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Abstract

When many statistical hypotheses are evaluated simultaneously, statisticians often recommend
adjusting (or “correcting”) standard hypothesis tests. In this article, I (1) distinguish two
senses of adjustment, (2) investigate the prudential and epistemic goals that adjustment
might achieve, and (3) identify conditions under which a researcher should not adjust for
multiplicity in the two senses I identify. I tentatively conclude that the goals of scientists
and the public may be misaligned with the decision criteria used to evaluate multiple-
testing regimes.

Imagine a pharmaceutical company spends years developing a new cancer treatment.
Because of the expense of drug development, the company collects extensive data
during human trials. In particular, researchers collect data about hundreds of health
outcomes other than cancer. When the data are analyzed, researchers find that
treatment is associated with a reduction in breast cancer. Here’s an instance of a more
general question:

Question: Should the pharmaceutical researchers alter their methods for
analyzing the cancer data because the treatment for efficacy was assessed in
many other ways?

According to many statisticians and scientists, the answer is yes. Let multiplicity
refer to the act of evaluating many statistical hypotheses simultaneously. When
multiplicity occurs, many statisticians and scientists recommend “correcting”1

p-values so as to reduce the number of false-positive results.2 Although Bayesian

© The Author(s), 2024. Published by Cambridge University Press on behalf of the Philosophy of Science Association. This
is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided
the original article is properly cited.

1 Henceforth, I say “adjust” rather than “correct” so as to avoid suggesting that adjustment is good or
obligatory.

2 See Lehmann and Romano (2008, chap. 9). The most common classical techniques are Bonferroni’s
method and the procedure of Benjamini and Hochberg (1995).
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statisticians reject the use of p-values, many likewise argue that one’s statistical
methods should be adjusted for multiplicity.3 This raises a very general question:

Central Question: Under what conditions, if any, should statistical methods be
adjusted for multiplicity? In what way should they be adjusted? And why?

The central question is important because as our computational power grows, so
does our ability to evaluate thousands of policy-relevant statistical hypotheses in a
matter of minutes.

Although statisticians have investigated the reliability of many adjustment
procedures, few have clarified the central question. What exactly is adjustment? Can
“adjustment” be defined without reference to particular statistical methods? If
“adjusting” means “changing reported p-values,” then devout Bayesian statisticians
never adjust for multiplicity, as they avoid calculating p-values!4 So is there a sense of
“adjustment” that renders classical and Bayesian approaches comparable?

The normative dimensions of the central question have also yet to be clarified. In
what sense “should” one adjust for multiplicity? Is adjustment rationally required to
achieve certain goals? If so, which goals? Is adjustment epistemically required to
respect one’s evidence? Is it scientifically required by norms of scientific inquiry? Is it
ethically obligatory? If adjustment is not obligatory, is it permissible or good in any
sense?5

Finally, answers to those normative questions depend on who or what is adjusting.
Researchers can adjust reported p-values. But so can journal editors. Grant-giving
agencies—like the National Institutes of Health (NIH)—can also adjust for
multiplicity in various ways. Which, if any, of these decision-making bodies should
adjust?

The main contribution of this article is to (1) distinguish two senses of adjustment,
(2) investigate the prudential and epistemic goals that adjustment might achieve, and
(3) formulate more precise versions of the central question. I also prove a new
theorem characterizing when adjustment is impermissible. I tentatively conclude that
there is a mismatch between the goals of scientists (both individually and collectively)
and the guarantees of existing adjustment procedures. This article, thus, is a call for
further research: We must either prove existing adjustment methods achieve goals of
actual scientific interest or develop alternative procedures.

1 Basic model
To distinguish types of adjustment, I introduce a model. Suppose N hypotheses are
under investigation. Assume that any subset of the N hypotheses might be true. Let
Θ � f0; 1gN be the set of all binary strings/vectors of length N. A vector θ 2 Θ,

3 See Berry and Hochberg (1999) and Scott and Berger (2006) for discussions of Bayesian approaches to
multiplicity.

4 See Rubin (2021) for an attempt to answer the central question when “adjustment” is interpreted
narrowly about significance levels.

5 Philosophers have focused on evidential questions. See Kotzen (2013) and Mayo (2018). In contrast,
most statisticians employ a quasi-decision-theoretic framework, which seems most suited for questions
of rationality.
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therefore, specifies which of the N hypotheses are true and which are false. Let
Hk � θ 2 Θ : θk � 0f g be the set of vectors that say the kth hypothesis is true.

