−ctg(x)+ b

c
(1 − e−ct ). (4.2)

Clearly, we have

E
Uuφ
(x,0)[ĝ(X(t ∧ Tm))] = E

Uuφ
(x,0)[1{t<Tm} ĝ(X(t))] + E

Uuφ
(x,0)[1{t≥Tm} ĝ(X(Tm))].

Consequently, we obtain

E
Uuφ
(x,0)[ĝ(X(t ∧ Tm))] ≤ E

Uuφ
(x,0)[ĝ(X(t))] +Gmĝ(x, uφ(x))+ bKλ

by recalling that ĝ is bounded from below by −bKλ. The result follows from Assumption 3.2
and (4.2).

As a consequence of Lemma 4.1, we obtain the following result.

Proposition 4.2. For all x ∈ E, E
Uûφ
(x,0)[T (ρ, h)(X(t ∧ Tm))] is well defined and satisfies

lim
t→+∞

1

t
lim
m→∞ E

Uûφ
(x,0)[T (ρ, h)(X(t ∧ Tm))] ≥ 0.

Proof. By definition we have T (ρ, h)(x) ≥ −ρL(x, ûφ(x)) + Gh(x, ûφ(x)). Therefore,
using the definition of ĝ in Lemma 4.1 with u = û, we obtain

T (ρ, h)(x) ≥ −(ρ + b‖h‖g)Kλ − ‖h‖gĝ(x). (4.3)

Consequently, combining Lemma 4.1 and (4.3), we obtain the result.

The next theorem, which is the main result of this paper, shows that the ordinary feedback
control Uûφ is an optimal strategy for the long-run average-cost problem of a PDMP.
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Theorem 4.3. For all x ∈ E, ρ = JA(x) = A(Uûφ , x).

Proof. Define

J
Uûφ
m (t, x) = E

Uûφ
(x,0)

[∫ t∧Tm

0
(f (X(s), û(X(s)))− ρ) ds

+
∫ t∧Tm

0
r(X(s−), û∂ (X(s−))) dp∗(s)+ T (ρ, h)(X(t ∧ Tm))

]
.

From Proposition 4.2 we know that E
Uûφ
(x,0)[T (ρ, h)(X(t ∧ Tm))] is well defined. Consequently,

using Proposition 4.1, we can show that J
Uûφ
m (t, x) ≤ h(x) for allm ∈ N and (t, x) ∈ R+ ×E.

Therefore,

E
Uûφ
(x,0)

[∫ t∧Tm

0
(f (X(s), û(X(s)))) ds +

∫ t∧Tm

0
r(X(s−), û∂ (X(s−))) dp∗(s)

]

+ E
Uûφ
(x,0)[T (ρ, h)(X(t ∧ Tm))]
≤ ρt + h(x).

Now, using Proposition 4.2, it follows that

lim
t→+∞

1

t
lim
m→∞ E

Uûφ
(x,0)

[∫ t∧Tm

0
(f (X(s), û(X(s)))) ds

+
∫ t∧Tm

0
r(X(s−), û∂ (X(s−))) dp∗(s)

]

≤ ρ lim
t→+∞

1

t
lim
m→∞[t ∧ Tm].

Combining Assumption 2.3 and the monotone convergence theorem, we have

lim
t→∞

1

t
E
Uûφ
(x,0)

[∫ t

0
(f (X(s), û(X(s)))) ds +

∫ t

0
r(X(s−), û∂ (X(s−))) dp∗(s)

]
≤ ρ,

showing that JA(x) ≤ A(Uûφ , x) ≤ ρ. From Theorem 1 of [15, Chapter 5] we easily obtain
the reverse inequality, completing the proof.

5. Example

In this section we present an example that verifies the assumptions of the paper, so that the
results obtained in Section 4 could be applied. It is based on the capacity expansion model,
analyzed in [6], [5, Example (34.45)], and by the authors from the stability point of view in [3]
and [7]. Capacity expansion models have been introduced in the literature as a general class
of stochastic models suitable for formulating the process of adding facilities of similar type
over time to meet a rising demand for their services. Typical examples are electrical power
generating stations, water resource facilities, computer and communication systems, and large
manufacturing facilities. The interested reader may consult [6] and [12] for a survey on capacity
expansion, including theoretical results and applications.

The demand for some utility is modeled as a random point process, i.e. it increases by one
unit at random times. This demand is met by consecutive construction of identical expansion
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projects. The intensity λ of the point process is supposed to be the controlled variable and can
assume values in a compact set [λa, λb] with λb ≥ λa > 0. The construction of a new project
is done at a rate γ per unit of time and it is completed after the cumulative investment in the
current project reaches a value τ . Under completion, the present level of demand is reduced
by κ units. We will consider for simplicity in this example that κ = 1, γ = 1, and that τ does
not depend on the present level of demand. Moreover, we suppose that no construction will
take place whenever there is no demand and we say, in this case, that the system is in a standby
situation. In this case it is assumed for simplicity that a new demand will occur according to a
point process with a fixed uncontrolled rate equal to µ. Regarding the cost, roughly speaking,
the idea is to penalize high levels of demand and the controller whenever it slows down the
demand by choosing a lower intensity. It is also supposed that an immediate (boundary) cost
is incurred whenever a project is finished, and that there are no costs when the system is in the
standby situation.

