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Classification of homomorphisms from
C(Ω) to a C∗-algebra
Qingnan An, George Arthur Elliott, and Zhichao Liu
Abstract. Let Ω be a compact subset of C and let A be a unital simple, separable C∗-algebra
with stable rank one, real rank zero, and strict comparison. We show that, given a Cu-morphism
α ∶ Cu(C(Ω)) → Cu(A) with α(⟨1Ω⟩) ≤ ⟨1A⟩, there exists a homomorphism ϕ ∶ C(Ω) → A such
that Cu(ϕ) = α. Moreover, if K1(A) is trivial, then ϕ is unique up to approximate unitary equiva-
lence. We also give classification results for maps from a large class of C∗-algebras to A in terms of
the Cuntz semigroup.

1 Introduction

The Cuntz semigroup is an invariant for C∗-algebras that is intimately related to
Elliott’s classification program for simple, separable, nuclear C∗-algebras. Its origi-
nal construction W(A) resembles the semigroup V(A) of Murray–von Neumann
equivalence classes of projections, and is a positively ordered, abelian semigroup
whose elements are equivalence classes of positive elements in matrix algebras over
A [13]. This was modified in [12] by constructing an ordered semigroup, termed
Cu(A), in terms of countably generated Hilbert modules. Moreover, a Cuntz category
was described to which the Cuntz semigroup belongs and as a functor into which
it preserves inductive limits. The Cuntz semigroup has been successfully used to
classify certain classes of C∗-algebras, as well as maps between them. In 2008, Ciuperca
and Elliott classified homomorphisms from C0((0, 1]) into an arbitrary C∗-algebra
of stable rank one in terms of the Cuntz semigroup [10]. Later, the codomain was
extended to a larger class in [28]. These results can also be regarded as a classification of
positive elements. Subsequently, Robert greatly expanded the domain C0((0, 1]) to the
class of direct limits of one-dimensional NCCW-complexes with trivial K1-group [26].
More specifically, he employed a series of techniques to reduce complicated domains
to C[0, 1] and applied the classification result in [10]. For the more general domain
C(Ω), it is still expected that the Cuntz semigroup can be used in some sense. Further
research and investigation are needed to explore the applicability and potential of the
Cuntz semigroup in this broader field.
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2 Q. An, G. A. Elliott, and Z. Liu

In this paper, let Ω be a compact subset of C, our primary focus is on the
classification of homomorphisms from the algebra of continuous functions C(Ω)
to a unital simple, separable C∗-algebra A with stable rank one, real rank zero, and
strict comparison. Using the properties of the Cuntz semigroup, we can lift the Cu-
morphism to a homomorphism approximately. Based on spectral information, we
associate these homomorphisms to normal elements and use a result of Hu and Lin.
Then, we establish a uniqueness result and use this to get a homomorphism exactly.
Finally, we classify the homomorphisms from C(Ω) to A in terms of the Cuntz
semigroup. Additionally, we employ the augmented Cuntz semigroup introduced by
Robert to classify more general non-unital cases.

2 Preliminaries

Definition 2.1 Let A be a unital C∗-algebra. Recall that A is said to have stable rank
one, written sr(A) = 1, if the set of invertible elements of A is dense, and to have real
rank zero, written rr(A) = 0, if the set of invertible self-adjoint elements is dense in
the set Asa of self-adjoint elements of A. If A is not unital, let us denote the minimal
unitization of A by A∼. A non-unital C∗-algebra is said to have stable rank one (or real
rank zero) if its unitization has stable rank one (or real rank zero).

Let p and q be two projections in A. Recall that p is Murray–von Neumann
equivalent to q in A, written p ∼ q, if there exists x ∈ A such that x∗x = p and xx∗ = q.
We will write p ⪯ q if p is equivalent to some subprojection of q. The class of a
projection p in K0(A) (see [30] for the definition of K0) will be denoted by [p].

Let us say that A has cancellation of projections if, for any projections p, q, e , f ∈ A
with pe = 0, q f = 0, e ∼ f , and p + e ∼ q + f , necessarily p ∼ q. Then A has cancella-
tion of projections if and only if p ∼ q implies that there exists a unitary u ∈ A∼ such
that u∗pu = q. It is well known that every unital C∗-algebra of stable rank one has
cancellation of projections.

Definition 2.2 [3, 4] A (bounded) quasitrace on a C∗-algebra A is a function
τ ∶ A → C such that:

(i) 0 ≤ τ (x∗x) = τ (xx∗) for all x in A;
(ii) τ is linear on commutative ∗-subalgebras of A;

(iii) If x = a + ib with a, b self-adjoint, then τ(x) = τ(a) + iτ(b).
If τ extends to a quasitrace on M2(A), then τ is called a 2-quasitrace. A linear
quasitrace is a trace.

If A is unital and τ(1) = 1, then we say τ is normalized. Denote by QT2(A) the space
of all the normalized 2-quasitraces on A and by T(A) the space of all the tracial states
on A. Note that every 2-quasitrace in QT2(A) is lower semicontinuous (see [3, Remark
2.27(v)]).

Remark 2.1 It is an open question whether every 2-quasitrace on a C∗-algebra is a
trace (asked by Kaplansky). A theorem of Haagerup [20] says that if A is exact and
unital then every bounded 2-quasitrace on A is a trace. This theorem can be extended
to obtain that every lower semicontinuous 2-quasitrace (not necessarily bounded) on
an exact C∗-algebra must be a trace (see [3, Remark 2.29(i)]). Brown and Winter [7]
presented a short proof of Haagerup’s result in the finite nuclear dimension case. Note
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Classification of homomorphisms 3

that if A is a unital simple C∗-algebra of stable rank one and real rank zero, with strict
comparison, then QT2(A) = T(A) (see [24, Theorem 2.9]).

Definition 2.3 (Cuntz semigroup) Denote the cone of positive elements of A by A+.
Let a, b ∈ A+. One says that a is Cuntz subequivalent to b, denoted by a ≲Cu b, if there
exists a sequence (rn) in A such that r∗nbrn → a. One says that a is Cuntz equivalent
to b, denoted by a ∼Cu b, if a ≲Cu b and b ≲Cu a. The Cuntz semigroup of A is defined
as Cu(A) = (A⊗K)+/ ∼Cu. We will denote the class of a ∈ (A⊗K)+ in Cu(A) by
⟨a⟩. Note that Cu(A) is a positively ordered abelian semigroup with zero (or monoid)
when equipped with the addition: ⟨a⟩ + ⟨b⟩ = ⟨a ⊕ b⟩, and the relation:

⟨a⟩ ≤ ⟨b⟩ ⇔ a ≲Cu b, a, b ∈ (A⊗K)+.

The following facts are well known; see [29].

Lemma 2.2 Let A be a C*-algebra, let a, b ∈ A+, and let p, q be projections. Then
(i) a ≲Cu b if and only if (a − ε)+ ≲Cu b for all ε > 0;

(ii) if ∥a − b∥ < ε, then (a − ε)+ ≲Cu b;
(iii) p ⪯ q if and only if p ≲Cu q.

Definition 2.4 [[12] (The category Cu)] Let (S , ≤) be a positively ordered abelian
semigroup with zero (or monoid). For x and y in S, let us say that x is compactly
contained in y (or x is way-below y), and denote it by x ≪ y, if for every increasing
sequence (yn) in S that has a supremum, if y ≤ supn∈N yn , then there exists k such that
x ≤ yk . This is an auxiliary relation on S, called the compact containment relation. If
x ∈ S satisfies x ≪ x, we say that x is compact.

We say that S is a Cu-semigroup of the Cuntz category Cu, if it has a 0 element (so
is a monoid) and satisfies the following order-theoretic axioms:
(O1): Every increasing sequence of elements in S has a supremum.
(O2): For any x ∈ S, there exists a ≪-increasing sequence (xn)n∈N in S such that

supn∈N xn = x.
(O3): Addition and the compact containment relation are compatible.
(O4): Addition and suprema of increasing sequences are compatible.
A Cu-morphism between two Cu-semigroups is a positively ordered monoid mor-
phism that preserves the compact containment relation and suprema of increasing
sequences.

