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0. Introduction

Let / be an odd prime and let A be a commutative ring containing 1//. Let KJ^A; Z/lv)
denote the mod F algebraic X-theory of A [3]. As explained in [4] there exists a "Bott
element" j8ve/C2,v-i(/-1)(Z[l/ri;Z/Zv) and, using the K-theory product we may, following
[16, Part IV], form

Xi(A;Z/l) = Ki(A;Z/n[l/pv-] (0.1)

which is defined as the direct limit of iterated multiplication by /?„. There is a canonical
localisation map

pMAiZ/n-HTtiAiZ/r). (0.2)

As explained in [15], the Lichtenbaum-Quillen conjecture for a regular ring A (or
regular scheme X), having suitably nice etale cohomological properties, reduces to the
study of the kernel of (0.2) when i = 2. In [15] I characterised the kernel of p in
dimension two when v = l. For simplicity suppose that A is a Z[l//, £/00]-algebra. In [15,
§4.1] a commutative diagram is constructed of the following form, when v = 1.

+\ /V (0.3)

KU0(BGLA;Z/lv)

It is shown that Hx(x) = HK(x) -HK(x)1 where HK is the K[/,,(_;Z//)-Hurewicz map.
Since Iv is one-one, this shows that, in dimension two,
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74 V. SNAITH

In [15] it is also shown that the Lichtenbaum-Quillen conjecture can be reduced to
showing that kerp1 = kerHK.

In this paper we generalise these results to establish (0.3) for all v ^ l and we verify
that these diagrams respect inverse and direct limits over v. The precise statement of our
main result is given in Section 3.12. In addition, an implicit formula for Hy is given, as a
polynomial in the Dyer-Lashof operations of [10] applied to HK(x). This is given in
Section 3.11(b).

Following the ideas of [15, Section 3], we use a description of JT2(/1; Z//v) in terms
of Adams maps between Moore spaces to define /v and to define a map
p'v:K2(A;Z/F)->jf2(A',Z/lv) for which we can evaluate lxp'x = Hv, then we show that the
formula for Hv and injectivity of /v implies p'v = pv. These results are proved in Section 3.
Sections 1, 2 contain preliminary iCL/+(_;Z//v)-theory calculations which are used to
evaluate the adjoints of the Adams maps in KU^-theory and thence to evaluate Hv = Ivp'v.

Let K^(_;Z/r) denote mod 2 graded unitary /C-homology with coefficients mod P.
For our purposes / will be an odd prime (although most of this section is valid when
1 = 2, see Section 1.8) and v ^ l will be an integer. Let Pn(v) = Sn~i\Jl>e" for n = 2 and, as
usual,

= \imQ"I,nX.

Since QX is an infinite loopspace [12] its mod/C-theory admits Dyer-Lashof operations
as introduced in [6; 14]. More generally we have the Dyer-Lashof operations of
McClure [10] (see also [11])

Q-.K^QX-Zin^K.iQX-Z/r-1). (1.1)

Using (1.1) [10] describes KJjQP2{v);ZII) from which we will evaluate the primitives,
PK0(QP2(v);Z/la), for a = v.

Recall that the inclusion, i:Y v Y->Y xY, induces an injection, for any space Y,

i*:(Kt(Y; Z/l") ® 1) 0 (1 ® K^Y; Z/l"))>-> K^Y x Y; Z/l").

The primitives are defined by

| z ) = I;(z® 1 + 1 ®z)} (1.2)

where d: Y-* Y x Y is the diagonal map.
Following [10] we have evident natural maps

if s=\

if l = t = r
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and

Also the reduced X-groups of P2(v) are given by

K0(P
2(v); Z/n

for l ^ a ^ v . Let z generate X0(P2(v); Z//v) and set u = n(z)eK0(P
2(v);Z/t) then the v-th

Bockstein of u is a generator, v, of K^P^v); Z//).
From [10, Theorem 5] we obtain the following calculation.

Proposition 1.3. Let I be an odd prime then, as an algebra,

where

ui = nQi~l(z) and

there Qj = Q(Q(-• (Q(_))•••)), the j-th iterate of Q and E(_) denotes an exterior algebra.