As the state space of the process we take E = ⋃
i∈N

[{i} × [0, τ )]. A point (0, t) ∈ E

denotes that the system is in standby. A point (i, t) ∈ E with i ≥ 1 indicates that the level
of demand for the system is i, and the amount of elapsed time of the present project is t . For
all x ∈ E, U(x) = U = [λa, λb]. The costs are defined for x = (i, t) ∈ E and a ∈ U by
f (x, a) = αi+hi(a) and r(x, a) = ri , where (αi)i∈N is an increasing sequence of nonnegative
real numbers satisfying, for each i ∈ N, αi ≤ iα for a constant α, hi(a) is a decreasing mapping
in a with nonnegative values satisfying hi(a) ≤ iψ for a constant ψ , and (ri)i∈N is a sequence
of nonnegative real numbers satisfying ri ≤ iξ for a constant ξ . The flow φ of the PDMP
is defined by φ(x, s) = (i, t + s) for x = (i, t) ∈ E and s ≤ τ − t . For t ∈ [0, τ ) and
a ∈ U, the intensity of the jump is given by λ((i, t), a) = a when i ≥ 1 and by λ(x, a) = µ

when i = 0. Finally, the transition measure is defined by Q((0, t), a;A) = δ{(1,0)}(A) and
Q((i, t), a;A) = δ{(i+1,t)}(A) when t ∈ [0, τ ), and by Q((0, τ ), a;A) = δ{(0,0)}(A) and
Q((i, τ ), a;A) = δ{(i−1,0)}(A). The standby situation of the system is represented by the
set {0} × [0, τ ) for mathematical convenience. It should be noted that it does not affect the
optimization problem due to the memoryless property of the exponential distribution. Finally,
we assume the classical stability condition: λbτ < 1 (see [5, Proposition 34.36]).

We now show that all the assumptions of the paper are satisfied for this example. Assumptions
2.1, 2.2, and 2.4 are trivially satisfied. There exists a set A = {y ∈ E : t∗(y) = τ } such that,
for all z ∈ ∂E and all a ∈ U(z), Q(z, a;A) = 1. Moreover, for all x ∈ E and a ∈ U(x),
λ(x, a) ≤ λb. Consequently, the hypotheses of Proposition 24.6 of [5] are satisfied, implying
that Assumption 2.3 is satisfied.

Since U(x) does not depend on x, Assumption 2.5 is clearly satisfied. Now, observe that,
for all x ∈ E, t∗(x) ≤ τ < ∞. For all x ∈ E, the mappings λ(x, ·) are continuous on
U(x) = [λa, λb]. Taking, for x ∈ E, λ̄(x) = λb we have

∫ t

0
λ̄(φ(x, s)) ds ≤

∫ t∗(x)

0
λ̄(φ(x, s)) ds = λbτ < ∞,

showing that Assumption 3.3 is satisfied.

By definition, f (x, ·) and r(x, ·) are continuous on U(x) = [λa, λb] for all x ∈ E,
implying that Assumption 3.4 is satisfied. Here Q does not depend on the control and,
consequently, Assumption 3.5 is trivially satisfied. Define λ(x) = λa , f̄ (x) = (α + ψ)i

for x = (i, t) ∈ E, and Kλ = τecτ . Then we have λ(x, a) ≥ λ(x), f (x, a) ≤ f̄ (x),
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∫ t∗(x)
0 exp{ct − ∫ t

0 λ(φ(x, s)) ds} dt ≤ τecτ = Kλ, and∫ t∗(x)

0
exp

{
−

∫ t

0
λ(φ(x, s)) ds

}
f̄ (φ(x, t)) dt ≤ f̄ (x)τ < ∞.

Recalling that t∗(x) ≤ τ < ∞ for all x ∈ E, this shows thatAssumption 3.6(a)–(e) are satisfied.
It remains to show that Assumptions 3.1 and 3.2 are satisfied. In order to verify these

assumptions, we need to appropriately define the test functions g and r̄ . We first need the
following proposition.

Proposition 5.1. There exist d1 > 0, d2 > 0, and c > 0 such that

ed1
λb

λb + d2
< e−d1+d2τ < 1, (5.1)

c < d2 − λb(e
d1 − 1), (5.2)

ed1(1 − e−µτ )− e−a1 ≤ 0. (5.3)

Proof. Consider the function c(z) = z/τ − λb(ez − 1). Then, under the assumption that
λbτ < 1, we can find a z0 > 0 such that c(z0) > 0 and 1 − e−µτ ≤ e−2z0 by observing
that c(0) = 0 and c′(0) > 0. This implies that we can find a 0 < ε < z0/2 such that
c(z0)−2ε/τ = (z0−2ε)/τ−λb(ez0−1) > 0. We setd1 = z0−ε > 0 andd2 = (z0−2ε)/τ > 0.
Since 1 − e−µτ ≤ e−2z0 , we have 1 − e−µτ ≤ e−2z0+2ε = e−2a1 , giving (5.2). Note that
−d1+d2τ = −(z0−ε)+z0−2ε = −ε and, thus, e−d1+d2τ = e−ε < 1. From c(z0)−2ε/τ > 0
we obtain d2 + λb > λbed1+ε and, thus, ed1λb/(λb + d2) < e−d1+d2τ , giving (5.1). Moreover,
choosing c > 0 such that c < c(z0)−2ε/τ we obtain c < d2−λb(ed1+ε−1) < d2−λb(ed1 −1),
yielding (5.3).

We can now define the test functions g and r̄ , and the parameters required inAssumptions 3.1
and 3.2. Consider d1, d2, and c satisfying (5.1) and (5.2), and define b = ed2τ (µ[ed1 −1]+c) >
0, δ = c, d3 = 1 − e−d1+d2τ > 0, M = max((α + ψ)/d1, 2cξ/d3 d1), and

g(x) =
{

ed2τ if x = (0, t) ∈ E,
ed1i+d2(τ−t) if x = (i, t) ∈ E and i ≥ 1,

r̄(z) =
{

0 if z = (0, τ ),

d3ed1i if z = (i, τ ) and i ≥ 1.

For the constants b, c, δ, and M defined previously, we have the following result.

Proposition 5.2. The functions g and r̄ satisfy Assumption 3.1.