Suppose that for each hypothesis Hk, there is some experiment Xk that could be
conducted (or observation that could be made); researchers believe Xk could be
informative about whether Hk holds. Formally, Xk is a random variable, and for each
θ 2 Θ, let Pθ X1; . . . ; XN� � denote the probability measure that specifies the chances of
various experimental outcomes.

For simplicity, assume that for all θ 2 Θ, the N experiments are mutually
independent with respect to Pθ . In symbols, let ~X � hXi1 ;Xi2 ; . . . ;Xiki be a random
vector, representing some subset of the N experiments. Then for all sequences
~x � xi1 ; . . . xik

� �
representing the outcome of those k ≤ N experiments,

Pθ
~X �~x
� � � Y

j ≤ k

Pθ Xij � xij

� �
(1)

Further, suppose that the truth or falsity of the Hk entirely determines
the probabilities of the possible outcomes of the kth experiment; that is, for all
k ≤ N and all r 2 0; 1f g, there is a probability distribution Pk;r such that
Pθ Xk � xk� � � Pk;θk Xk � xk� �. Together with the assumption of mutual independence,
this entails that

Pθ
~X �~x
� � � Y

j ≤ k

Pij;θij
Xij � xij

� �
for all θ 2 Θ: (2)

To assess whether a decision-maker should adjust for multiplicity, compare two types
of situations. In the first, the decision-maker learns the outcome of a proper subset of
the N tests.

For simplicity, suppose that the researcher learns only the value of X1. In the
second, she learns the values of all N variables. Say that the decision-maker should
adjust for multiplicity if her (1) beliefs or (2) decisions about H1 should differ in those
two situations. Let’s clarify those two senses of “adjustment.”

2 Belief
For the Bayesian, beliefs are modeled by posterior probabilities, and so a Bayesian
adjusts for multiplicity if there is a value x1 of X1 such that

P�H1jX1 � x1�≠ P�HkjX1 � x1; . . .XN � xN� (3)

for all values x2; . . . xN of X2; . . . XN for which P X1 � x1; . . .XN � xN� � > 0. One could
distinguish a weaker sense of adjustment, whereby equation (3) holds for some values
of X2; . . . XN . For critics of Bayesianism, one can replace the probability functions in
equation (3) with another object representing belief.6

Should one ever adjust for multiplicity, in the strong sense just identified? Yes.
Consider a Bayesian researcher who regards the hypotheses as dependent, in that
learning about one hypothesis provides evidence about another. For example,
suppose our hypothetical pharmaceutical researchers consider two hypotheses:

6 For instance, one might represent belief using orderings (Mayo-Wilson and Saraf 2022), ranking
functions (Spohn 2012), Dempster–Shafer functions (Dempster 1968), and so forth.
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(1) The treatment is not effective in 33-year-old women, and (2) the treatment is not
effective in 34-year-old women. A researcher might reasonably believe that the first
hypothesis is true if and only if the second is. If so, acquiring data about 33-year-old
women would provide evidence about the efficacy of the treatment for 34-year-old
women. Here’s a toy model to illustrate such adjustment.

Example 1: Suppose each Xk is a binary random variable that represents a test to
retain or reject Hk. Assume there are α;β 2 0; 1� � such that for all θ 2 Θ,

Pθ Xk � 1� � � α if θk � 0
1 � β if θk � 1

�
:

That is, each test Xk has a Type I error of α and Type II error of β.
To model a researcher who believes the hypotheses to be dependent, suppose that

the researcher assigns positive probability to precisely two vectors in Θ, namely,
0 � h0; . . . ; 0i, which says each Hk is true, and 1 � h1; . . . ; 1i, which says each Hk is
false. If π � P 0� � � 1 � P 1� � represents the researcher’s prior degree of belief that all
hypotheses are true, then her posterior probability in H1 if she learns only that the
first test is negative equals the following:

P�H1jX1 � 0� � π � 1 � α� �
π � 1 � α� � � 1 � π� � � β : (4)

In contrast, if she learns two tests are negative, her posterior is as follows:

P�H1jX1 � 0;X2 � 0� � π � �1 � α�2
π � �1 � α�2 � 1 � π� � � β2 (5)

Finally, if she learns the second test is positive, her posterior will be as follows:

P�H1jX1 � 0;X2 � 1� � π � 1� α� � � α
π � 1 � α� � � α� 1 � π� � � β � 1� β� � (6)