Proposition 1.4. A basis for PK0(QP2(v);Z/l) is given by {u'^a^O} and for

Proof. Firstly the operation, Q, is linear in odd degree so that each y; is primitive
because i^ is. Here we have used the fact that in odd dimensions McClure's operation, Q,
covers the (linear) operation Q'-.K^XiZ/^-^K^XiZ/l) of [14] for any infinite loop-
space, X. This means that t;,- = (Q')'~1(t'i) a n d is therefore primitive as claimed.

However in even dimensions Q is not additive [14, p. 190] but satisfies instead the
formula [10, Theorem l(ii)]

Q(x + y) = Q(x) + Q(y)-n

Hence d*(u,) = u,-(g> 1 + 1 ® u, — Xi((!)/0"i-i ® u'j-\ (modM1,...,uJ_2) when ut is primitive.
Since A = K^(QP2(v); Zjl) is finitely generated we have an exact Milnor-Moore

sequence P(A') >—* P(A) -^QiA), where A1 denotes the subalgebra of l-th powers. From
the foregoing discussion it is clear that im(l) is generated by {u1,vi,v2,...,vv} and the
result follows from the Milnor-Moore sequence since P(A') = P(A)'.

Now let X be an infinite loopspace and suppose u e K0(X; Z/l") for a ̂  2. Define
x(u)eK0{X;Z/la) by the formula

x(tt) = u' + /,e(ti). (1.5)

https://doi.org/10.1017/S0013091500003217 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003217


76 V. SNAITH

Lemma 1.6. IfuePK0(X; Z/la) in (1.5) then x(u)ePK0(X; Z/l") also.

Proof. Firstly

Also, as mentioned above,

d*Q(u) = Q{u)®l + l®Q(u)-n< £ ((!)/')«' ® «'"'

so that x(u) is primitive since lmn is multiplication by /.

We can now state the main result of this section.

Theorem 1.7. Let I be an odd prime. For 2 = a = v, PK0(QP2(v);Z/l") is generated by
{nxx(x)\oi. — O}> where x"(z) = x(x(...(x(z))...)) is the cc-th iterate of x{_) and z generates
K0(P

2(v);Z/n

Remark 1.8.

(a) This result is true when P2(v) is replaced by P2m(v) = S2 m"1 (J/Ve2m for any

(b) The result is probably true, by an elaboration of the proof which is to follow,
when 1 = 2. The difficulty at the prime two lies in the non-commutative structure
of K+(QX; Z/2) and in the fact that [10, Theorem 5] may not give the algebra
structure when 1 = 2.

1.9 In the proof of Theorem 1.7 we need the following facts concerning the
behaviour of tne Bockstein spectral sequence {E*(X);r=l} for the space X = QP2(v).
This behaviour follows the well-known pattern—some call it Henselian—of the Bock-
stein spectral sequences of [9]. In fact the proofs of the following assertions follow from
the properties of the operations in [10, Theorems 1 and 4] in a manner analogous to
that in which one deduces the results of [9] from the properties of the Pontrjagin
squaring operation.

From Section 1.3, if Z = QP2(v),

with )?1(uv) = d1(uv) = i;v. Also d1 is zero on the other generators. Hence

£* =Z/l\_Uu .. ., Uv_ j , u(,] ® E(VU ...,!>„-!, V[~ iVv).
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M o r e generally if l ^ s ^ a ^ v set uj = ul-*'"''\ Vj = uljJ+s v~'~1vj for v + 1 — s<j^v then

Ef = Z/l[uu...,«v_s + 1 ,Mv_s + 2, . . . , u v ] ® £ ( y 1 , . . . , i ; v _ ; s + 1 , i 5 v _ s + 2 , . . . , i5 v

with

and 0 = ds(Wj) = ds(u,) otherwise. Also, by the a rgumen t of Section 1.4, we have (for s ^ v— 1)
primitives

(1.11)
pEl - (vu v2,..., i\,_s + 1, i5v-s + 2, • • •, «>»>•

Proof of Theorem 1.7. Let wePK0(X;Z/l") and consider the following exact
sequence

^ ^ ^ ^ 1 ) . (1.12)

By induction on a, starting with Section 1.4, n(w)=Y,xK
nx"(z) s o y = vv~Za/^7L>c°'(z) =