Proof. First consider x = (0, t) ∈ E and z = (0, τ ). Then in this case Xg(x) = 0 and

Xg(x)+ cg(x)− λ(x, a)[g(x)−Qg(x, a)] = ed2τ (µ[ed1 − 1] + c) = b,

and so (3.1) holds. Clearly, f (x, a) = 0 ≤ Mg(x) and so (3.2) is satisfied. Since r̄(z) = 0,
we have r̄(z)+Qg(z, a) = ed2τ = g(z), showing (3.3). Finally, (3.4) is trivially satisfied
since r(z, a) = 0. Now consider x = (i, t) ∈ E and z = (i, τ ) with i ≥ 1. Note that
Xg(x) = −d2g(x) and

Xg(x)+ cg(x)− λ(x, a)[g(x)−Qg(x, a)] = ed1i+d2(τ−t)(c − d2 + a(ed1 − 1)).
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From (5.2), it follows that

max
a∈[λa,λb]

{ed1i+d2(τ−t)(c − d2 + a(ed1 − 1))} ≤ ed1i+d2(τ−t)(c − d2 + λb(e
d1 − 1)) ≤ 0,

yielding (3.1). Moreover, f (x, a) ≤ (α + ψ)i ≤ Mg(x), showing (3.2). Equation (3.3) also
holds since r̄(z)+Qg(z, a) = d3ed1i + ed1(i−1)+d2τ = ed1i ≤ g(z). Finally, r(z, a) = ri ≤
ξi ≤ Mr̄(z), implying (3.4) and completing the proof.

Next we want to show that Assumption 3.2 is satisfied. We first need the following propo-
sition.

Proposition 5.3. Set β = e−d1+d2τ < 1 (see (5.1)). For any u ∈ SU, we have

Gg(x, uφ) ≤ βg(x) for x = (i, t) ∈ E, with i ≥ 1, (5.4)

Gg(x, uφ) ≤ βg(x)+ l(x)g(0, 0) for x = (0, t) ∈ E, (5.5)

where l(x) = e−µ(τ−t) for x = (0, t) and l(x) = 0 otherwise.

Proof. Let us first show that (5.4) holds. Consider u ∈ SU and x = (i, t) ∈ E, with
i ≥ 1 fixed. For notational simplicity, we write λi(t + s) = λ(φ(x, s), u(φ(x, s))) and
	i(t, s) = ∫ s

0 λ(φ(x, v), u(φ(x, v))) dv. Noting that λi(t + s)/λb ≤ 1 we have, from (5.1),

Gg(x, uφ) = ed1i

{
ed1+d2(τ−t)

∫ τ−t

0
λi(t + s)e−(	i(t,s)+d2s) ds + e−	i(t,τ−t)e−d1+d2τ

}

= g(i, t)

{
ed1

λb

λb + d2

∫ τ−t

0

(
1 + d2

λb

)
λi(t + s)e−(	i(t,s)+d2s) ds

+ e−	i(t,τ−t)−d2(τ−t)e−d1+d2τ

}

≤ βg(i, t)

{∫ τ−t

0
(λi(t + s)+ d2)e

−(	i(t,s)+d2s) ds + e−	i(t,τ−t)−d2(τ−t)
}

= βg(i, t),

showing (5.4).
Now, for x = (0, t) ∈ E, we have

Gg(x, uφ) = ed1+d2τ [1 − e−µ(τ−t)] + ed2τ e−µ(τ−t)

= βg(x)− e−d1+d2τ ed2τ + ed1+d2τ [1 − e−µ(τ−t)] + l(x)g(0, 0),

since ed2τ e−µ(τ−t) = l(x)ν(g). From (5.3) we obtain

ed1+d2τ [1 − e−µ(τ−t)] − e−d1+d2τ ed2τ ≤ 0,

showing (5.5) and completing the proof.

The next proposition shows that Assumption 3.2 is satisfied.

Proposition 5.4. For any u ∈ SU, there exists a probability measure νu such that Assump-
tion 3.2 is satisfied.

Proof. Clearly, it is easy to see that, for a fixed u ∈ SU, the Markov kernel G(·, uφ; ·) is
irreducible. Moreover, we have G(x, uφ;A) ≥ l(x)δ(0,0)(A), where the function l has been
defined in Proposition 5.3. Define the set C = {(0, t) : 0 ≤ t < τ }. Therefore, we have, for all
x ∈ C, G(x, uφ;A) ≥ e−µτ δ(0,0)(A), implying that the set C is a petite set; see [14, p. 121].
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Now since β < 1, we find from Proposition 5.3 that there exists a constant K such that

Gg(x, uφ) ≤ g(x)+K 1C(x).

Combining Theorem 4.1(i) of [13] and Theorem 11.0.1 of [14], the previous inequality shows
that the Markov kernel Gg(·, uφ; ·) is positive Harris recurrent. Consequently, there exists a
unique invariant probability measure for Gg(·, uφ; ·). Note that g(x) ≥ 1, and 0 ≤ l(x) ≤ 1.
Moreover, for any u ∈ SU and x ∈ E,G(x, uφ,A) ≥ l(x)δ(0,0)(A),

∫
E
l(y)δ(0,0)(dy) > 0, and∫

E
g(y)δ(0,0)(dy) = g((0, 0)) < ∞. Now, from Proposition 5.3, it follows that, for any u ∈ SU

and x ∈ E, Gg(x, uφ) ≤ βg(x)+ l(x)
∫
E
g(y)δ(0,0)(dy), implying that the hypotheses and

items (i)–(iv) of Proposition 10.2.5 of [11] are satisfied. Consequently, by applying Proposition
10.2.5 of [11], the result follows.

Appendix A

In this appendix we present the proofs of the main results of the paper.

A.1. Proof of Theorem 4.1

The next two propositions establish a connection between a general integro-differential
inequality (respectively equality) related to the local characteristics of the PDMP and an
inequality (respectively equality) related to the operatorsGα , Lα , andHα . They will be crucial
for the boundedness results on JαD(·) to be developed in the sequel.