Definition 2.5 Let S be a Cu-semigroup. S is said to have weak cancellation if, for
every x , y, z, z′ ∈ S with z′ ≪ z, we have that x + z ≪ y + z′ implies x ≤ y. It was
shown in [31, Theorem 4.3] that the Cuntz semigroup of a C∗-algebra with stable rank
one has weak cancellation (see also [15]).

The following is a foundation result which establishes the relation between
C∗-algebras and the category Cu.

Theorem 2.3 [12] Let A be a C∗-algebra. Then Cu(A) is a Cu-semigroup. Moreover,
if φ ∶ A → B is a ∗-homomorphism between C∗-algebras, then φ naturally induces a
Cu-morphism Cu(φ) ∶ Cu(A) → Cu(B).
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4 Q. An, G. A. Elliott, and Z. Liu

Definition 2.6 [17] Let A be a C∗-algebra. A functional on Cu(A) is a map
f ∶ Cu(A) → [0,∞] which takes 0 into 0 and preserves addition, order, and the
suprema of increasing sequences. Denote by F(Cu(A)) the set of all the functionals
on Cu(A) endowed with the topology in which a net (λ i) converges to λ if

lim sup λ i(x) ≤ λ(y) ≤ lim inf λ i(y)

for all x , y ∈ Cu(A) such that x ≪ y.
If A is unital, a functional λ on Cu(A) is said to be normalized if λ([1]) = 1. Denote

by F[1](Cu(A)) the set of all the normalized functionals on Cu(A).

Definition 2.7 Let τ ∈ QT2(A), we define a map dτ ∶ A⊗K→ [0,∞] by

dτ(a) = lim
n→∞

τ(a
1
n ).

It has the following properties:
(1) if a ≲Cu b, then dτ(a) ≤ dτ(b);
(2) if a and b are mutually orthogonal, then dτ(a + b) = dτ(a) + dτ(b);
(3) dτ((a − ε)+) → dτ(a) (ε → 0).
This map depends only on the Cuntz equivalence class of a ∈ A⊗K. Hence, we will
also dτ to denote the induced normalized functional on Cu(A).

Remark 2.4 Given λ ∈ F[1](Cu(A)), the function

τλ(a) = ∫
∞

0
λ(⟨(a − t)+⟩)dt

defined on the positive cone A+ can be extended to a normalized lower semicontinu-
ous quasitrace on A. If A is separable, it can be checked that QT2(A) has a countable
basis (see [17, Theorem 3.7]).

The following result is [17, Theorem 4.4] (see also [19, Theorem 6.9]).

Theorem 2.5 Let A be a unital C∗-algebra. Then the cones QT2(A) and F[1](Cu(A))
are compact and Hausdorff, and the map τ ↦ dτ is a homeomorphism between them.

It follows that if A is exact then every functional on Cu(A) arises from a lower
semicontinuous trace.

Combining the above results, we obtain a characterization of strict comparison.

Proposition 2.6 Suppose that A is simple unital, then the following statements are
equivalent:
(i) A has strict comparison (of positive elements), i.e., for any non-zero a, b ∈ (A⊗

K)+, dτ(a) < dτ(b), τ ∈ QT2(A), implies a ≲Cu b.
(ii) For any s, t ∈ Cu(A), λ(s) < λ(t), λ ∈ F[1](Cu(A)), implies s ≤ t.

Let Ω be a compact metric space. Denote byN the set of natural numbers with 0 and
∞ adjoined. By [27], if the covering dimension of Ω is at most two and Ȟ2(K) = 0 (the
Čech cohomology with integer coefficients) for any compact subset K ⊂ Ω, then the
Cuntz semigroup of C(Ω) is isomorphic to the ordered semigroup Lsc(Ω,N). If Ω is
an interval or a graph without loops, the classification results of the present paper were
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Classification of homomorphisms 5

obtained in [10, 11]. Note that if Ω is a compact subset of C, then we have Cu(C(Ω)) ≅
Lsc(Ω,N). (This can be deduced from Ȟ2(K) = lim

i→∞
H2(N(Ui)), whereUi is an open

cover of K and N(Ui) is the nerve of Ui , while H2(N(Ui)) = 0; see [1, pp. 256–257].)
Definition 2.8 Let Ω ⊂ C be a compact subset and let O ⊂ Ω be an open set. For r > 0,
set Or = {x ∈ Ω ∣ dist(x , O) < r}. Let fO denote the positive function corresponding
to O as follows:

fO(x) =
⎧⎪⎪⎨⎪⎪⎩

min{1, dist(x , Ω/O)}, if x ∈ O ,
0, otherwise.

Then 0 ≤ fO ≤ 1 and support( fO) = O. We shall use 1O to denote the class ⟨ fO⟩. Let
α ∶ Cu(C(Ω)) → Cu(A) be a Cu-morphism with α(1Ω) = ⟨1A⟩. For any τ ∈ T(A),
dτ ○ α defines a lower semicontinuous subadditive rank function on C(Ω). By
[4, Proposition I.2.1], this function uniquely corresponds to a countably additive
measure on Ω, denoted by μα∗τ , i.e., for any open set O ⊂ Ω, we have

μα∗τ(O) ∶= dτ(α(1O)).

The following result combines [6, Corollaries 4.6 and 4.7], together with the fact
that if A is separable, unital and has stable rank one then x ∈ W(A) if x ∈ Cu(A) and
x ≤ ⟨1A⟩ (see [25, 6.2(1)]).
Proposition 2.7 Let A be a separable, unital C∗-algebra with stable rank one. Suppose
that x ∈ Cu(A) satisfies x ≤ ⟨1A⟩. Then there exists a ∈ A+ such that x = ⟨a⟩. Moreover,
if x is compact, then a can be chosen to be a projection.
Proposition 2.8 Let A be a separable, unital C∗-algebra with stable rank one and
let p be a projection in A. Suppose that x1 , x2 , . . . , xn ∈ Cu(A) are compact elements
and satisfy x1 + x2 + ⋅ ⋅ ⋅ + xn ≤ ⟨p⟩. Then there exist mutually orthogonal projections
p1 , . . . , pn such that ⟨p i⟩ = x i and

p1 + p2 + ⋅ ⋅ ⋅ + pn ≤ p.

Proof By Proposition 2.7, there exist projections q1 , q2 , . . . , qn such that ⟨q i⟩ = x i
for any i. By Lemma 2.2,

[q1] + [q2] + ⋅ ⋅ ⋅ + [qn] ≤ [p].
Since A has cancellation of projections, with v1v∗1 = q1 and v∗1 v1 ≤ p, and setting
p1 = v∗1 q1v1, we have

[q2] + ⋅ ⋅ ⋅ + [qn] ≤ [p − p1].
There exists a partial isometry v2 such that v2v∗2 = q2 and v∗2 v2 ≤ p − p1. Set p2 = v∗2 v2
and continue this procedure; we obtain a collection of mutually orthogonal projections
{p i} such that

⟨p i⟩ = ⟨q i⟩ = x i , i = 1, 2, . . . , n,

and

p1 + p2 + ⋅ ⋅ ⋅ + pn ≤ p. ∎
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6 Q. An, G. A. Elliott, and Z. Liu

Theorem 2.9 [12, Corollary 5] If A is a C∗-algebra with rr(A) = 0, then Cu(A) is
algebraic ([2, Definition 5.5.1]: every element is the supremum of an increasing sequence
of compact elements).

3 Distances between homomorphisms

Definition 3.1 Let A be a unital C∗-algebra and let Ω be a compact metric space.
Denote by Hom1(C(Ω), A) the set of all unital homomorphisms from C(Ω) into
A. Let ϕ, ψ ∶ C(Ω) → A be two unital homomorphisms. Define the Cuntz distance
between ϕ, ψ by

dW(ϕ, ψ) = inf{ r > 0 ∣ϕ( fO) ≲Cu ψ( fOr), ψ( fO) ≲Cu ϕ( fOr), O ⊂ Ω, open}.