C0"1)*^) is a primitive (reK0(X;Z/l)). Furthermore there exists teK^X xXiZ/l"'1)
such that the diagonal satisfies d*(r) = r ® 1 + 1 ® r + fi{i). Since diP(t) = O,

). By (1.10) and (1.11)

so that x = r —Auv is a ^ -cycle with diagonal given by

dn{x) = x ® 1 + 1 ® x + j8(t) + A ' Z ((!
i = 1

Now P(t) is d,,-! -boundary. Hence if a = 2 the class of x in £f satisfies

However, the reduced diagonal of any canonical generator in E\ is a polynomial in
W 1 ,U 2 , . . - ,M V _2 and M'V_15 from which it is straightforward to see that A = 0. Thus
\_x\sPE\ so that, by (1.11) x ^ ^ w f t m o d i m ) ? ! ) whence (since / + £i=0)
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78 V. SNAITH

as required. Here we have used that if q e K0(X; Z/l2)

since lQ(q) = O.
Now suppose a ^ 3 . Since /?(£) is a da_!-boundary it is a d2-cycle- Let s = d2(x) then, in

= s <

As in the case a = 2 it is straightforward to show that the last two terms in the above
expression can only be the reduced diagonal of an element of E\ if A = 0. Hence x = r
and d2{r)ePE\ whence by (1.10) and (1.11)

Now write

so that xt is a d2-cyc\e with diagonal in E%(XxX) is given by

= x2

Proceeding thus suppose we have constructed a ds-cycle (s ̂  a — 2)

xs = r-AiMv_s + 1 -A2u'v_s + 2 - • • • - 4 « f

whose diagonal in Ef (X x X) is given by
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As above, applying ds, and observing ds/?(0 = 0,

= dsxs

+KCT, ({i)/0«t-1 ® ( / - iHi ' rX-1
V = i

and again the only manner in which the last 2s terms in the above expression to appear
in the reduced diagonal of an element of E%(X) is for ki = ...=2.s = 0.

By induction we see that r (=xa_1) is a da_l -cycle which represents a primitive in
E°{X). Hence, by (1.11), r = £ V«u'i" (mod im 0) so (since (la~i)*P = 0)

which completes the proof. In this last step we have used the fact that if q e K0(X; Z/T)
then

(where n' is reduction mod/ from K0(X;Z/lv~1))

Let BU denote the classifying space for unitary X-theory [2, Part III]. Let
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80 V. SNAITH

f:P2(v)^>BU represent a generator of n2(BU;Z/lv) and let F:QP2{v)->BU denote the
infinite loop map (unique up to homotopy) which gives / upon restriction to P2(v).

Corollary 1.13. Let I be an odd prime and i>^ 1 then

F*:PK0(QP2(v); Z/l)^PK0(BU; Z/F)

is injevtive.

Proof. The g-operation of [10, Theorem 1] induces an endomorphism of
K0(BU; Z/t)/3>, where @> denotes the decomposables in the algebra structure induced by
Whitney sum of bundles. From [10, p. 3] this endomorphism, also denoted by Q,
coincides with the operation constructed in [14] and computed for BU in £14, Section
6]. Hence the image of xa(z)ePK0(QP2(v);Z/lv) in KQ{BU;Z/1)/3> is <2a(vi), when
KU0{BU; Z/l) = Z/l[vuv2, • •.] in the notation of [14, Section 6]. By [14, Section 6] the
images Fa{z), F(x(z)), Fif{x2{z)),... are linearly independent mod / from which the result
follows easily, since K0(BU; Z/lv) = Z/ly[Vl, v2,...].

2. The effect of Adams' maps in /f-theory

Let / be an odd prime.
In [1, Section 12] Adams showed that there exist the following interesting maps

between Moore spaces,

y4¥:p« + «-1('-i)(v)-»p*(v) (2.1)

for q sufficiently large. As in Section 1, Pm{v) denotes Sm~lUlve
m (m^2, v^ l ) . There

exist homotopy commutative diagrams

(2.2)

in which i and j are the canonical inclusion and collapsing maps, respectively. The
maps, Av, are partially characterised by the following (equivalent) conditions

[1, Section 12.3]. Set m = q + 2lv-1(l- 1).

