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In this paper we propose primitive conditions under which a projection of a
conditional density onto a set defined by conditional moment restrictions exists and
is unique. Moreover, we provide an analytic expression of the obtained projection.
The range of applications where conditional density projections are used is wide.
The derived results are potentially useful in a variety of areas including: semipara-
metric efficient estimation and optimal testing in (conditional) moment models,
Bayesian prior determination and inference in semiparametric models, density
forecasting, and simulation-based econometric analysis.

Regarding existence, we propose three different combinations of assumptions
that are all sufficient to show that the projection exists and is unique. The proposed
conditions exhibit a clear trade off between restrictions put on the divergence
between the conditional densities and on the moment function which defines the
projection set. Depending on the nature of the application, the researcher can pick
and choose which set of conditions to use. Our second set of results characterizes
the projection. The expression for the projected density is new though not surpris-
ing given the previously obtained results for the unconditional case. The projection
is characterized by the dual of the original projection problem. In establishing the
strong duality, however, we work with a constraint qualification condition that is
weaker than that used by Borwein and Lewis (1991a, 1992a, 1993) in their seminal
work concerning the unconditional case.

1. INTRODUCTION

Consider the problem of inferring a function g from a prior guess f , both ele-
ments of a space P , when the only available information is that g belongs to some
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subset Q of P . This problem is central in applications in statistics, probability
theory, information theory, machine learning, physical chemistry, and other sci-
entific fields. A familiar example is when f and g are probability densities in P ,
while Q is some known convex subset of that space. A general approach to the
inference problem for g is to search for an element g0 in Q which minimizes a
(pseudo-) distance D to f , i.e. an element such that

D(g0, f
)= inf

g∈Q
D(g, f ). (1)

When well-defined and unique, the solution g0 is called the projection of f onto
the set Q.

This paper is concerned with the problems of existence, uniqueness, and char-
acterization of g0 when P is the space of all conditional probability densities,
and the subset of interestQ is defined by a set of conditional moment restrictions.
While the unconditional problem is today well-understood (see, e.g., Liese and
Vajda, 1987; Borwein and Lewis, 1993; Csiszár, 1995), no results have been
derived that would cover the conditional case. The goal of this paper is to fill
this gap, and by the same token provide new insights in the mechanics of the
underlying theory, and the assumptions it needs to work.

The conditional density projections are of particular interest in many domains
of application. In semiparametric models, projections are a constructive way of
obtaining the least favorable parametric submodels introduced by Stein (1956).
In the context of efficient estimation, Komunjer and Vuong (2009) show that
the least favorable distributions naturally lead to the semiparametric efficiency
bounds based on the conditional moment restrictions. Understanding under what
conditions the least favorable family can be constructed by projection is useful.
There is an increasing interest in specification testing in misspecified models
that are defined by moment restrictions (Sawa, 1978; White, 1982, 1994; Vuong,
1989; Chor-Yiu and White, 1996; Otsu et al., 2008; Shi, 2014). The problem
defining the projection is a natural metric to “measure” the distance of the moment
implied measures (the projection) from the true yet unknown distribution. The
conditions given in this paper may shed light on space over which this metric
is defined and, as a consequence, which divergence is better suited for this kind
of tests. Conditional density projections are also the cornerstone of simulation
based econometric analysis. They can be used to design the so-called importance
functions used in the construction of the method of simulated moments estimator
(see, e.g., Gourieroux and Monfort, 1997, for an overview), or else to integrate
out the latent variables from the moment restrictions (Schennach, 2014).

Extending the projection existence results to more realistic settings is also
the first step in a “least informative” likelihood estimation of complex stochas-
tic models. For instance, macroeconomic models such as the Dynamic Stochastic
General Equilibrium Models (DSGE) impose restrictions on the conditional
moments of macroeconomic quantities. An approach could be to derive the den-
sity that is consistent with these restrictions and use it as basis for inference in
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either the frequentist or the Bayesian framework. The theory developed in this
paper may serve as the foundation of such an approach. Other areas where our
results may be useful are optimal testing (Kitamura, 2001), methods of Bayesian
prior determinations (Bernardo, 1979, 2005), Bayesian inference in semiparamet-
ric models (Zellner, 1996, 2002, 2003; Zellner and Tobias, 2001; Kim, 2002), and
density forecasting (Giacomini and Ragusa, 2013). For extensive reviews of ap-
plications in econometrics and related fields to which our results may apply see
Buck and Macaulay (1991) and Ullah (1996).

The paper derives two sets of results. In the first, we propose alternative com-
binations of conditions that ensure that the projection g0 in (1) exists. In infinite
dimensional problems such as ours, this is not a trivial problem. There is a rich lit-
erature that has investigated the existence of projections in the unconditional case,
i.e. in the case where the minimization is over probability densities (or distribu-
tions) that satisfy a set of unconditional moment restrictions. A classical reference
for the Kullback–Leibler pseudo-distance is Csiszár (1975). For general distances
indexed by convex functions see Liese (1975), Borwein and Lewis (1991a, 1993),
Csiszár (1995), and citations therein. However, none of this literature explicitly
considers the conditional case.