Proposition A.1. Suppose that there exist v ∈ M
ac(E,R+), � ∈ M(E)+, k ∈ M(E)+, p ∈

M(∂E)+, � = (µ,µ∂) ∈ SVr , d ≥ 0, and α ≥ −c satisfying

Xv(φ(x, t))− [α + λ(φ(x, t), µ(x, t))]v(φ(x, t))+ �(φ(x, t))

+ λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t)) ≤ d (A.1)

for all x ∈ E, t ∈ [0, t∗(x)), and

v(φ(x, t∗(x))) ≥ p(φ(x, t∗(x)))+Qk(φ(x, t∗(x)), µ∂(φ(x, t∗(x)))) (A.2)

for all x ∈ E with t∗(x) < ∞. Then

v(x) ≥ −dLα(x,�(x))+ Lα�(x,�(x))+Hαp(x,�(x))+Gαk(x,�(x)). (A.3)

Proof. Multiplying both sides of (A.1) by e−αt−	µ(x)(x,t) and integrating over [0, s] for
s ∈ [0, t∗(x)) we obtain

d

∫ s

0
e−αt−	µ(x)(x,t) dt

≥ e−αs−	µ(x)(x,s)v(φ(x, s))− v(x)

+
∫ s

0
e−αt−	µ(x)(x,t)[�(φ(x, t))+ λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t))] dt.

(A.4)

Consider the case in which t∗(x) < ∞. By using the fact that v ∈ M
ac(E) we obtain from

Remark 3.1(ii) and (A.4) that

v(x) ≥ −dLα(x,�(x))+ Lα�(x,�(x))+ e−αt∗(x)−	µ(x)(x,t∗(x))v(φ(x, t∗(x)))

+
∫ t∗(x)

0
e−αt−	µ(x)(x,t)λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t)) dt.
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However, from (A.2), it follows that

v(x) ≥ −dLα(x,�(x))+ Lα�(x,�(x))+Hαp(x,�(x))+Gαk(x,�(x)).

Now consider the case in which t∗(x) = +∞. From (A.4) (and recalling that v is positive) we
have

d

∫ s

0
e−αt−	µ(x)(x,t) dt

≥ −v(x)+
∫ s

0
e−αt−	µ(x)(x,t)[�(φ(x, t))+ λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t))] dt,

and so, by taking the limit as s tends to ∞ in the previous equation, we obtain

v(x) ≥ −dLα(x,�(x))+ Lα�(x,�(x))

+
∫ t∗(x)

0
e−αt−	µ(x)(x,t)λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t)) dt.

However, by using the fact that t∗(x) = +∞ and Remark 3.1(i), we have Hαp(x,�(x)) = 0
and

Gαk(x,�(x)) =
∫ t∗(x)

0
e−αt−	µ(x)(x,t)λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t)) dt.

This completes the proof.

If the inequalities in (A.1) and (A.2) are replaced by equalities then the hypotheses of
Proposition A.1 must be restricted to α ≥ 0 to show that the inequality in (A.3) becomes
an equality; more specifically, we have the following result.

Proposition A.2. Suppose that there exist v ∈ M
ac
w (E,R+), � ∈ M(E)+, k ∈ M(E)+, p ∈

M(∂E)+, � = (µ,µ∂) ∈ SVr , d ≥ 0, and α ≥ 0 satisfying

Xv(φ(x, t))− [α + λ(φ(x, t), µ(x, t))]v(φ(x, t))+ �(φ(x, t))

+ λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t)) = d

for all x ∈ E, t ∈ [0, t∗(x)), and

v(φ(x, t∗(x))) = p(φ(x, t∗(x)))+Qk(φ(x, t∗(x)), µ∂(φ(x, t∗(x))))

for all x ∈ E with t∗(x) < ∞. Then

v(x) = −dLα(x,�(x))+ Lα�(x,�(x))+Hαp(x,�(x))+Gαk(x,�(x)). (A.5)

Proof. By following the same steps as in the first part of the proof of Proposition A.1 we
have, for all s ∈ [0, t∗(x)),

d

∫ s

0
e−αt−	µ(x)(x,t) dt

= e−αs−	µ(x)(x,s)v(φ(x, s))− v(x)

+
∫ s

0
e−αt−	µ(x)(x,t)[�(φ(x, t))+ λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t))] dt.

(A.6)
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The case in which t∗(x) < ∞ can be treated in the same manner as in the proof of Proposi-
tion A.1. However, the case in which t∗(x) = +∞ is different. By using Assumption 3.6(d)
and the fact that 0 ≤ v ≤ ‖v‖gg, we have, for any α ≥ 0,

lim
s→+∞ e−αs−	µ(x)(x,s)v(φ(x, s)) ≤ ‖v‖g lim

s→+∞ exp

{
−

∫ t∗(x)

0
λ(φ(x, t)) dt

}
g(φ(x, s)) = 0.

Therefore, taking the limit as s tends to ∞ in (A.6), we have

dLα(x,�(x)) = −v(x)+ Lα�(x,�(x))

+
∫ s

0
e−αt−	µ(x)(x,t)λ(φ(x, t), µ(x, t))Qk(φ(x, t), µ(x, t)) dt,

and, using Remark 3.1(i), this proves (A.5).

Applying Proposition A.1 to inequalities (3.1) and (3.3) we obtain the following corollary.

Corollary A.1. For any u ∈ SU, α ≥ −c, and x ∈ E,

g(x) ≥ −bLα(x, uφ(x))+ (c+α)Lαg(x, uφ(x))+Hαr̄(x, uφ(x))+Gαg(x, uφ(x)), (A.7)

and, for all � ∈ SVr ,

(c + α)Lαg(x,�(x))+Hαr̄(x,�(x))+Gαg(x,�(x)) ≤ bKλ + g(x). (A.8)

Proof. Clearly, from Proposition 3.8 and Remark 3.11 of [2], it follows that uφ ∈ SVr .
Consequently, setting d = b, v = g, � = (c + α)g, p = r̄ , k = g, and � = uφ
in Proposition A.1, we obtain (A.7). Similarly, from Remark 3.1(ii), inequality (A.8) is a
straightforward consequence of inequality (A.3).