Write ϕ ∼ ψ if dW(ϕ, ψ) = 0. It is easy to see that “∼” is an equivalence relation. Put

Hc ,1(C(Ω), A) = Hom1(C(Ω), A)/ ∼ .

Remark 3.1 The definition of dW can be regarded as the symmetric version of the
distance Dc(⋅, ⋅) defined in [21]. When A is a unital simple C∗-algebra with stable rank
one, (Hc ,1(C(Ω), A), dW) is a metric space; see [21, Proposition 2.15]. There are some
works where this distance is considered in special cases (see [10, 11, 16]).

Definition 3.2 Let φ ∈ Hom1(C(Ω), A). Then ker φ = { f ∈ C(Ω) ∶ f ∣X = 0} for
some compact subset X ⊂ Ω. We shall call X the spectrum of φ. We may also use φX to
denote φ. If X ⊂ C, every homomorphism φX ∶ C(Ω) → A corresponds to a normal
element x = φX(id) ∈ A, where id ∶ X → X ⊂ C is the identity function.

Conversely, suppose that x , y are normal elements in A with sp(x) = X and
sp(y) = Y . We can define φX , φY ∶ C(X ∪ Y) → A to be two homomorphisms with
φX( f ) = f (x) and φY( f ) = f (y) for all f ∈ C(X ∪ Y). Define the Cuntz distance
between normal elements as follows:

dW(x , y) ∶= dW(φX , φY).

Definition 3.3 Let Ω be a compact metric space and let α, β ∶ Lsc(Ω,N) → Cu(A)
be two Cu-morphisms. Define the Cuntz distance between α, β by

dCu(α, β) ∶= inf{ r > 0 ∣ α(1O) ≤ β(1Or), β(1O) ≤ α(1Or), ∀ O ⊂ Ω, open}.

Denote by Cu(C(Ω), A) the set of all Cu-morphisms from Cu(C(Ω)) to Cu(A).

Remark 3.2 For any α, β, γ ∈ Cu(C(Ω), A) and ϕ, ψ ∈ Hom1(C(Ω), A), the follow-
ing properties hold:

(i) dCu(α, β) = dCu(β, α);
(ii) dCu(α, β) ≤ dCu(α, γ) + dCu(β, γ);

(iii) dW(ϕ, ψ) = dCu(Cu(ϕ), Cu(ψ)).

Proposition 3.3 Let Ω be a compact subset of C. Then dCu is a metric on the Cuntz
category morphisms from Cu(C(Ω)) to Cu(A).

Proof Let us identify Cu(C(Ω)) with the semigroup of lower semicontinuous
functions Lsc(Ω,N). Suppose that dCu(α, β) = 0. We need only to show that α and β
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Classification of homomorphisms 7

agree on the functions 1O for any open set O ⊂ Ω (their overall equality is apparent
through the additivity and preservation of suprema of increasing sequences).

For any open set O ⊂ Ω, there exists a sequence of open subsets On such that
supn 1On = 1O and On ⊂ On+1 for any n. Since On is bounded, there exists rn > 0
such that (On)rn ⊂ On+1, and by the definition of dCu, we have α(1On) ≤ β(1On+1)
and β(1On) ≤ α(1On+1).

Then we have

α(1O1) ≤ β(1O2) ≤ ⋅ ⋅ ⋅ ≤ α(1O2n−1) ≤ β(1O2n) ≤ ⋅ ⋅ ⋅ .

Note that

sup
n

α(1O2n−1) = α(1O), sup
n

β(1O2n) = β(1O),

which implies α(1O) = β(1O), as desired. ∎

We will now present a version of the Marriage lemma.

Proposition 3.4 Let α1 , . . . , αn , β1 , . . . , βn ∈ Cu(C(Ω), A). Then

dCu (
n
∑
i=1

α i ,
n
∑
i=1

β i) ≤ min
σ∈Sn

max
1≤i≤n

dCu(α i , βσ(i)),

where Sn is the set of all permutations of (1, 2, . . . , n).

Proof Let d = min
σ∈Sn

max
1≤i≤n

dCu(α i , βσ(i)). Then for any ε > 0, there exists σ ∈ Sn such
that

dCu(α i , βσ(i)) < d + ε, i = 1, 2, . . . , n.

For any open set O ⊂ Ω, we get

α i(1O) ≤ βσ(i)(1Od+ε), βσ(i)(1O) ≤ α i(1Od+ε), i = 1, 2, . . . , n.

Then we have
n
∑
i=1

α i(1O) ≤
n
∑
i=1

β i(1Od+ε),
n
∑
i=1

β i(1O) ≤
n
∑
i=1

α i(1Od+ε).

Hence,

dCu (
n
∑
i=1

α i ,
n
∑
i=1

β i) ≤ d + ε.

Since ε is arbitrary, the conclusion follows. ∎

Definition 3.4 Let A be a unital C∗-algebra and Ω be a compact metric space. Let
x , y ∈ A be normal elements and ϕ, ψ ∶ C(Ω) → A be two homomorphisms. We say
ϕ and ψ are approximately unitarily equivalent, written ϕ ∼aue ψ, if there exists a
sequence of unitaries un ∈ A such that un ϕu∗n → ψ pointwise. Define the distance
between unitary orbits of x and y by

dU(x , y) = inf{∥uxu∗ − y∥ ∶ u is a unitary in A}.
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8 Q. An, G. A. Elliott, and Z. Liu

Lemma 3.5 Let {xn} be a sequence of normal elements in A with limit x. Suppose that
Ω is a compact subset of C such that sp(xn) ⊂ Ω. Then for any finite set F ⊂ C(Ω) and
ε > 0, there exists N ∈ N such that ∥ f (xn) − f (x)∥ < ε for all f ∈ F and n ≥ N.

Proof We may suppose that ∥xn∥ ≤ M for all n, so that also ∥x∥ ≤ M. For any
f ∈ C(Ω) and ε > 0, by the Stone–Weierstrass theorem, there exists a polynomial
P(z, z̄) such that

∥ f − P(z, z̄)∥ < ε
3

.

Note that

∥(x∗n)s x t
n − (x∗)s x t∥ ≤∥(x∗n)s x t

n − xn(x∗)s−1x t∥ + ∥xn(x∗)s−1x t − (x∗)s x t∥
≤M∥(x∗n)s−1x t

n − (x∗)s−1x t∥ + M s+t∥xn − x∥.

By induction, we have

∥(x∗n)s x t
n − (x∗)s x t∥ ≤ (s + t)M s+t∥xn − x∥.

Therefore, there exists N f such that if ∥xn − x∥ is sufficiently small for all n ≥ N f , we
will have

∥P(xn , x∗n) − P(x , x∗)∥ < ε
3

.

Now we have

∥ f (xn) − f (x)∥ ≤ ∥ f (xn) − P(xn , x∗n)∥ + ∥P(xn , x∗n) − P(x , x∗)∥
+ ∥P(x , x∗) − f (x)∥

< ε
3
+ ε

3
+ ε

3
= ε.

Since F is finite, N ∶= max{N f ∣ f ∈ F} is as desired. ∎
Definition 3.5 Let A be a unital C∗-algebra and let x and y be normal elements in A.
Let us say that x and y have thesameindex, written ind(x) = ind(y), if

[λ − x] = [λ − y] in K1(A)
for all λ ∉ sp(x) ∪ sp(y). (Note that λ − x , λ − y are invertible and so give rise to the
K1-classes; see [30].)

The following theorem shows the relation between dW(x , y) and dU(x , y); see [21,
Corollary 6.4 and Theorem 6.7].

Theorem 3.6 Let A be a unital simple separable C∗-algebra with real rank zero, stable
rank one and with weakly unperforated K0(A). Suppose that x and y are two normal
elements in A with ind(x) = ind(y). Then

dU(x , y) ≤ 2dW(x , y).

Theorem 3.7 Let A be a unital simple separable C∗-algebra with real rank zero, stable
rank one, and weakly unperforated K0(A). Let Ω be a compact subset of C. Suppose
that x1 , . . . , xn , x are normal elements in A with sp(x i) ⊂ Ω, 1 ≤ i ≤ n, sp(x) ⊂ Ω, and
ϕ, ψ ∶ C(Ω) → A are two unital homomorphisms. Then
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(1) if dU(xn , x) → 0, then dW(xn , x) → 0;
(2) if dW(ϕ, ψ) = 0 and ind(ϕ(id)) = ind(ψ(id)), then ϕ ∼aue ψ.