If 0 < π < 1, then equation (4) equals both equation (5) and equation (6) if and only if
α � 1 � β� �. If α≠ 1 � β� �, therefore, the Bayesian researcher adjusts for multiplicity
in the strong sense defined in equation (3).7

□

Example 1 illustrates the commonsense idea that when one believes two
hypotheses stand or fall together, evidence for/against one hypothesis is evidence
for/against the other. Thus, a Bayesian researcher will adjust for multiplicity.
Similarly, if the researcher believes that evidence for one hypothesis is evidence
against another, she will adjust for multiplicity, as can be shown by analogous
calculations.

7 Technically, our definition of adjustment compares the case in which the researcher learns X1 to the
case in which she learns the value of all N variables. The previous equations show the researcher
adjusting when there are precisely N � 2 hypotheses under investigation, but similar calculations show
adjustment is necessary when N > 2 as well.
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In short, if a researcher believes several hypotheses are dependent, she will
typically adjust her beliefs for multiplicity. Conversely, if the researcher regards the
hypotheses as mutually independent, then she will not adjust for multiplicity; in
that case, it is easy to check that P�H1jX1� � P�H1jX1; . . .XN�—again, assuming
equation (1) holds.8

On the one hand, these results about the relationship between adjustment and
dependence in the toy Bayesian model are not surprising. They illustrate the intuition
that a researcher who wants to know what to believe about the effects of cigar
smoking (i) will typically adjust her belief if she acquires data about the effects of
cigarette smoking but (ii) will not adjust her beliefs if she acquires data about
implicit bias.

On the other hand, the results begin to answer the central question. In particular,
they answer the objection that there is no principled way to determine when to adjust
(Perneger 1998). This objection is typically leveled against classical methods—like
Bonferroni’s or Benjamini–Hochberg’s—that recommend adjusting significance
thresholds downward as the number of hypotheses increases. Yet the objection
applies equally to a simple objective Bayesian method that I discuss later; the method
adjusts for multiplicity by uniformly decreasing the prior probabilities assigned to
hypotheses as the number of hypotheses grows.

According to critics, the justification of such methods implies that one should
adjust/“correct” for any chosen set of hypotheses. But that’s absurd because one
would be required to adjust for every statistical hypothesis that has ever been formulated.
This motivates thinking that the answer to the central question is, “One should never
adjust for multiplicity, and intuitions to the contrary are misleading.”

The toy results show how simple Bayesian thinking can partially answer the
objection. Prior evidence or background theory may tell us that certain
hypotheses are dependent, and in such cases, belief adjustment will almost
certainly be necessary. Further research should investigate whether the most
common classical adjustment methods (see subsection 3.2) can ever be interpreted
as reflecting belief adjustment.

One might object that the aforementioned definition of adjusting “belief” is
too simple to model some common statistical practices. The problem is that the
same probability measure P appears on both sides of equation (3). So the definition
is inapplicable for assessing whether “objective” Bayesian methods require
adjustment.

Recall that objective Bayesians maintain that the prior probability that one assigns
to hypothesis H may vary with the hypothesis space in which H is embedded. For
example, consider an attempt to identify which genes are associated with which
heritable diseases. For each gene and disease under investigation, researchers may
investigate a hypothesis Hg;d of the form “Gene g is associated with the disease d.” In
an objective Bayesian analysis, each hypothesis Hg;d will typically receive lower prior
probability if there are 20; 000 genes under investigation than it would receive if there
were 10; 000 genes under consideration.

8 See Berry and Hochberg (1999, 218) for the calculation and discussion of the conditions under which
mutual independence of the hypotheses is reasonable. The hypotheses are mutually independent with
respect to P if P \i2Iθi � ri� � � Πi2IP θi � ri� � for all I � 1; . . . ;Nf g and all binary vectors �ri�i2I .
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I will not compare the merits of objective versus subjective Bayesian analysis.9 But
simple objective Bayesian adjustment methods deserve further scrutiny. Imagine our
hypothetical pharmaceutical researcher wonders about the effect of El Niño on the stock
market. The mere contemplation of a new hypothesis should not automatically cause the
researcher to become less confident in the efficacy of the new cancer treatment.

Yet considering additional—logically independent—hypotheses can affect an
objective Bayesian’s prior probabilities if those probabilities are chosen in a
mechanical fashion as a function of the number of hypotheses.