The next theorem provides bounds in terms of α and g for a sequence of functions defined
by a general recursive equation and for the functions Lf , Hr , and Lg.

Theorem A.1. Define the sequence (qm(x))m∈N by

qα0 (x) = 0,

qαm+1(x) = Lαf (x, u
m+1
φ (x))+Hαr(x, u

m+1
φ (x))+Gαq

α
m(x, u

m+1
φ (x)), (A.9)

where x ∈ E, (um)m∈N ∈ SU, and α > 0. Then the following assertions hold:

(i) for any x ∈ E, m ∈ N, and α ∈ [0, δ), we have

qαm(x) ≤ M

c + α
g(x)+ Mb

cα
, (A.10)

(ii) for any x ∈ E and u ∈ SU,

0 ≤ Lf (x, uφ(x))+Hr(x, uφ(x)) ≤ M(1 + bKλ)

c
g(x), (A.11)

0 ≤ Lg(x, uφ(x)) ≤ (1 + bKλ)

c
g(x). (A.12)
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Proof. Let us show (A.10) by induction. Form = 0, it is immediate since qα0 = 0. Suppose
that it holds for m. Combining (A.9) and (A.10) we have

qαm+1(x) ≤ Lαf (x, u
m
φ (x))+Hαr(x, u

m
φ (x))+ M

c + α
Gαg(x, u

m
φ (x))

+ Mb

cα
Gα1(x, umφ (x)). (A.13)

Moreover, from (A.7) and (A.8), we obtain

Gαg(x, u
m
φ (x)) ≤ g(x)+bLα(x, u

m
φ (x))− (c+α)Lαg(x, umφ (x))−Hαr̄(x, umφ (x)). (A.14)

Substituting (A.14) into (A.13) and using (3.2) and (3.4), we obtain

qαm+1(x) ≤ Lα(f −Mg)(x, umφ (x))+Hα

(
r − M

c + α
r̄

)
(x, umφ (x))+ M

c + α
g(x)

+Mb

(
1

cα
Gα1(x, umφ (x))+ 1

c + α
Lα(x, u

m
φ (x))

)

≤ M

c + α
g(x)+ Mb

cα
(Gα1(x, umφ (x))+ αLα(x, u

m
φ (x)))

≤ M

c + α
g(x)+ Mb

cα
,

since Gα1(x, umφ (x))+ αLα(x, u
m
φ (x)) = 1.

Let us now show (A.11) and (A.12). For α = 0, it follows from Remark 3.1(ii) and (A.7)
that

g(x)+ bKλ ≥ g(x)+ bL(x, uφ(x))

≥ cLg(x, uφ(x))+Hr̄(x, uφ(x))+Gg(x, uφ(x)), (A.15)

showing (A.12) since g ≥ 1 and r̄ ≥ 0. Now, combining (3.2), (3.4), and (A.15) we obtain
(A.11), showing the last part of the result.

Proof of Theorem 4.1. By using Propositions 7.1 and 7.5 of [2], it can be shown that there
exists umφ ∈ SV such that the sequence (vαm(x))m∈N defined by vαm+1(x) = Lαf (x, u

m
φ (x)) +

Hαr(x, u
m
φ (x)) + Gαv

α
m(x, u

m
φ (x)) and vα0 (x) = 0 satisfies vαm+1 ↑ JαD(x) as m ↑ ∞.

Therefore, considering qαm = vαm in Theorem A.1 and taking the limit as m ↑ ∞, we obtain
(4.1).

A.2. Proof of Theorem 4.2

The following technical lemma shows that JαD(x) can be written as an infinite sum of
iterates of the stochastic kernel Gα . Using this result, JαD(x) is characterized in terms of the
Markov kernel G in Proposition A.3. This is an important property. Indeed, by using classical
hypotheses on G such as the geometric ergodic condition in Assumption 3.2, it will be shown
in Theorem 4.2 that the mapping defined by JαD(·)−JαD(y) for y fixed in E belongs to Bg(E).

Lemma A.1. For each α > 0, there exists uα ∈ SU such that

JαD(x) =
∞∑
k=0

Gkα(Lαf +Hαr)(x, u
α
φ(x)).
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Proof. As shown in [2, Theorem 7.5], JαD ∈ M(E) and JαD (x) = Rα(0,JαD )(x). Moreover,
from Theorem 6.4 of [2], there exists uα ∈ SU such that the ordinary feedback measurable
selector uαφ ∈ SV satisfies

JαD(x) = Rα(0,J
α
D)(x)

= Tα(0,J
α
D)(x)

= Lαf (x, u
α
φ)(x)+Hαr(x, u

α
φ)+GαJ

α
D (x, u

α
φ). (A.16)

Iterating (A.16) and recalling that JαD (y) ≥ 0 for every y yields, for every m ∈ N,

JαD(x) =
m−1∑
k=0

Gkα(Lαf +Hαr)(x, u
α
φ(x))+Gmα JαD (x, u

α
φ(x))

≥
m−1∑
k=0

Gkα(Lαf +Hαr)(x, u
α
φ(x)). (A.17)

For the control Uuαφ ∈ U (see Definition 2.3), it is easy to show that

m−1∑
k=0

Gkα(Lαf +Hαr)(x, u
α
φ(x))

= E
Uuα

φ

(x,0)

[∫ Tm

0
e−αsf (X(s), u(N(s), Z(s), τ (s))) ds

+
∫ Tm

0
e−αsr(X(s−), u∂(N(s−), Z(s−))) dp∗(s)

]
, (A.18)

where Uuαφ = (u, u∂). From Assumption 2.3, Tm → ∞, P
Uuα

φ -almost surely. Therefore, from
the monotone convergence theorem, (A.18) implies that

∑∞
k=0G

k
α(Lαf +Hαr)(x, u

α
φ(x)) =

Dα(Uuαφ , x), and from (A.17),

JαD(x) ≥
∞∑
k=0

Gkα(Lαf +Hαr)(x, u
α
φ(x)) = Dα(Uuαφ , x). (A.19)

But, since Uuαφ ∈ U and JαD(x) = infU∈U Dα(U, x), it is clear that Dα(Uuαφ , x) ≥ JαD(x), so
(A.19) yields (A.16).