The second set of results derived in this paper focuses on characterizing the
form of the solution. As with the existence of g0, its characterization has up
to now remained unknown. Interestingly, available results in the unconditional
case only focus on the form of g0 obtained in L1 (see, in particular, Borwein
and Lewis, 1991a, 1993). Similarly, this is the case considered in Rockafellar
(1971). The work by Csiszár (1995), which uses the Orlicz spaces, only ad-
dresses the issue of existence and leaves the form of g0 unknown. In principle,
there is no fundamental difficulty in characterizing the projection in the condi-
tional case, though the treatment of the problem requires going back to the basics
(for example, Rockafellar, 1974). In particular, one cannot simply extend
Borwein and Lewis (1991a, 1993) to the conditional case. The reason has to do
with the way the minimization problem (1) is solved. To be able to use the
dual of the minimization problem in (1), Borwein and Lewis (1992a) work
with a particular form of the constraint qualification condition which, as shown
by both Gowda and Teboulle (1990) and Zălinescu (1999), becomes very
restrictive in infinite dimension. Our solution is to work with a weaker condition,
which to the best of our knowledge, has not previously been applied in projection
problems.

The remainder of the paper is organized as follows. In Section 2 we describe our
setup, and introduce the conditional density projections. In Section 3, we derive
several results which establish existence under alternative sets of assumptions on
the moment function and on the form of the divergence. Section 4 characterizes
the projection when the latter exists. Section 5 introduces the modified the di-
vergence and concludes. A summary of some well known concepts of convex
analysis used in the paper is provided in Appendix A. The proofs of the results
stated in the main text are relegated to Appendix B.
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2. SETUP

2.1. Preliminaries

We start with a quick overview of preliminary notions needed to set up our prob-
lem; a more thorough treatment of those is given in Appendix A.

Let (�,F, P) be a probability space and consider an F-measurable random
element X : � → E where (E,E) is a measurable space. We shall be interested in
the conditional density of X given G where G is a sub-σ -field of F ; this density
will be denoted by f (ω, x). The density f : �×E→R+ is understood to be with
respect to a σ -finite dominating measure ν on E. For instance, if ν is the Lebesgue
measure, then the conditional distribution of X is continuous; if on the other hand,
ν is the counting measure, then the conditional distribution of X is discrete.

The conditional density f belongs to Lν
1(G⊗ E) which is the space of (equiva-

lence classes of) functions g : �×E→R that are (G⊗ E,B(R))-measurable and
such that |g| is P × ν-integrable.1 In particular, since f is nonnegative valued,
it belongs to the positive cone P of Lν

1(G⊗ E). Elements of the space Lν
1(G⊗ E)

(not necessarily nonnegative) shall be generally denoted by g. We pay particular
attention to those elements g ∈ Lν

1(G⊗ E) whose supports are included in that of
f , property which we denote by g ≺≺ f . More formally,

g ≺≺ f if for P-a.e. ω and ν-a.e. x , f (ω, x) = 0 implies g(ω, x) = 0.

This property is equivalent to the property of absolute continuity between the
corresponding measures (see Appendix A for details).

2.2. Divergence

A divergence D in P is any nonnegative extended-real valued function defined
on P ×P such that D( f1, f2) = 0 if and only if f1 = f2 with probability one.2

In this paper, we further restrict the class of divergences D and focus on the
φ-divergencesDφ which are parameterized by a function φ : (0,+∞) → [0,+∞)
that satisfies the following properties.

Assumption A1. (i) φ is twice continuously differentiable on (0,+∞); (ii) φ
is strictly convex on (0,+∞); (iii) φ(1) = φ′(1) = 0; (iv) limu→0+ φ′(u) < 0;
(v) limu→+∞ φ′(u) > 0.

It will be convenient to view φ as an extended-real valued function defined on
R and taking values in [0,+∞] (see, e.g. p. 23 in Rockafellar, 1970). This means
that the convex function φ being defined a priori on (0,+∞) we can extend it
outside its domain by setting φ(u) = +∞ for all u ∈ (−∞,0). As for the bound-
ary value of zero, we let φ(0) = limu→0+ φ(u), knowing that this limit is possibly
+∞.3 This ensures that the extension of φ is lower-semicontinuous on R (or
“closed” in the terminology of Rockafellar (1970)). Note that since by Assump-
tion A1(ii) φ is convex on (0,+∞), its extension is convex on R. Further, to deal
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with zero and infinity we adopt the understanding that φ(+∞) = limu→+∞ φ(u),

φ′(0) = limu→0+ φ′(u), φ′(+∞) = limu→+∞ φ′(u), and 0 ·φ
(

0
0

)
= 0.

The conjugate of the extended-real valued function φ will play an important
role in our analysis. The conjugate will be denoted by φ∗ :R→ (−∞,+∞] where

φ∗(v) ≡ sup
u∈R

{uv −φ(u)} .