Proof (1) Without loss of generality, we may assume that xn → x. Suppose that
Xn = sp(xn) and X = sp(x). We need to show that for any ε > 0, there exists N ∈ N
such that

dW(φXn , φX) < ε, n ≥ N .

Let δ = ε/2. Since Ω is compact, there is a finite open cover {Ω1 , Ω2 , . . . , Ωm} of Ω
with diameter(Ω i) ≤ δ, i = 1, 2, . . . , m. Let F denote the set of unions of some of the
sets Ω1 , Ω2 , . . . , Ωm . For any Y ∈ F, define

gY(z) =
⎧⎪⎪⎨⎪⎪⎩

1 − dist(z, Y)/δ, if z ∈ (Y)δ ,
0 otherwise.

Set

F = {gY(z) ∣ Y ∈ F}.

Since F is finite, by Lemma 3.5, there exists N ∈ N such that

∥g(xn) − g(x)∥ < δ, g ∈ F , n ≥ N .

Now for any open set O ⊂ Ω, let YO = ⋃
O∩Ω i≠∅

Ω i . Then YO ∈ F and

O ⊂ YO ⊂ Oδ ⊂ (YO)δ ⊂ O2δ .

Then we have

φXn( fO) ≲Cu φXn( fYO ) and φX( fYO ) ≲Cu φX( fO2δ).

Note that gYO ∈ F, so for all n ≥ N , we have

∥gYO (xn) − gYO (x)∥ < δ.

It follows from Lemma 2.2(ii) that

(gYO (xn) − δ)+ ≲Cu gYO (x).

Note that support(gYO ) = (YO)δ , so that fYO ≲Cu (gYO − δ)+, and we get

fYO (xn) ≲Cu (gYO (xn) − δ)+ ≲Cu gYO (x) ≲Cu f(YO)δ
(x).

Therefore,

φXn( fYO ) = fYO (xn) ≲Cu f(YO)δ(x) = φX( f(YO)δ
).

Now we have

φXn( fO) ≲Cu φXn( fYO ) ≲Cu φX( f(YO)δ) ≲Cu φX( fO2δ).

Similarly, for any open O ⊂ Ω, we also have

φX( fO) ≲Cu φXn( fO2δ).
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10 Q. An, G. A. Elliott, and Z. Liu

Finally, we obtain

dW(φXn , φX) < 2δ = ε.

(2) Set a = ϕ(id), b = ψ(id). By hypothesis, we have dW(a, b) = 0 and ind(a) =
ind(b), and so by Theorem 3.6, we get dU(a, b) = 0. This means that there exists
a sequence of unitaries un ∈ A such that u∗n aun → b. Then for any finite subset F ⊂
C(Ω) and ε > 0, by Lemma 3.5, there exists N ∈ N such that

∥ f (u∗n aun) − f (b)∥ < ε, f ∈ F , n ≥ N .

From the Stone–Weierstrass theorem, it can be checked that

f (u∗n aun) = u∗n f (a)un , f ∈ F .

Now we get

∥u∗n ϕ( f )un − ψ( f )∥ < ε, f ∈ F .

Since ε is arbitrary, we have ϕ ∼aue ψ. ∎
Remark 3.8 The question whether the metrics dW and dU are equivalent relates to
the distances between unitary orbits. There are some results for self-adjoint elements
and normal elements. Under certain conditions, one can even get dW = dU ; see
[16, 21–23, 28] for more details. Distances for Cu-morphisms between general pairs of
Cu-semigroups are studied in detail in [9, Section 5]. Some similar results intersecting
with this work can be found in [8], which employs a different method.

4 Approximate lifting

In this section, we present an approximate existence result. Given a Cu-morphism
with certain properties, we can approximately lift it to a homomorphism between
C∗-algebras.

Proposition 4.1 Let A be a unital, simple, separable C∗-algebra of stable rank one.
Then for any x ∈ Cu(A)(x ≠ 0) with x ≤ ⟨1A⟩, we have inf

τ∈T(A)
dτ(x) > 0. (Here, dτ is a

normalized functional on Cu(A).)
Proof From the definition of Cu(A) and Lemma 2.7, there exists a ∈ A+ such that
a ≤ 1A and ⟨a⟩ = x. By the simplicity of A, there exist a1 , a2 , . . . , ak in A such that
1A = ∑k

i=1 a∗i aa i . Then for any τ ∈ T(A),

1 = τ(1A) =
k
∑
i=1

τ(a∗i aa i) =
k
∑
i=1

τ(a1/2a∗i a i a1/2) ≤
k
∑
i=1
∥a∗i a i∥ ⋅ τ(a).

Now we get τ(a) > 0, whence from the compactness of T(A) and

dτ(x) ≥ τ(a),

we get inf
τ∈T(A)

dτ(x) > 0. ∎

Suppose that Ω is a compact space, and for any x ∈ Ω, write B(x , r) = {y ∈ Ω ∣
dist(y, x) < r} and R(x , s) = {y ∈ Ω ∣dist(y, x) = s}.
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Classification of homomorphisms 11

Lemma 4.2 Let A be a unital, simple, separable C∗-algebra with QT2(A) = T(A) and
Ω be a compact metric space. Let α ∶ Cu(C(Ω)) → Cu(A) be a Cu-morphism with
α(1Ω) ≤ ⟨1A⟩. Then for any x ∈ Ω and r, σ > 0, there exist s ∈ (r/2, r) and ε > 0 such
that s ± ε ∈ (r/2, r) and

dτ(α(1R(x ,s)ε)) ≤ σ , τ ∈ QT2(A).

Proof For any open set O ⊂ Ω and τ ∈ T(A), let μα∗τ be the countably additive
measure on Ω such that

μα∗τ(O) = dτ(α(1O)).

If α(1B(x ,r)) = 0, the proof is trivial. In general, we have μα∗τ(B(x , r)) ≤ 1. Since
R(x , s) ∩ R(x , s′) = ∅, if s ≠ s′, there are at most finitely many s in (r/2, r) such that

μα∗τ(R(x , s)) > σ/2.

Since we have QT2(A) = T(A), by Remark 2.4, QT2(A) is compact metrizable and
has a countable basis, and so we may choose a countable dense subset Y of QT2(A).

For any τ ∈ Y , we define

Sτ = {s ∣ μα∗τ(R(x , s)) > σ/2}.

Then ⋃τ∈Y Sτ has at most countably many points and

(r/2, r)/ ⋃
τ∈Y

Sτ ≠ ∅.

Now there exist an s ∈ (r/2, r) such that μα∗τ(R(x , s)) ≤ σ/2, i.e.,

μα∗τ(Ω/R(x , s)) ≥ 1 − σ/2, τ ∈ Y .

That is,

dτ(α(1Ω/R(x ,s))) ≥ 1 − σ/2, τ ∈ Y .

By the density of Y and Theorem 2.5, we have

dτ(α(1Ω/R(x ,s))) ≥ 1 − σ/2, τ ∈ QT2(A).

Let {εn} be a strictly decreasing sequence such that

εn ≤ min{s − r/2, r − s}, n = 1, 2 . . . , and lim
n→∞

εn = 0.

The sequence {1Ω/R(x ,s)εn
} is increasing in Cu(C(Ω)) with supremum 1Ω/R(x ,s).

Since α and dτ preserve the suprema of increasing sequences,

dτ(α(1Ω/R(x ,s))) = lim
n→∞

dτ(α(1Ω/R(x ,s)εn
)), τ ∈ QT2(A).