Objective Bayesians might respond that a prior distribution need not represent
anyone’s beliefs.10 Rather, a prior should be treated as part of a decision rule. I agree,
and I consider decision-making in the next section. For now, note that it is similarly
implausible that a pharmaceutical researcher should adjust her decisions about the
efficacy of the cancer treatment after contemplating El Niño. Saying that the
researcher’s prior need not represent her beliefs does not explain why adjustment is
not necessary.

3 Decision
Scientists are rarely satisfied with an answer to the question, “What should I believe?”
They also want to know, “What should I do?” For instance, an experimentalist might
want to know which experiment she should conduct next.

Imagine that for each hypothesis Hk, there is some set of acts Ak that the researcher
might take. For instance, a researcher might announce that the hypothesis Hk has
been rejected or that it’s been retained. She might collect more data about Hk or cease
an experiment. And so on.

I call elements of Ak component acts, and I define a strategy to be a set S of
component acts such that for all k, either S \ Ak is a singleton or empty. That is, at
most, one act can be taken with respect to a hypothesis. A decision rule d maps subsets
of (values of) the observable variables X1; . . . XN to strategies. I require that
d Xk1 � xk1 ; . . . ; Xkm � xkm
� �

contains precisely one element from each of the sets Akm .
That requirement says that a decision rule specifies actions only with respect to
hypotheses for which the researcher has collected data, and that if researcher
observes Xk, then she must take some action in Ak.

I say that a decision rule d adjusts for multiplicity if there is some x1 such that

d x1� � =2 d x1; . . . xN� � (7)

for all values x2; . . . xN of X2; . . .XN .
Do any plausible decision rules require adjusting? Again, yes. For a Bayesian,

reporting one’s posterior probabilities is a decision. So belief adjustment is a special
case of decision adjustment. A better question is, “Can there be decision adjustment
without belief adjustment, and what goals, if any, does decision adjustment achieve?”

Before discussing the standard approach for evaluating testing procedures (in
terms of the family-wise error rate or false-discovery rate), I begin with the most
naive, decision-theoretic approach for answering these questions. The naive approach

9 See Goldstein (2006) and Berger (2006) for opposing views.
10 See Gelman and Shalizi (2013) for alternative interpretations of prior probabilities used in Bayesian

analyses.
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is worth sketching because (1) it is, I think, the correct approach when it can be
employed,11 and (2) it helps one identify the oddness of the goals that are presumed in
standard discussions of adjustment.

3.1 A naive approach
Suppose a researcher assigns a utility u S; θ� � to each strategy S and vector θ 2 Θ

specifying which of the N hypotheses are true. If we fix a vector θ 2 Θ, then the
researcher’s expected utility (with respect to Pθ) can be defined straightforwardly,
whether she decides to observe one variable or all N variables:12

E1
θ d	 
 �

X
x12X 1

Pθ X1 � x1� � � u d x1� �; θ� �

EN
θ d	 
 �

X
~x2X

Pθ
~X �~x
� � � u d ~x� �; θ� �:

Here, X 1 is the range of X1, and X is the range of the random vector~X � X1; . . . ; XN� �.
One can now apply standard decision-theoretic terms to identify different senses in
which a decision rule is good or bad.

For instance, a researchermight desire amaximin decision rule, that is, a rule d such that
minθ2θE

j
θ d	 
 ≥ minθ2θE

j
θ e	 
 for all decision rules e, where j � 1 or j � N. Alternatively, she

might be a Bayesian; that is, she might always select a (subjective) expected-utility-
maximizing strategy with respect to her posterior. Recall that the subjective expected
utility of a strategy S with respect to a measure P is given by the following:

EP S	 
 :�
X
θ2Θ

P θ� � � u S; θ� �: (8)

Thus, there is a Bayesian who will adjust for multiplicity if there is a probability
measure P, utility function u, and experimental outcomes~x � x1; . . . ; xN� � 2 X such
that three conditions hold:

1. P ~X �~x
� �

> 0;
2. a1 maximizes EP��jX1�x1� a	 
 over all a 2 A1; and
3. a1=2S for some S that maximizes EP��j~X�~x� T	 
, where T ranges over strategies

containing a component act in every Ak.

We can now make the central question more precise in a second way. For which
utility functions do standard nonprobabilistic decision rules like maximin adjust for
multiplicity in the sense of equation (7)? Similarly, for which priors and utility
functions does an expected-utility maximizer adjust for multiplicity?