The next proposition gives a characterization of JαD(x) in terms of G.

Proposition A.3. For α > 0 and uαφ as in Lemma A.1, define the sequence (sαm(x))m∈N for
x ∈ E by sα0 (x) = 0 and sαm+1(x) = Lαf (x, u

α
φ(x))+Hαr(x, u

α
φ(x))+Gαs

α
m(x, u

α
φ(x)).

Then

JαD(x) = lim
m→∞

m∑
k=0

Gk(L(f − αsαm+1−k)+Hr)(x, uαφ(x)). (A.20)

Proof. By definition, for all m ∈ N, sαm ∈ M(E) and sαm+1(x) = ∑m
k=0G

k
α(Lαf+Hαr) ×

(x, uαφ(x)), and, clearly, from Lemma A.1, we have sαm ↑ JαD asm ↑ ∞. Applying Lemma 9.2
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of [2], it can be shown that sαm ∈ M
ac(E) and, for all x ∈ E and t ∈ [0, t∗(x)),

sαm+1(x) =
∫ t

0
exp

{
−αs −

∫ s

0
λ(φ(x, θ), uα(φ(x, θ))) dθ

}
× [f (φ(x, s), uα(φ(x, s)))

+ λ(φ(x, s), uα(φ(x, s)))Qsαm(φ(x, s), u
α(φ(x, s)))] ds

+ exp

{
−αt −

∫ t

0
λ(φ(x, s), uα(φ(x, s))) ds

}
sαm+1(φ(x, t)),

implying that

Xsαm+1(x)− [α + λ(x, uα(x))]sαm+1(x)+ f (x, uα(x))

+ λ(x, uα(x))Qsαm(x, u
α(x)) = 0. (A.21)

Consider the case in which t∗(x) < ∞. Since sαm+1 ∈ M
ac(E), this yields

sαm+1(x) = Lαf (x, u
α
φ(x))

+ exp

{
−αt∗(x)−

∫ t∗(x)

0
λ(φ(x, s), uα(φ(x, s))) ds

}
sαm+1(φ(x, t∗(x)))

+
∫ t∗(x)

0
exp

{
−αs −

∫ s

0
λ(φ(x, θ), uα(φ(x, θ))) dθ

}
× λ(φ(x, s), uα(φ(x, s)))Qsαm(φ(x, s), u

α(φ(x, s))) ds. (A.22)

From Assumption 3.3, we have exp{− ∫ t∗(x)
0 λ(φ(x, s), uα(φ(x, s))) ds} > 0. Therefore, com-

bining the definition of sαm(x) and (A.22), we obtain

sαm+1(φ(x, t∗(x))) = Qsαm(φ(x, t∗(x)), u(φ(x, t∗(x))))
+ r(φ(x, t∗(x)), u(φ(x, t∗(x)))). (A.23)

Using Proposition A.2, we obtain, from (A.21) and (A.23),

sαm+1(x) = L(f − αsαm+1)(x, u
α
φ(x))+Hr(x, uαφ(x))+Gsαm(x, u

α
φ(x)). (A.24)

Iterations of (A.24) over m yields (A.20).

Before showing that the mapping defined by JαD(·)− JαD(y) for y fixed in E belongs to
Bg(E), we need to prove that the mapping L(f − αsαm+1)(·, uαφ(·))+Hr(·, uαφ(·)) belongs to
Bg(E).

Lemma A.2. Define M ′ = M(1 + b/c)(1 + bKλ)/c. For α > 0, uαφ as in Lemma A.1, sαm as
in Lemma A.3, and x ∈ E, we have

|L(f − αsαm+1)(x, u
α
φ(x))+Hr(x, uαφ(x))| ≤ M ′g(x).

Proof. Note that

−αLsαm+1(x, u
α
φ(x)) ≤ L(f − αsαm+1)(x, u

α
φ(x))+Hr(x, uαφ(x))

≤ Lf (x, uαφ(x))+Hr(x, uαφ(x)). (A.25)
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Considering qαm = sαm in Theorem A.1 and recalling that g ≥ 1, we obtain, from (A.10),

sαm(x) ≤ M

c + α
g(x)+ Mb

cα
≤ M(1 + b/c)

α
g(x). (A.26)

Therefore, from (A.26) we have αsαm ≤ M(1 + b/c)g and, thus, from (A.12),

αLsαm+1(x, u
α
φ(x)) ≤ M(1 + b/c)(1 + bKλ)

c
g(x). (A.27)

By combining (A.11), (A.25), and (A.27), the result follows.

Proof of Theorem 4.2. From Assumption 3.2 and Lemma A.2 we obtain, for all x ∈ E,

|Gk(L(f − αsαm+1−k)+Hr)(x, uαφ(x))− πuα (L(f − αsαm+1−k)+Hr)| ≤ aM ′κkg(x).

Consequently,∣∣∣∣
m∑
k=0

Gk(L(f − αsαm+1−k)+Hr)(x, uαφ(x))−Gk(L(f − αsαm+1−k)+Hr)(y, uαφ(y))

∣∣∣∣
≤ aM ′(g(x)+ g(y))

1 − κm+1

1 − κ
.

Taking the limit as m ↑ ∞ in the previous equation and recalling that g ≥ 1 we obtain the
desired result from Proposition A.3.