For any τ ∈ QT2(A), by [14, Lemma 3.1], there exist an integer Nτ ∈ N and an open
neighborhood Vτ of τ such that

1 − σ ≤ dτ(α(1Ω/R(x ,s))) −
σ
2
< dγ(α(1Ω/R(x ,s)εn

)), n > Nτ , γ ∈ Vτ .
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12 Q. An, G. A. Elliott, and Z. Liu

Then {Vτ ∣ τ ∈ QT2(A)} forms an open cover of QT2(A), and so from the compact-
ness of QT2(A), there are finitely many sets {Vτ1 , Vτ2 , . . . , Vτk} covering QT2(A).
Now we set

N0 = max{Nτ1 , Nτ2 , . . . , Nτk}.

For any n ≥ N0, we have

dτ(α(1Ω/R(x ,s)εn
)) > 1 − σ , τ ∈ QT2(A).

Then for any 0 < ε ≤ εN0 , we have s ± ε ∈ (r/2, r) and

dτ(α(1R(x ,s)ε)) ≤ σ , τ ∈ QT2(A). ∎

Definition 4.1 Let Ω be a compact metric space and F be a finite collection of open
subsets of Ω. Let X , Y ∈ F, we say X and Y are almost connected if there exists a
sequence of sets X = Ω1 , Ω2 , . . . , Ωn = Y in F such that for each i, Ω i ∈ F and Ω i ∩
Ω i+1 ≠ ∅. Under this relation, F has finitely many almost connected components.

Definition 4.2 Let α ∶ Lsc(Ω,N) → Cu(A) be a Cu-morphism and α(1Ω) ≤ ⟨1A⟩.
Let δ > 0 and let {O1 , O2 , . . . , ON} be a collection of mutually disjoint open sets of Ω.
Set U = ⋃N

i=1 O i . We say {O1 , O2 , . . . , ON} is an almost δ-cover with respect to α if,
(i) dist(x , U) < δ for all x ∈ Ω;
(ii) diameter(O i) ≤ δ, for any i = 1, 2, . . . , N ;
(iii)dist(O i , O j) > 0, for any i ≠ j, i , j ∈ {1, . . . , N};
(iv) α(1Ω/U) ≤ α(1(O i)δ∩U), for any i = 1, 2, . . . , N ;
(v) {(O1)δ , (O2)δ , . . . , (ON)δ} has a unique almost connected component.

Lemma 4.3 Let A be a unital, simple, separable C∗-algebra with stable rank one,
strict comparison and QT2(A) = T(A) and let Ω be a compact metric space. Let α ∶
Cu(C(Ω)) → Cu(A) be a Cu-morphism and δ > 0. Suppose that Ω has an open cover
{B(x1 , δ/4), . . . , B(xm , δ/4)} satisfying
(1) α(1Ω) ≤ ⟨1A⟩;
(2) α(1B(x i ,δ/2)) ≠ 0, for any i ∈ {1, 2, . . . , m};
(3) {B(x1 , δ/4), ⋅ ⋅ ⋅ , B(xm , δ/4)} has a unique almost connected component.

Then Ω has an almost δ-cover with respect to α.

Proof By Proposition 4.1, we set

σ = min
1≤i≤m

inf
τ∈T(A)

{dτ(α(1B(x i ,δ/2)))} > 0.

For each i ∈ {1, 2, . . . , m}, by Lemma 4.2 for x i , δ/2, and σ/(2m + 1), there exist
s i ∈ (δ/4, δ/2) and ε i such that s i ± ε i ∈ (δ/4, δ/2) and

μα∗τ(R(x i , s i)ε i ) ≤
σ

2m + 1
< σ

2m
, τ ∈ QT2(A).

Set R = ⋃m
i=1 R(x i , s i), then

μα∗τ(R) ≤
m
∑
i=1

μα∗τ(R(x i , s i)ε i ) <
σ

2m
⋅ m = σ

2
.
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Since Ω/R is open, there exists a positive function fΩ/R ∈ C(Ω) corresponding to
Ω/R (see 2.8) such that

dτ(α(⟨ fΩ/R⟩)) = μα∗τ(Ω/R) > 1 − σ
2

, τ ∈ QT2(A).

Let {σn} be a strictly decreasing sequence such that

σn ≤ min{ε1 , ε2 , . . . , εm}, n = 1, 2, . . . , and lim
n→∞

σn = 0.

Set

Wn = supp{( fΩ/R − σn)+}.

Then {1Wn} is an increasing sequence in Cu(C(Ω)) with supremum 1Ω/R . Since α
preserves suprema, we have

α(1Ω/R) = sup
n∈N

α(1Wn).

Hence,

dτ(α(1Ω/R)) = lim
n→∞

dτ(α(1Wn)), τ ∈ QT2(A).

Since QT2(A) is compact, with a similar method of the proof of Lemma 4.2, there
exists N0 such that

dτ(α(1Wn)) > 1 − σ , n > N0 , τ ∈ QT2(A).

Now for fixed integers n0 > n1 > N0, we have σn0 < σn1 and

Wn0 ∪ Rσn0
∪ {x ∣ fΩ/R(x) = σn0} = Wn1 ∪ Rσn1

∪ {x ∣ fΩ/R(x) = σn1} = Ω.

As Wn0 ⊃ Wn1 , we then have

{x ∣ fΩ/R(x) = σn0} ⊂ Rσn1
⊂

m
⋃
i=1

R(x i , s i)ε i .

Now we set

η ∶ = σn0 , U ∶ = Wn0 .

Note that

η < min{ε1 , ε2 , . . . , εm} and dτ(α(1U)) > 1 − σ , ∀ τ ∈ QT2(A).

We also have

U ∪ Rη ∪ {x ∣ fΩ/R(x) = η} = Ω ⊂ U ∪
m
⋃
i=1

R(x i , s i)ε i .

Define

O1 ∶= U ∩ B(x1 , s1),

O2 ∶= (U/O1) ∩ B(x2 , s2),

⋅ ⋅ ⋅

Om ∶= (U/ ∪m−1
i=1 O i) ∩ B(xm , sm).
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14 Q. An, G. A. Elliott, and Z. Liu

Note that all the O i are open sets in U. Let us delete the empty sets and rewrite those
remaining as {O1 , O2 , . . . , ON}; then U = ⋃N

i=1 O i .
Let us now show that {O1 , O2 , . . . , ON} is an almost δ-cover with respect to α. For

any x ∈ Ω, if x ∈ U , it is trivial that dist(x , U) = 0; if x ∈ ⋃m
i=1 R(x i , s i)ε i , there exists

i0 such that x ∈ B(x i0 , δ/2). Since
m
∑
i=1

μα∗τ(R(x i , s i)ε i ) <
σ
2
< μα∗τ (B (x i0 , δ

2
)),

we have B(x i0 , δ/2)/⋃m
i=1 R(x i , s i)ε i ≠ ∅, and hence, there exists y ∈ B(x i0 , δ/2) ∩U

such that dist(x , y) < δ. From the construction of O i , for any i ≥ 1, O i is contained in
B(x j , s j) for some j, and so diameter(O i) ≤ δ. If i ≠ j, then O i and O j can be separated
by Rη , and so dist(O i , O j) > 0. Then (i)–(iii) hold.

Now we check (iv). Given any O i , there exists j such that

O i ⊂ B(x j , s j) ⊂ B (x j ,
δ
2
) and α(1B(x j , δ

2 )
) ≠ 0.

Set

Y1 ∶= B (x j ,
δ
2
) ∩U , Y2 ∶= B (x j ,

δ
2
) ∩

m
⋃
i=1

R(x i , s i)ε i .

Then we have

Y1 ⊂ B (x j ,
δ
2
) ⊂ Y1 ∪ Y2 ⊂ (O i)δ .

Recall that
m
∑
i=1

dτ(α(1R(x i ,s i)εi
)) < σ

2
, τ ∈ QT2(A).

Then

dτ(α(1Y2)) < dτ(α(1∪m
i=1 R(x i ,s i)εi

)) < σ
2

,

and hence,

σ ≤ dτ(α(1B(x j , δ
2 )
)) ≤ dτ(α(1Y1)) + dτ(α(1Y2)) < dτ(α(1Y1)) +

σ
2

.

Now we have

dτ(α(1Y1)) >
σ
2

, τ ∈ QT2(A).