04v)*:K*(^m(v))-K*(Jw(v)) is an isomorphism. (2.3)(a)

the (unitary) X-theory e-invariant of av is ( - l//v). (2.3)(b)
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In fact av and av determine elements in the stable homotopy groups

and ni.-^.^.^S0)

81

respectively. Each of these groups has a direct summand [1]—the image of the J-
homomorphism—which is cyclic of order lv. (2.3) suffices to determine the ./-component
of av and av.

We will see below that the effect of the adjoint of Av in KU^-theory is determined by
(2.3).

Let A% denote the s-th iterate of the map Av of (2.1), considered as an S-map. Also
denote by As

v the adjoint map

(2.4)

As in Section 1,

Let k:Pm(v)->Pm(v + l) and n:Pm{v + l)-+Pm(v) be maps induced by (a choice of) an
inclusion Z//V->Z//V+1 and a surjection Z//V+1-*Z/F respectively.

Theorem 2.5. Let I be an odd prime. Let s, a and v be integers ( l ^ s , l ^a^v) . The
following diagrams commute up to multiplication by an l-adic unit.

(a) Letm = ir-\l-\).

KU0(P
m

KU0(QP2(v);Z/n

(b) t = ir(v-\).

KU0(P" + 2(v +1); Z/l")

M',').

•KU0(QP2(v+l);Z/n

-> KU0(QP2(v);Z/n

Proof, (a) To see whether or not such a diagram commutes it suffices, by Section
1.13, to compare the homomorphisms induced by FQ(k)AsJ and by FAs

v+1k on
/Ct/0(_;Z//v). Here, as in Section 1.13, F:QP2{v+l)->BU is the Q^-map extension of
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82 V. SNAITH

P2(v + l)-L>S2-^BU which generates nz(BU;Z/lv+1)^Z/lv+1. This is because the gen-
erator of KU0(P

sm + 2(v);Zl") is equal to the image of the (primitive) generator of
XC/0(P

sm + 2(v);Z//v). From [1, Section 12] one sees that the S-maps Psm + 2(v)->S2 given
by the adjoints of j-A'v+1-k and j-kAs

v' both have e-invariant, — l//v. This means that
the ./-components of the maps Q(j)As

v+lk and Q(jk)As
v':P

sm + 2{v)->QS2 are equal (up to
multiplication by an /-adic unit, possibly). However there is an infinite loopmap
Q0S°->ZximJ which deloops to give QS2-*B2(imJ), a map which is a Kl/%(_;Z//V)-
isomorphism [7]. The space, B2(imJ), detects precisely the J-component of
nJ(QS2; Z//v) so the result follows from the factorisation

\ /
B2(imJ)

(b) The proof of (b) is similar to that of (a).

3. The /-adic and Z//°°-diagrams

Let / be an odd prime and let A be Z[l//, £/oo]-algebra where £,„ is a primitive /"-th
root of unity and

Let v ^ 1 be an integer and let Jf*(A; Z/lv) denote Bott periodic algebraic K-theory
(mod F) as defined in the introduction. Hence, by construction, Jf^A; Z/T) satisfies Bott
periodicity with period 2lv~1(l-l) = dv, say (i.e. JfiSJf"i+(,v). Let

px:Kt{A; Z/P)->JT£(4 Z/V) = lim Kt +ndJLA; ZjV) (3.1)
n

denote the canonical localisation map.
There is an injective homomorphism [15, Section 3]

; Z//v) ^>KU,(BGLA; Z/F). (3.2)

In this section we shall write KU+ for unitary (topological) K-theory—to distinguish it
from algebraic X-theory.

The object of this section is to evaluate the compositions {/v-pv;vS:l} and to verify
that they respect direct and inverse limits over v.