A.3. Existence of an ordinary feedback measurable selector

The main goal of this subsection is to show that, for any function h ∈ Bg(E), the one-
stage optimization operators Rα(ρ, h)(x) and Tα(ρ, h)(x) are equal, and that there exists an
ordinary feedback measurable selector for the one-stage optimization problems associated to
these operators (see Theorem A.2, below). This theorem is an extension of a result obtained in
[2] for the case in which the functions under consideration are not necessarily bounded below,
as supposed in [2], but, instead, belong to Bg(E). It must be pointed out that this extension is
far from trivial to obtain.

The next two technical lemmas will be used to derive Theorem A.2.

Lemma A.3. Let α ≥ 0, ρ ∈ R+, and h ∈ Bg(E), and set w = Rα(ρ, h). Then there exists
�̂ ∈ SVr such that

w(x) = −ρLα(x, �̂(x))+ Lαf (x, �̂(x))+Hαr(x, �̂(x))+Gαh(x, �̂(x)). (A.28)

Moreover, w ∈ M
ac(E), satisfying, for all x ∈ E and t ∈ [0, t∗(x)),

w(x) = inf
µ∈Vr (x)

{∫ t

0
e−αs−	µ(x,s)[−ρ + f (φ(x, s), µ(s))+ λQh(φ(x, s), µ(s))] ds

+ e−αt−	µ(x,t)w(φ(x, t))
}

(A.29)

=
∫ t

0
e−αs−	µ̂(x)(x,s)[−ρ + f (φ(x, s), µ̂(x, s))+ λQh(φ(x, s), µ̂(x, s))] ds

+ e−αt−	µ̂(x)(x,t)w(φ(x, t)), (A.30)

where �̂(x) = (µ̂(x), µ̂∂ (x)).
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Proof. From Corollary A.1, it follows that the mapping V defined on K by

V (x,�) = −ρLα(x,�)+ Lαf (x,�)+Hαr(x,�)+Gαh(x,�)

takes values in R. Moreover, from Assumption 2.5 and Proposition 3.4 of [2], it follows that
V is measurable. Furthermore, by using Corollary 5.8 of [2], it follows that, for all x ∈ E,
V (x, ·) is lower semicontinuous on V

r (x). Recalling that V
r (x) is a compact subset of V

r and
by using Proposition D.5 of [10], we find that there exists �̂ ∈ SVr such that (A.28) is satisfied.
The rest of the proof is similar to the proof of Proposition 4.2 of [2] and is therefore omitted.

Lemma A.4. Let α ≥ 0, ρ ∈ R+, and h ∈ Bg(E). Then, for all x ∈ E,

Rα(ρ, h)(x) ≥ −(ρ + b‖h‖g)Kλ − ‖h‖gg(x), (A.31)

and, for all x ∈ E such that t∗(x) = ∞ and � = (µ,µ∂) ∈ V
r (x),

− ρLα(x,�)+ Lαf (x,�)+Hαr(x,�)+Gαh(x,�)

= lim
t→+∞

∫ t

0
e−αs−	µ(x,s)[−ρ + f (φ(x, s), µ(s))+ λQh(φ(x, s), µ(s))] ds. (A.32)

Proof. From (A.8) we have

Gαg(x,�) ≤ bKλ + g(x) (A.33)

for all x ∈ E and � ∈ V
r . Consequently, using (A.28) and the fact that f ≥ 0 and r ≥ 0, it

follows that

Rα(ρ, h)(x) ≥ −ρLα(x, �̂(x))+Gαh(x, �̂(x)) ≥ −(ρ + b‖h‖g)Kλ − ‖h‖gg(x),
showing the first part of the result. From Assumption 3.6(a), (b), and (e), we have

lim
t→+∞

∫ t

0
e−αs−	µ(x,s)[−ρ + f (φ(x, s), µ(s))] ds

exists in R, and from (A.33),

lim
t→+∞

∫ t

0
e−αs−	µ(x,s)λQg(φ(x, s), µ(s)) ds

exists in R. Using the fact that h ∈ Bg(E), it follows that the limit on the right-hand side of
(A.32) exists. Finally, from Remark 3.1(i) we obtain the last part of the result.

The next result shows that, for any function h ∈ Bg(E), the one-stage optimization operators
Rα(ρ, h)(x) and Tα(ρ, h)(x) are equal, and that there exists an ordinary feedback measurable
selector for the one-stage optimization problems associated to these operators.

Theorem A.2. Letα ≥ 0, ρ ∈ R+, and h ∈ Bg(E), and setw = Rα(ρ, h). Thenw ∈ M
ac(E)

and the ordinary feedback measurable selector ûφ(w, h) ∈ SV (see Definition 3.1(D2)) satisfies
the following one-stage optimization problems:

Rα(ρ, h)(x) = Tα(ρ, h)(x)

= −ρLα(x, ûφ(w, h)(x))+ Lαf (x, ûφ(w, h)(x))+Hαr(x, ûφ(w, h)(x))

+Gαh(x, ûφ(w, h)(x)).
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Proof. According to Lemma A.3, there exists �̂ ∈ SVr such that, for all x ∈ E and t ∈
[0, t∗(x)), we have

e−αt−	µ̂(x)(x,t)w(φ(x, t))− w(x)

=
∫ t

0
e−αs−	µ̂(x)(x,s)[ρ − f (φ(x, s), µ̂(x, s))− λQh(φ(x, s), µ̂(x, s))] ds, (A.34)

where �̂(x) = (µ̂(x), µ̂∂ (x)). Since w ∈ M
ac(E), we obtain, from (A.34),

− Xw(φ(x, t))+ αw(φ(x, t))

≥ inf
µ∈P (U(φ(x,t)))

{f (φ(x, t), µ)− λ(φ(x, t), µ)w(φ(x, t))+ λQh(φ(x, t), µ)} − ρ.