Since

Ω/U ⊂
m
⋃
i=1

R(x i , s i)ε i ,

we have

dτ(α(1Ω/U)) ≤ dτ(α(1∪m
i=1 R(x i ,s i)εi

)) < σ
2
< dτ(α(1Y1)), τ ∈ QT2(A).

Downloaded from https://www.cambridge.org/core. 18 Jun 2025 at 19:09:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Classification of homomorphisms 15

Since A has strict comparison, by Proposition 2.6 and the inclusion Y1 ⊂ (O i)δ ∩U ,
we have

α(1Ω/U) ≤ α(1Y1) ≤ α(1(O i)δ∩U).

Finally, notice that for any i, we have shown that B(x i , δ/2) ∩U ≠ ∅, and
then B(x i , δ/2) ⊂ (O j i )δ for some j i . Combining this with assumption (3),
{(O j1)δ , (O j2)δ , . . . , (O jm)δ} is also an open cover of Ω and has a unique
almost connected component. Note that Ω = ⋃m

i=1(O j i )δ = ⋃N
k=1 Ok , then for

any k ∈ {1, 2, . . . , N}, there exists (O j i )δ such that Ok ∩ (O j i )δ ≠ ∅. Thus any
two elements in {(O1)δ , (O2)δ , . . . , (ON)δ} are almost connected through
{(O j1)δ , (O j2)δ , . . . , (O jm)δ}. In general, {(O1)δ , (O2)δ , . . . , (ON)δ} has a unique
almost connected component, that is, (v) holds. ∎

Lemma 4.4 Let A be a unital, simple, separable C∗-algebra with stable rank one, real
rank zero, strict comparison and let Ω be a compact metric space. Let α ∶ Cu(C(Ω)) →
Cu(A) be a Cu-morphism and p is a projection in A. Suppose that
(1) α(1Ω) = ⟨p⟩;
(2) Ω has an almost δ-cover with respect to α.

Then there exists a∗-homomorphism ϕ ∶ C(Ω) → pAp with finite dimensional range
such that

dCu(Cu(ϕ), α) < 9δ.

Proof Suppose that {O1 , O2 , . . . , ON} is an almost δ-cover respect to α.
Let

U =
N
⋃
i=1

O i , ρ = 1
4

min{δ, dist(O i , O j), i ≠ j, 1 ≤ i , j ≤ N}.

Then the facts that 1O i ≪ 1(O i)ρ and α preserves the compact containment relation
imply that

α(1O i ) ≪ α(1(O i)ρ) ≪ α(1(O i)2ρ).

Since Cu(A) is algebraic (see 2.9), for each i, there exists an increasing sequence of
compact elements {xn

i }n with supremum α(1(O i)2ρ). From the compact containment
relation, there exists n i ∈ N such that α(1(O i)ρ) ≤ xn i

i . For convenience, we use x i to
denote xn i

i ; then,

α(1(O i)ρ) ≤ x i ≤ α(1(O i)2ρ).

Now we have

x1 + x2 + ⋅ ⋅ ⋅ + xN ≤ α(1∪N
i=1(O i)2ρ

) ≤ ⟨p⟩.

By Proposition 2.8, there exists a collection of mutually orthogonal projections {p i}
such that

⟨p i⟩ = x i , i = 1, 2, . . . , N
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16 Q. An, G. A. Elliott, and Z. Liu

and

p1 + p2 + ⋅ ⋅ ⋅ + pN ≤ p.

Set p0 = p −∑N
i=1 p i . Note that

⟨p0⟩ +
N
∑
i=1
⟨p i⟩ = α(1Ω) ≪ α(1Ω/U) + α(1Uρ)

and

α(1Uρ) ≪ α(1∪N
i=1(O i)2ρ

) ≪
N
∑
i=1
⟨p i⟩.

By weak cancellation in Cu(A) (Definition 2.5), we have

⟨p0⟩ ≤ α(1Ω/U) ≤ α(1(Ok)δ∩U), ∀ k = 1, 2 . . . , N .

Now choose z0 ∈ Ω/U and z i ∈ O i (1 ≤ i ≤ N). Define

ϕ( f ) =
N
∑
i=0

f (z i)p i , f ∈ C(Ω).

Then we need to show dCu(Cu(ϕ), α) < 9δ.
For any nonempty open set V ⊂ Ω, we have Vδ ∩U ≠ ∅. Now we consider the

following two cases.
Case 1: There exists k ∈ {1, 2, . . . , N} such that Ok ⊂ V8δ/V3δ .
Define index sets

I0 = {i ∣ V ∩ (O i)ρ ≠ ∅, 1 ≤ i ≤ N},

I1 = {i ∣ O i ∩ (Ok)δ ≠ ∅, 1 ≤ i ≤ N}.

If i ∈ I1, then O i ∩ V2δ = ∅, we have I0 ∩ I1 = ∅. We also note that

⋃
i∈I0

(O i)2ρ ∪ (⋃
i∈I1

O i) ⊂ V9δ .

Then we have

Cu(ϕ)(1V) ≤⟨p0⟩ + ∑
z i∈V , i≠0

⟨p i⟩

≤α(1(Ok)δ∩U) + ∑
i∈I0

⟨p i⟩

≤∑
i∈I1

α(1O i ) + ∑
i∈I0

α(1(O i)2ρ)

≤α(1V9δ).

Note that

V ⊂ (V ∩ Ω/U) ∪ (V ∩Uρ).
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Now we have

α(1V) ≤α(1V∩Ω/U) + α(1V∩Uρ)
≤α(1(Ok)δ∩U) + α(1V∩Uρ)
≤∑

i∈I1

α(1O i ) + ∑
i∈I0

α(1(O i)ρ)

≤∑
i∈I1

⟨p i⟩ + ∑
i∈I0

⟨p i⟩

≤Cu(ϕ)(1V9δ).

Case 2: There doesn’t exist k ∈ {1, 2, . . . , N} such that Ok ⊂ V8δ/V3δ .
In this case, U ∩ (V7δ/V4δ) = ∅. Now we define index sets

J0 = {i ∣ O i ⊂ V4δ , 1 ≤ i ≤ N},

J1 = {i ∣ O i ⊂ Ω/V7δ , 1 ≤ i ≤ N}.

Thus, we have J0 ∪ J1 = {1, 2, . . . , N} and J0 ∩ J1 = ∅.
By (i), if Ω/V6δ ≠ ∅, then J1 ≠ ∅. Then for arbitrary i ∈ J0 , i′ ∈ J1, we have

dist((O i)δ , (O i′)δ) > δ, this means that (O i)δ and (O i′)δ can’t be almost connected,
and this contradicts (v). Then we must have V6δ = Ω. It is clear that

Cu(ϕ)(1V) ≤ Cu(ϕ)(1V6δ) = α(1Ω)
and

α(1V) ≤ α(1V6δ) = Cu(ϕ)(1Ω).

Combining these two cases, we have

dCu(Cu(ϕ), α) < 9δ. ∎

Now we must consider the possibility that certain open sets in the covering may
be transformed into zero by the Cu-morphism. In such situations, it is essential to
delicately organize the open sets into appropriate groupings.
Theorem 4.5 Let A be a unital, simple, separable C∗-algebra with stable rank one,
real rank zero and strict comparison and let Ω be a compact metric space. Let
α ∶ Cu(C(Ω)) → Cu(A) be a Cu-morphism with α(1Ω) ≤ ⟨1A⟩. Then for any ε > 0,
there exists a ∗-homomorphism ϕ ∶ C(Ω) → A such that

dCu(Cu(ϕ), α) < ε.

Proof Since Ω is compact, for δ = ε/9, there exist x1 , x2 , . . . , xm ∈ Ω such that

Ω =
m
⋃
i=1

B(x i , δ/4).

Denote
Λ = {1, 2, . . . , m},

F = {B(x i , δ/4) ∣ α(1B(x i ,δ/4)) ≠ 0}.

Then F has finitely many almost connected (Definition 4.1) components F1 , . . . ,Fl .
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18 Q. An, G. A. Elliott, and Z. Liu

For each i ∈ {1, 2, . . . , l}, we also define

Λ i = { j ∣ B(x j , δ/4) ∈ Fi}, Λ0 = Λ/
l
⋃
i=1

Λ i ,

Ω i = ⋃
j∈Λ i

B(x j , δ/4), Ω0 = ⋃
j∈Λ0

B(x j , δ/4).