In order to construct /v one appeals to the results of [15, Section 3]. Suppose that

is, as in Section 2, one of Adams' maps between Moore spaces. Since, for i^.2
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we may form the direct limit

Jim \Kt(A;Z/P) • K, +i+A;Z/P) • . . . ) . (3.3)

If i^q the direct limit of (3.3) makes sense and, in [15, Section 3], it is shown to be
isomorphic to X~i(A;Z/lv). In addition this isomorphism identifies p of (3.1) with the
map which sends K;(A;Z/P) in at the left of (3.3) by

]im(E'+ndv-Mv)*.
n

We may choose generators zm>a of KU0L(Pm{v);Z/lv)^Z/lv in such a manner that

If we make such choices then it is clear that the Hurewicz map induces a map from the
direct limit of (3.3) to

K UABGLA + ; Z//v) s KUt(BGLA; Z/lv)

(note that KUi^KUi + 2m for all m) defined by sending

feK, +ndv(A; Z/F) = [ P +""'(v), ^

to fj^i+ni,,i+nd)- T h i s defines 7V in (3.2).
Now we will construct maps

p's,v:K2(A; Z/n^^2+sdv(A; Z/P). (3.4)

If we identify JT2(A;Z//V) and Jf2+sdv(A;Z/lx)—by Bott periodicity—then, up to an /-adic
unit, ps v will be independent of s, if s is large. The {p's,v} are designed so that we can
easily evaluate /v • p's_ v. However, we shall show later that, for large s,

3.5. Construction of p'vs

Let Av:P
q+dv(v)->P'l(v) denote the Adams map of (2.2), where q is chosen to be

minimal. By adjointing the s-th composite of Ay (A% considered as an S-map) we obtain,
as in (2.4),

As
v:P

2+sd\v)^QP2(v).

If f:P2(v)-*BGLA+ represents u = [ / ]eK2(/ l ;Z/ /v) we may form the composite

pi +s</,(v) <.gp2(v)^XQ(BGLA+)-^BGLA + (3.6)
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where D is the structure map [12] of the infinite loopspace structure on BGLA+ which
comes from the (direct sum) permutative category of finitely generated projective A-
modules [13].

If q < 2 + sdv (3.6) gives a map (of sets)

pi, v: K2(A; Z/V) -»K2 + s d{A; Z/F) ̂  X2+siy(A; Z/V). (3.7)

In (3.7) pv is given, as mentioned above, by representing Jf2+Sd (A;Z/lv) as the limit of
(3.3).

Let Hv:K2(A;Z/lv)->KU0(BGLA;Z/lv)^KU0(BGLA + ;Z/r) be defined by

By definition of /v, in (3.2), the following diagram commutes, up to multiplication by an
/-adic unit.

(3.8)

KU0(BGLA;Z/lv)

Since /v is one-one in (3.8) Lemma 3.10 will imply that, up to an /-adic unit, p'sy is
independent of s when 2 + sdv>q. Hence we define, for v ^ l ,

P'v = P's,,: Ki(A; Z/lv) — JT2{A; Z/lv) (3.9)

for some choice of s such that 2 + sdv > q. Thus p'v is well-defined up to multiplication by
an /-adic unit. In [15] it is shown that

where HK is the .Kl/^jZ/O-Hurewicz map.

Lemma 3.10. For 2 + sdv>q the element

(A%(z2+sdJeKU0(QP2(V);Z/n

is independent of s, up to multiplication by an l-adic unit.

Proof. As in the proof of Section 2.5, it suffices, by Section 1.13, to compute

F.(AX(z2+sdvo)ePKU0(BU;Z/n.

However F• A% generates n2+sdy(BU;Z/lv)^Z/lv so that, up to /-adic units,

FAS
V

+ 1={
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and the result follows since

); Z/lv)^>KU0(P
2+sd<(v);

is an isomorphism.
Recall [2, p. 47] that KU0{CP°°;Z/r) has a basis ft, ft,... and that KU0(BU;

Z/O^Z/Prj?!,^,. . .] . Also, being an infinite loopspace [13] (with the +-structure)
KUt(BU;Z/F) admits the action of Dyer-Lashof operations [10].

The following result gives the form of Hv in (3.8).

Proposition 3.11.

(a) Let bVtS:P
2+sd'(v)^BU generate n2+sdv(BU;Z/lv) (sZ/Iv). There exist {aVjeZ/ly;

7 = 1,2,...} such that

Here u is an l-adic unit and, as in Section 1.5, X(w) = wl +lm

(b) Up to an l-adic unit, in (3.8)

where HK is the KU+iiZ/rj-Hurewicz map.