However, note that

inf
µ∈P (U(φ(x,t)))

{f (φ(x, t), µ)− λ(φ(x, t), µ)w(φ(x, t))+ λQh(φ(x, t), µ)} − ρ

= inf
a∈U(φ(x,t))

{f (φ(x, t), a)− λ(φ(x, t), a)[w(φ(x, t))−Qh(φ(x, t), a)]} − ρ.

Consequently, by considering the measurable selector ū ∈ SU given by ū = û(w, h) (see
Definition 3.1(D1)), we have

− Xw(φ(x, t))+ αw(φ(x, t))

= −ρ + f (φ(x, t), ū(φ(x, t)))

− λ(φ(x, t), ū(φ(x, t)))[w(φ(x, t))−Qh(φ(x, t), ū(φ(x, t)))]
η-almost surely on [0, t∗(x)), otherwise this would be in contradiction with (A.29). Conse-
quently, for all t ∈ [0, t∗(x)), it follows that

w(x) = e−(αt+	(x,t))w(φ(x, t))

+
∫ t

0
e−(αs+	(x,s))[f (φ(x, s), ū(φ(x, s)))

+ λ(φ(x, s), ū(φ(x, s)))Qh(φ(x, s), ū(φ(x, s)))− ρ] ds,
(A.35)

where	(x, t) = ∫ t
0 λ(φ(x, s), ū(φ(x, s))) ds. First consider the case in which t∗(x) < ∞. We

find, by taking the limit as t tends to t∗(x) in the previous equation, that the ordinary feedback
measurable selector ûφ(w, h) ∈ SV (see Definition 3.1(D2)) satisfies

w(x) = e−(αt∗(x)+	(x,t∗(x)))w(φ(x, t∗(x)))− ρLα(x, ûφ(w, h)(x))+ Lαf (x, ûφ(w, h)(x))

+
∫ t∗(x)

0
e−(αs+	(x,s))λ(φ(x, s), ū(φ(x, s)))Qh(φ(x, s), ū(φ(x, s))) ds. (A.36)

Define the control �(x) by (µ̂(x), µ) for µ ∈ P (U(φ(x, t∗(x)))). Therefore, we have

w(x) ≤ −ρLα(x, �̂(x))+ Lαf (x, �̂(x))

+
∫ t∗(x)

0
e−αs−	µ̂(x)(x,s)λQh(φ(x, s), µ̂(x, s)) ds

+ e−αt∗(x)−	µ̂(x)(x,t∗(x))[Qh(φ(x, t∗(x)), µ)+ r(φ(x, t∗(x)), µ)]. (A.37)
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From (A.30) and since w ∈ M
ac(E), we have

w(x) = −ρLα(x, �̂(x))+ Lαf (x, �̂(x))

+
∫ t∗(x)

0
e−αs−	µ̂(x)(x,s)λQh(φ(x, s), µ̂(x, s)) ds

+ e−αt∗(x)−	µ̂(x)(x,t∗(x))w(φ(x, t∗(x))). (A.38)

By Assumption 3.3, we have e−	µ̂(x)(x,t∗(x)) > 0. Therefore, combining (A.37) and (A.38), we
obtain, for all x ∈ E and µ ∈ P (U(φ(x, t∗(x)))),

w(φ(x, t∗(x))) ≤ Qh(φ(x, t∗(x)), µ)+ r(φ(x, t∗(x)), µ).
Clearly, by using (A.28), it can be claimed that the previous inequality becomes an equality for
µ = µ̂∂ (x), implying that

w(φ(x, t∗(x))) = inf
µ∈P (U(φ(x,t∗(x))))

{r(φ(x, t∗(x)), µ)+Qh(φ(x, t∗(x)), µ)}
= inf
a∈U(φ(x,t∗(x)))

{r(φ(x, t∗(x)), a)+Qh(φ(x, t∗(x)), a)}.
Consequently, we have

w(φ(x, t∗(x))) = r(φ(x, t∗(x)), ū(φ(x, t∗(x))))+Qh(φ(x, t∗(x)), ū(φ(x, t∗(x)))). (A.39)

Combining (A.36) and (A.39), it follows that

w(x) = −ρLα(x, ûφ(w, h)(x))+ Lαf (x, ûφ(w, h)(x))+Hαr(x, ûφ(w, h)(x))

+Gαh(x, ûφ(w, h)(x)).

Now consider the case in which t∗(x) = ∞. Using (A.31) and (A.35), we obtain

w(x) ≥ −e−(αt+	(x,t))[(ρ + b‖h‖g)Kλ + ‖h‖gg(φ(x, t))]
+

∫ t

0
e−(αs+	(x,s))[f (φ(x, s), ū(φ(x, s)))

+ λ(φ(x, s), ū(φ(x, s)))Qh(φ(x, s), ū(φ(x, s)))− ρ] ds.
(A.40)

However, from Assumption 3.6(a) and (d) we obtain

lim
t→+∞ e−(αt+	(x,t))[(ρ + b‖h‖g)Kλ + ‖h‖gg(φ(x, t))] = 0. (A.41)

Consequently, combining (A.32), (A.40), and (A.41), the ordinary feedback measurable selector
ûφ(w, h) ∈ SV satisfies

w(x) ≥ −ρ + Lα(x, ûφ(w, h)(x))+ Lαf (x, ûφ(w, h)(x))+Hαr(x, ûφ(w, h)(x))

+Gαh(x, ûφ(w, h)(x)).

Using (A.29), it follows that the inequality in the previous equation is in fact an equality.
In conclusion, since V(x) ⊂ V

r (x), it follows that Rα(ρ, h)(x) ≤ Tα(ρ, h)(x). However,
we have shown that ûφ(w, h) ∈ SV satisfies

Rα(ρ, h)(x) = −ρLα(x, ûφ(w, h)(x))+ Lαf (x, ûφ(w, h)(x))+Hαr(x, ûφ(w, h)(x))

+Gαh(x, ûφ(w, h)(x)),

which is the desired result.
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