(One may say that Ω1 , . . . , Ω l are “separated” by Ω0.)
Since Ω i ∩ Ω j ≠ ∅ for all i , j ∈ {1, 2, . . . , l} with i ≠ j, we have

α(1Ω) ≤
l
∑
i=0

α(1Ω i ) =
l
∑
i=1

α(1Ω i ) ≤ α(1Ω).

Thus,

α(1Ω1) + α(1Ω2) + ⋅ ⋅ ⋅ + α(1Ω l ) = α(1Ω).

Now we will prove that α(1Ω i ) is compact for each i ∈ {1, 2, . . . , l}.
For each i, let {an , i}n be a ≪-increasing sequence in Lsc(Ω,N) with supremum

1Ω i . Set bn = an ,1 + an ,2 + ⋅ ⋅ ⋅ + an , l , then {bn}n is also a≪-increasing sequence with
supremum

sup
n

bn = sup
n

an ,1 + sup
n

an ,2 + ⋅ ⋅ ⋅ + sup
n

an , l .

Since α preserves suprema of increasing sequences, then we have

sup
n

α(bn) = α(sup
n

an ,1) + α(sup
n

an ,2) + ⋅ ⋅ ⋅ + α(sup
n

an , l)

= α(1Ω1) + α(1Ω2) + ⋅ ⋅ ⋅ + α(1Ω l )
= α(1Ω).

From the compactness of α(1Ω), there exists k ∈ N such that α(bk) = α(1Ω), i.e.,

α(ak ,1) + α(ak ,2) + ⋅ ⋅ ⋅ + α(ak , l) = α(1Ω1) + α(1Ω2) + ⋅ ⋅ ⋅ + α(1Ω l ).

Since we have ak ,m ≪ 1Ωm (in Lsc(Ω,N)) for any m = 1, 2, . . . , l , then

∑
m≠i

α(ak ,m) ≪ ∑
m≠i

α(1Ωm) (in Cu(A)).

Since α(1Ω) is compact, we also have

α(1Ω1) + α(1Ω2) + ⋅ ⋅ ⋅ + α(1Ω l ) ≪ α(ak ,1) + α(ak ,2) + ⋅ ⋅ ⋅ + α(ak , l).

From the weak cancellation of Cu(A), we have

α(1Ω i ) ≤ α(ak , i) ≪ α(1Ω i ).

This means that α(1Ω i ) is compact in Cu(A).
Since we have α(1Ω1) + α(1Ω2) + ⋅ ⋅ ⋅ + α(1Ω l ) = α(1Ω), by Proposition 2.8,

there exists a collection of mutually orthogonal projections {p i} such that

⟨p i⟩ = α(1Ω i ), i = 1, 2, . . . , l
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and

p1 + p2 + ⋅ ⋅ ⋅ + p l ≤ 1A.

Let h(t) ∈ Lsc(Ω,N). For any open set V ⊂ Ω, define

h∣V(t) =
⎧⎪⎪⎨⎪⎪⎩

h(t), if t ∈ V
0, if t ∉ V .

For each i ∈ {1, 2, . . . , l}, define α i as follows:

α i(h(t)) = α(h∣Ω i (t)).

It can be checked that α1 , α2 , . . . , α l are Cu-morphisms from Lsc(Ω,N) to Cu(A). We
also have

α1 + α2 + ⋅ ⋅ ⋅ + α l = α.

For each i, we apply Lemmas 4.3 and 4.4 for Ω i , δ, p i and α i (the key point is that
α(1Ω i ) is compact); this gives ϕ i ∶ C(Ω) → p i Ap i such that

dCu(Cu(ϕ i), α i) < 9δ.

Denote ϕ = ∑l
i=1 ϕ i . Since ϕ1 , ϕ2 , . . . , ϕ l have mutually orthogonal ranges, we have

Cu(ϕ1) +Cu(ϕ2) + ⋅ ⋅ ⋅ +Cu(ϕ l) = Cu(ϕ).

By Proposition 3.4, we obtain

dCu(Cu(ϕ), α) < 9δ = ε. ∎
Remark 4.6 In most cases, we assume that Ω is a compact space, but we point out
that the main point is that α(1Ω) is compact in Cu(A). In the presence of stable rank
one, α(1Ω) can be lifted to a projection p in A, and then we may regard α as a Cu-
morphism from Cu(C(Ω)) to Cu(pAp). We also note that if A is a unital, simple,
separable C∗-algebra with strict comparison, then pAp also has strict comparison and
K0(A) is weakly unperforated; in this case, if A has real rank zero, then A has stable
rank one [18, Corollary 9.5].

5 Classification results

Denote by C the class of all simple, separable C∗-algebras with stable rank one, real
rank zero, and strict comparison (see 5.4). In this section, we give classification results
for both the unital case and the non-unital case.

Definition 5.1 Let A and B be C∗-algebras such that A has a strictly positive element
sA. Let us say that the functor Cu classifies the pair (A, B) if for any Cu-morphism

α ∶ Cu(A) → Cu(B)
such that α(⟨sA⟩) ≤ ⟨sB⟩, where sB is a positive element of B, there exists a
∗-homomorphism ϕ ∶ A → B, unique up to approximate unitary equivalence, such
that α = Cu(ϕ). We shall say the functor Cu classifies (A,C) if Cu classifies the pair
(A, B) for any B in C.
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Theorem 5.1 Let Ω be a compact subset ofC and A be a unital C∗-algebra inC. Suppose
that α ∶ Cu(C(Ω)) → Cu(A) is a Cu-morphism with α(1Ω) ≤ ⟨1A⟩. Then there exists
a homomorphism ϕ ∶ C(Ω) → A such that Cu(ϕ) = α. In particular, if K1(A) is trivial,
Cu classifies the pair (C(Ω), A).

Proof From Theorem 4.5, there exists a sequence of homomorphisms ϕn with finite
dimensional range such that dCu(Cu(ϕn), α) → 0. Let xn = ϕn(id) and ε > 0. As the
range of ϕn is finite dimensional, we have [λ − xn] = 0 in K1(A) for all λ ∉ sp(xn). By
Theorem 3.6 and Remark 2.5, there exists N1 > 0 such that

dU(xn , xm) ≤ 2dW(xn , xm) <
ε
2

, n, m ≥ N1 .

Then for ε/22, there exists N2 > N1 such that

dU(xn , xm) <
ε

22 , n, m ≥ N2 .

Similarly, for any k, there exists Nk > Nk−1 such that

dU(xn , xm) <
ε

2k , , n, m ≥ Nk .

Then for each k ≥ 1, there exists a unitary uk ∈ A such that

∥xNk − u∗k xNk+1 uk∥ <
ε

2k .

Write

x̃1 =∶ xN1 ,
x̃2 =∶ u∗1 xN2 u1 ,

⋮
x̃k =∶ (uk−1 ⋅ ⋅ ⋅u2u1)∗xNk uk−1 ⋅ ⋅ ⋅u2u1 ,

⋮

Then {x̃k} is a Cauchy sequence. We may assume that x̃k → x. Note that all the x̃k and
x are normal and σ(x̃k), σ(x) ⊂ Ω.

Define ϕ ∶ C(Ω) → A by ϕ( f ) = f (x). By Lemma 3.7(i), we have

dW(ϕNk , ϕ) = dW(xNk , x) = dW(x̃k , x) → 0.

From the properties of dCu (see 3.3), we have

dCu(Cu(ϕ), α) ≤ dCu(Cu(ϕNk), α) + dCu(Cu(ϕNk), Cu(ϕ))
= dCu(Cu(ϕNk), α) + dW(ϕNk , ϕ) → 0.