Proof. Part (a) follows from Section 1.7, together with the fact that bv>s factorises as

Since F is an infinite loopmap FmX(y) = XFm(y). By Section 1.13 Fm is one-one on
PKU0(QP2(v);Z/lv) so that

Therefore part (b) follows from
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since D and Q{f) are infinite loopmaps,

since

Now we can state and prove our main result.

Theorem 3.12. Let I be an odd prime and let A be a commutative Z[l//, £lai~\-algebra.
Then, up to l-adic units, the homomorphisms in (3.8) commute with direct and inverse limits
over v. In addition p'v of (3.9) may be identified with the natural localisation map, pv.
Consequently, we have the following commutative diagrams.

limp,

lim K2(A; Z/V) -^-> lim JfT2{A; Z/V)

lim KU0(BGLA;Z/lv)
V

limp.

Proof. First it is clear that Iv, being induced by the ,KL/-Hurewicz map applied to
the direct limit of (3.3), commutes with the coefficient homomorphisms induced by
Z//V^^Z//V + 1 and Z//V+1-^Z/ZV. Hence both

lim /„ and lim /„

exist and are injective.

Let us consider the ( lim )-case. We have a choice of routes. We could show that

lim p'v (and thence lim#v) exists by showing that p'v-pv and then appealing to
V V

properties of the latter. Instead we will show independently that lim//v (and, by
v

injectivity of /v, also limp'J exists. The I ]im )-case is proved in a similar manner.
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Let X = BGLA+ and let dv = ir-
Consider the following diagram.

K2(X; Z/r+1) - ^ K U0(X; Z/r

(3.13)

By definition, if / :P 2 (v + l)-»X represents a class [f]eK2(A;Z/lv+1),

since 7::/C[/o(P
2m(v + l) ;Z/Zv + 1)->KC;o(P2 m(v+l);Z/n is onto. On homotopy groups n is

induced by the map, k, of Theorem 2.5(a). Therefore we have

since

2m(k*:KU0(P
2m(v);

is an isomorphism. Therefore (3.13) commutes. A similar argument, using Theorem
2.5(b), shows that the following diagram commutes.

7i2(Z;.

(3.14)

From (3.13) and (3.14)

lim Hv and lim
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exist and therefore so do

lim p'v and lim p'v.

Finally we show that p'v = pv by means of Section 3.11(b). Consider the external
product in algebraic /C-theory [8]

v.S1 A BGLA+^BGLA[v,v~1y.

The adjoint of v, together with the natural map, j , from BGLA+, may be "added" to
give a map

BGLA+ xQBGLA+ >ClBGLA[v,v x ] + (3.15)

which is a homotopy equivalence when A is a regular ring, by [8] and the localisation
sequence [5]. However, by [19], the localisation sequence exists with rnodP coefficients
provided that / is invertible in A. Hence (3.15) is an equivalence (mod/v). Thus
BGLA\v,v~l~\+ behaves like a "delooping" of BGLA+ in the sense that the homomor-
phism, av, defined by the diagram,

satisfies the same properties with respect to Dyer-Lashof operations as does the usual
suspension homomorphism

trm:KUJQX; Z/F) — KUX+t(X; Z/lv).

For example, (aj^ annihilates decomposables.
Therefore, by Section 3.1 l(b),

1 J- \HK(y))).

From [10, Theorem l(v)]

f6k)^) if deg(z) = 0(2),

I ),(z), if deg(z) =
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Therefore, for large integers T

K W ' V J , • • • K)*[#v(y)-

in KU^{BGLB+;Z/lv), where

B = A[V1,VI\...,VT,VT1'\.

S e t v = vTvT.l ...Vi a n d av_ = aVT...vVi.
Consider the following commutative diagram, for T large.

K2(A;Z/n

=0

KU0{BGLA + ;.

89

(3.16)

KUT(BGLB+;Z/lv)

In (3.17) the lower triangle commutes if 2 + T^q in (3.3), {ov)*Hy = HKv* by (3.16),
(av)*Iv

 = h2# by well-known properties of the Hurewicz map (which induces /v) and so
vtp'v = pvv%, a s v̂ is injective. On the other hand the natural map satisfies t?#pv = /9vu#

so pv = p'v because u# is one-one.
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