For simplicity, assume that a decision-maker’s utilities are separable across
component acts in the following sense.13 Assume that, for each hypothesis Hk, there is

11 See Muller et al. (2006) for a defense of this decision-theoretic approach.
12 For simplicity, I assume all of the sets in this article are finite, includingΘ, the ranges of the random

variables X1; . . .Xn, and the range of all decision rules. Under appropriate measure-theoretic
assumptions, the sums in the article can be replaced with integrals if one is interested in extending
these ideas to continuous spaces.

13 See Cohen and Sackrowitz (2005) for a similar assumption.
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a “component” utility function uk : Ak × 0; 1f g ! R that specifies the utilities u a; 0� �
and u a; 1� � of taking action a 2 Ak when Hk is true and false, respectively. Further,
suppose that the utility of a strategy u S; θ� � in state θ is the sum of the utilities of
component acts, that is:

u S; θ� � �
X
k ≤ N

X
a2S\Ak

uk a; θk� �: (9)

Utilities are separable when (a) the decision-maker can take component acts in
parallel, and (b) payoffs for taking different component acts do not interact. Such
assumptions are most plausible when two conditions are met. First, acts are cheap, or
the decision-maker has plentiful resources (and so pursuing multiple projects in
parallel is not prohibitively costly). Second, the hypotheses concern unrelated
phenomena (so that the important theoretical consequences of a conjunction of
hypotheses is the union of the theoretical consequences of the conjuncts). If the
decision-maker is a grant-making institution like the National Science Foundation
(NSF) or NIH, then utilities associated with projects in different scientific fields are
plausibly separable. The size of the institution makes funding projects in parallel
possible, and it is rare to find results in two disparate scientific fields that, when taken
together, yield important insights that neither result yields by itself.

The next theorem suggests that when utilities are separable, adjustment is never
obligatory, and it is sometimes impermissible.14

Theorem 1. Suppose utilities are separable in the sense of equation (9). Then there
are maximin rules that do not adjust for multiplicity. If in addition, the hypotheses of
Θ are mutually independent with respect to P, then one can maximize (subjective)
expected utility with respect to Pwithout adjusting. It follows that if the maximin rule
is unique, then no decision rule that adjusts is maximin. Similar remarks apply to
expected-utility maximization.

One might object that individual scientists will rarely have separable utilities for
the reasons identified earlier. Component acts are often costly: Pursuing one project
typically comes at the expense of pursuing another. And even if the component acts
are cheap (e.g., making an announcement), it is rare that scientists investigate
hypotheses that are so unrelated that if the conjunction were true, no further
important insights would follow. Scientists are highly specialized, and thus they
typically study hypotheses that are related.

However, I have not identified the necessary conditions for separability; utility
functions might be (approximately) separable for other reasons. More importantly,
theorem 1 yields sufficient conditions for nonadjustment, not necessary ones. So a
suspicion that theorem 1 is rarely applicable does not justify decision adjustment for
individual researchers. The theorem shifts the burden to providing a positive argument
for adjustment.

The reader might speculate that given the extensive research on multiplicity,
statisticians have (i) identified utility functions that plausibly represent the interests

14 See the online supplemental materials for a proof.
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of scientists and (ii) shown that common adjustment procedures are uniquely
maximin, or expected-utility maximizing with respect to those utility functions.
Unfortunately, that’s not the case. Some classical procedures for multiple testing are,
in fact, inadmissible (i.e., weakly dominated) for plausible utility/loss functions.15 Thus,
the criteria used to justify standard classical testing procedures are more complex
than they might initially seem; I turn to those criteria now.

3.2 Family-wise error rates and false-discovery rates
Classical approaches to multiple testing typically aim to control either the family-wise
error rate (FWER), which is the probability that a series of tests yields at least one false
positive, or the false-discovery rate (FDR), which is the expected proportion of rejected
null hypotheses that are true.

Statisticians routinely say that the FWER is rarely of interest. I agree. The FWER
is almost always maximized when all null hypotheses are false. But in many
applications, researchers know that at least one null hypothesis is false. Consider
again genome-wide association studies that investigate the associations between
thousands of genes and multiple heritable diseases. If at least one disease is known to
be heritable and genes are the mechanism for inheritance, then there must be at least
one gene that is associated with at least one disease!