Then the ∗-homomorphism ϕ ∶ C(Ω) → A satisfies dCu(Cu(ϕ), α) = 0, and so by
Proposition 3.3, we have α = Cu(ϕ).
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Suppose that ψ ∶ C(Ω) → A also satisfies Cu(ψ) = α. As K1(A) is trivial, we obtain
ind(ϕ(id)) = ind(ψ(id)). By Lemma 3.7 (ii), we obtain ϕ ∼aue ψ. Thus, ϕ is unique
up to approximate unitary equivalence. ∎

The following properties are established in [11, Proposition 5.2].

Proposition 5.2 The following statements hold true:
(i) If Cu classifies the pair (A, B) and B has stable rank one, then Cu classifies the pair

(Mn(A), B) for every n ∈ N;
(ii) Let C be a C∗-algebra of stable rank one. If Cu classifies the pairs (A, D) and (B, D)

for all hereditary subalgebras D of C, then Cu classifies the pair (A⊕ B, C);
(iii) If Cu classifies the pairs (A i , B) for a sequence

A1
ρ15→ A2

ρ25→ ⋅ ⋅ ⋅ ,

then Cu classifies the pair (lim
�→

(A i , ρ i), B);
(iv) Let A, B and C be C∗-algebras such that A is stably isomorphic to B, and C has stable

rank one. If Cu classifies the pair (A, C ⊗K), then Cu classifies the pair (B, C).

Combining Theorem 5.1 and Proposition 5.2, we obtain the following result.

Theorem 5.3 Let A be either a matrix algebra over a compact subset ofC or a sequential
inductive limit of such C∗-algebras, or a unital C∗-algebra stably isomorphic to one such
inductive limit. Suppose that B is unital in C and K1(B) is trivial. Then for every Cu-
morphism in the category Cu

α ∶ Cu(A) → Cu(B)

such that α (⟨1A⟩) ≤ ⟨1B⟩, there exists a homomorphism ϕ ∶ A → B such that Cu(ϕ) = α.
Moreover, ϕ is unique up to approximate unitary equivalence.

Remark 5.4 In general, if B is non-unital simple, one needs to have densely-defined,
lower semicontinuous 2-quasitraces to formulate strict comparison. But in our setting,
B has real rank zero, every non-zero projection is a full projection, and so by
[5, Theorem 2.8], we have pBp⊗K ≅ B ⊗K. Then we can say B has strict comparison
if pBp has.

Remark 5.5 If B is non-unital and A is unital, then α (⟨1A⟩) is still compact, and
there exists a projection p in B (B has stable rank one) such that α (⟨1A⟩) = ⟨p⟩. Apply
Theorem 5.3, there exists a homomorphism ϕ ∶ A → pBp such that Cu(ϕ) = α and ϕ is
unique up to approximate unitary equivalence (see [29, Proposition 2.3.1]). When A is
non-unital, we need Robert’s augmented Cuntz semigroup to overcome the difficulty.

Definition 5.2 (Augmented Cuntz semigroup) Let A be a unital C∗-algebra. Let
us define Cu∼(A) as the ordered semigroup of formal differences ⟨a⟩ − n⟨1⟩,
with ⟨a⟩ ∈ Cu(A) and n ∈ N. That is, Cu∼(A) is the quotient of the semi-
group of pairs (⟨a⟩, n), with ⟨a⟩ ∈ Cu(A) and n ∈ N, by the equivalence relation
(⟨a⟩, n) ∼ (⟨b⟩, m) if

⟨a⟩ + m⟨1⟩ + k⟨1⟩ = ⟨b⟩ + n⟨1⟩ + k⟨1⟩,
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for some k ∈ N. The image of (⟨a⟩, n) in this quotient will be denoted by ⟨a⟩ − n⟨1⟩.
If A is non-unital, denote by π ∶ A∼ → C the quotient map from the unitization of A
onto C. Define Cu∼(A) as the subsemigroup of Cu∼ (A∼) consisting of the elements
⟨a⟩ − n⟨1⟩, with ⟨a⟩ in Cu (A∼) such that Cu(π)(⟨a⟩) = n < ∞. We refer the reader to
[26] for more details.

The functor Cu∼ can also be used to classify the C∗-pair, with the meaning of
“Cu∼ classifies the pair” the same as the one defined above for Cu. Note that we
will not explore the detailed structure of Cu∼, we only need the following facts; see
[26, Theorem 3.2.2].

Theorem 5.6 Let A, B be C∗-algebras of stable rank one.
(i) If A is unital, then the functor Cu∼ classifies (A,C) if and only if Cu classifies (A,C);
(ii) The functor Cu∼ classifies the pair (A,C) if and only if it classifies (A∼ ,C);
(iii)Suppose Cu∼ classifies the sequence of pairs (A i ,C) as in Proposition 5.2 and all the

A i are C∗-algebras of stable rank one. If A = lim5→A i , then Cu∼ classifies (A,C);
(iv) If Cu∼ classifies (A,C) and (B,C), then Cu∼ classifies (A⊕ B,C);
(v) If Cu∼ classifies (A,C), then it classifies (A′ ,C) for any A′ stably isomorphic to A.

Theorem 5.7 Let A be either a matrix algebra over a compact subset of C, or a
sequential inductive limit of such C∗-algebras, or a C∗-algebra stably isomorphic to one
such inductive limit. Let B ∈ C. Suppose that K1(B) is trivial. Then for every morphism
in the category Cu

α ∶ Cu∼(A) → Cu∼(B)
such that α (⟨sA⟩) ≤ ⟨sB⟩, where sA ∈ A+ and sB ∈ B+ are strictly positive elements, there
exists a homomorphism ϕ ∶ A → B such that Cu∼(ϕ) = α. Moreover, ϕ is unique up to
approximate unitary equivalence.

With a combination of Theorems 5.3 and 5.7, we present the following classification
result of a class of C∗-algebras.

Corollary 5.8 Let A, B be sequential inductive limits of finite direct sums of matrix
algebras over compact subsets of C. Suppose that A, B ∈ C and K1(A), K1(B) are trivial.
Then
(1) A ≅ B if and only if (Cu∼(A), ⟨sA⟩) ≅ (Cu∼(B), ⟨sB⟩), where sA ∈ A+ and sB ∈ B+

are strictly positive elements;
(2) if A, B are unital, A ≅ B if and only if (Cu(A), ⟨1A⟩) ≅ (Cu(B), ⟨1B⟩).

Proof See the proof of [11, Corollary 1.2]. ∎
We also have the following result communicated to us by H. Thiel.

Corollary 5.9 Let A be a sequential inductive limit of finite direct sums of matrix
algebras over compact subsets of C. Suppose that A is unital in C and K1(A) is trivial.
Then A is an AF algebra.

Proof Since A has real rank zero and stable rank one, Cu(A) is algebraic (Theo-
rem 2.9) and has weak cancellation (Definition 2.5). Moreover, Cu(A) is the limit
of Cu-semigroups of the form Lsc(X ,N), and so Cu(A) is unperforated (because
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each Lsc(X ,N) is). By [2, Corollary 5.5.13], there exists an AF algebra B such that
Cu(A) ≅ Cu(B). Then by Corollary 5.8, this lifts to an isomorphism A ≅ B. ∎
Remark 5.10 In [26], Robert defined an equivalence relation ↭ to reduce every
1-NCCW complex with trivial K1 to C[0, 1]. One may expect that any 1-NCCW
complex with torsion-free K1 can be reduced to continuous functions over finite
graphs. However, this is not true in general, as the following example shows.

Let F1 = C⊕C and F2 = C⊕ M2(C). Let A be the pullback of the following
diagram:

A

��

�� C([0, 1], F2)

ev0⊕ev1

��
F1

ϕ �� F2 ⊕ F2 ,

where

ϕ(λ ⊕ μ) = (λ ⊕ ( λ
λ )) ⊕ (μ ⊕ ( μ

μ )) .

Then K0(A) = Z, K1(A) = Z. But A has a quotient whose K1 is Z2, and this phe-
nomenon will not happen for C(T) (or C(X)where X is any finite graph). We remark
that if A ↭ B, then for any quotient algebra A′ of A, there exists a quotient algebra B′
of B such that K1(A′) = K1(B′). Then A can’t be reduced to C(T) (or C(X) where X
is any finite graph) via Robert’s equivalence relation.
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