Thus, some researchers now insist that multiple-testing regimes should control
the FDR. If the FDR is identical to one’s loss function, are existing regimes maximin?
Do they ever minimize subjective expected loss? The answer to both questions is
clearly no. One minimizes the FDR (or FWER) by retaining all null hypotheses. Thus, as
is standard in classical hypothesis testing, existing multiple-testing procedures
typically (i) fix a threshold for FDR and (ii) attempt to maximize power (i.e., the
probability of a false negative) subject to the constraint that the FDR is below the
threshold. Assuming utility is identified with (some kind of) power, statisticians have
identified testing regimes that are maximin among the set of procedures that
maintain FDR and/or FWER below a threshold.16

I will not rehearse standard objections to maximin reasoning,17 nor to the bizarre
two-step procedure in which one first culls testing procedures using FDR and then
applies maximin. Instead, I emphasize that the decision criteria just described
(1) treat all null hypotheses equally, (2) treat null hypotheses differently from alternatives,
and (3) ignore effect sizes. However, there are virtually no circumstances in which such
equal treatment and dismissal of effect size reflects either scientific or public interest.

Consider a recent influential genome-wide study in which researchers tested
roughly 14,000 genes for associations with seven common diseases, which included
bipolar disorder and Crohn’s disease (Wellcome Trust Case Control Consortium 2007).
Although the authors of the study reported adjusted p-values, they also laudably applied
many statistical techniques, incorporated background genetic knowledge, and avoided

15 Again, see Cohen and Sackrowitz (2005).
16 Just as there are multiple notions of “Type I error” when many hypotheses are tested (e.g., FWER or

FDR), so there are multiple notions of “power” that might be invoked, such as the probability of at least
one false negative, the “average” power, and more. For a discussion and proof of the optimality of certain
classical procedures, see see Rosset et al. (2022).

17 See Savage (1954, chaps. 9 and 10), for example.
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making policy recommendations based solely on adjusted p-values. Why did they not
simply apply a testing procedure with good power subject to the control of FDR?

All seven diseases they considered are serious, but the incidence of each varies widely,
as do the cost and efficacy of available treatments. From a public health perspective,
therefore, it would be inappropriate to treat every hypothesis of the form “Gene g is
associated with disease d” equally and to ignore the strength of such associations.

One might object that the severity of the diseases does not affect the evidence for
the various hypotheses. Does adjustment somehow reflect one’s evidence?

Answering that question is beyond the scope of this article; I lack the space to
explore the relationship among evidence, belief, and decision.18 But I am skeptical of
both (a) the importance of the question and (b) an answer that involves classical
procedures that control FDR or FWER.

Concerning (a), philosophers and scientists alike should be wary of directives to
ignore the suffering caused by diseases and instead coldly evaluate only the evidence
for empirical hypotheses. I admit that a subjective expected-utility analysis of
genome-wide studies seems daunting. I have no idea how to define a prior over a
roughly 100,000-dimensional (i.e., approximately 7 � 14; 000) parameter space that
incorporates expert knowledge. Nor do I have any idea how to define a utility function
that balances considerations of the severity and incidence of different diseases. But I
stress that mechanical use of multiple-testing procedures amounts to a refusal to
engage with questions of ethical importance, not an answer.

Concerning (b), like many classical procedures, decision criteria that first cull tests by
FWER or FDR treat null hypotheses differently from the alternatives. But if evidential
strength is divorced from pragmatic and ethical considerations, it is hard to see how
the asymmetric treatment of null and alternative hypotheses could reflect anything
evidential: What could distinguish a hypothesis H from its negation :H, evidentially
speaking?

4 Conclusions
The goals of scientists and of the public may be misaligned with the decision criteria used
to evaluate multiple-testing regimes. Thus, I urge two broad projects for future research.

First, in scientific contexts in which large numbers of statistical hypotheses can be
tested, scientists and philosophers must study the interests of the affected parties.
The differential funding provided for medical research—in comparison to academic
philosophy, for instance—is typically justified by its social importance. Scientists
should make good on that promise to advance collective interests.19

Second, statisticians must prove that existing testing procedures advance the
interests of affected parties, or they must develop alternative procedures altogether.
Otherwise, we all stand to be bamboozled by Bonferroni.

Supplementary material. For supplementary material accompanying this paper visit https://doi.org/
10.1017/psa.2024.13

18 Royall (1997) clearly distinguishes questions about belief, decision, and evidence.
19 See also Longino (1990), Kitcher (2003), and Douglas (2009).
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