Then φ∗ is increasing on R and it is itself a convex lower semi-continuous
function. Since φ is by Assumption A1 differentiable, we can relate φ∗ to the
Lagendre–Fenchel transform. More details on the properties of φ∗ are given in
Appendix A.

In order to formally define the φ-divergences between probability distributions,
we first introduce an integral functional which operates on elements of Lν

1(G⊗ E)
(not necessarily nonnegative). The restriction of the latter to P will then be called
a φ-divergence. The class of φ-divergences among probability distributions was
first introduced by Ali and Silvey (1966) and Csiszár (1967).

THEOREM 1 (φ-divergence). Given a function φ that satisfies Assumption A1
and a conditional density f ∈ P , for any g ∈ Lν

1(G⊗ E), let

Dφ(g, f ) ≡
{∫

f φ
(

g
f

)
d(P ×ν), if g ≺≺ f ,

+∞, otherwise.

Then Dφ(·, f ) is a well–defined convex function on L1(G ⊗ E) which takes
values in [0,+∞]. Moreover, Dφ(·, f ) is strictly convex on its effective domain
domDφ(·, f ) = {g ∈ Lν

1(G⊗E) :Dφ(g, f ) < +∞}, andDφ(g, f ) = 0 if and only
if g = f a.s. We call the restriction of Dφ(·, f ) to P a φ-divergence on P .

The above theorem defines the class of φ-divergences. Doing so formally
requires several results which need proof. First is the result that Dφ(g, f ) is well
defined. In particular, the measurability of f (ω, x)φ

(
g(ω, x)/ f (ω, x)

)
needs to

be established without resorting to the Carathéodory condition. The latter cannot
be imposed on the extended-real valued φ, which we have allowed to be infinitely
valued. Instead, the measurability will follow from the convexity and lower semi-
continuity properties of φ on R. Second is the result that Dφ(·, f ) is a convex
function. This result is quite intuitive: since Dφ(·, f ) is an integral of a convex
function φ, it is likely to inherit its convexity properties. The last result says
that Dφ(·, f ) has the necessary divergence properties: it is nonnegative valued,
and equal to zero only at f . This result is simply a consequence of the Jensen’s
inequality.

Since φ was extended to the entire real line, the φ-divergence Dφ(g, f ) is
defined on the entire Lν

1(G ⊗ E) space, even for those elements g that are pos-
sibly negative valued. The reason why we define Dφ(·, f ) on Lν

1(G⊗ E) (rather
than just on the positive cone P) is that many of our arguments to follow will be
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stated in terms of the duals, which are easier to analyze when the domain is the
entire Lν

1(G⊗E) space. Note however thatDφ(g, f ) < +∞ only if g ∈P; in other
words, the φ-divergence between any g ∈ Lν

1(G⊗E) that takes negative values and
the conditional density f is always +∞. Mostly however we shall be interested in
φ-divergences among conditional densities. Then, the φ-divergence between say
f1 and f2 in P can also be expressed in terms of the corresponding conditional
measures, μ1(ω, B) = ∫

B f1(ω, x)dν(x) and μ2(ω, B) = ∫
B f2(ω, x)dν(x), by

defining Dφ(μ1,μ2) ≡ ∫
φ(dμ1/dμ2)d(P ×μ2) if μ1 � μ2 and Dφ(μ1,μ2) ≡

+∞ otherwise. The two definitions are equivalent and Dφ(μ1,μ2) =Dφ( f1, f2).
This formulation is used by Kitamura and Stutzer (1997) and Kitamura (2001),
for example.4

The class of φ-divergences Dφ generally includes many distances used in
econometrics and statistics. Of particular interest are:

(i) Kullback–Leibler distance (I -divergence) (see, e.g., Kullback and Khairat,
1966; Csiszár, 1975):

φ(u) =
⎧⎨
⎩

u lnu −u +1, u > 0
1, u = 0

+∞, u < 0
, φ∗(v) = expv −1;

(ii) reverse I -divergence (Burg entropy) (see, e.g., Burg, 1967):

φ(u) =
⎧⎨
⎩

− lnu +u −1, u > 0
+∞, u = 0
+∞, u < 0

, φ∗(v) =
{− ln(1− v), v < 1

+∞, v � 1
;

(iii) (squared) Hellinger distance:

φ(u) =
⎧⎨
⎩

−4u1/2 +2u +2, u > 0
2, u = 0

+∞, u < 0
, φ∗(v) =

{
2(1− v/2)−1 −2, v < 2

+∞, v � 2
;

(iv) χ2 distance:5

φ(u) =
⎧⎨
⎩

u2/2−u +1/2, u > 0
1/2, u = 0
+∞, u < 0

, φ∗(v) =
{

v2/2+ v, v �−1
−1/2, v < −1

;

Of particular interest is the Cressie-Read family of divergences introduced by
Cressie and Read (1984) and parameterized by a real parameter a (the definition
of φa is found in Equation (A.3) in Appendix A). The Cressie–Read family con-
tains the χ2 distance (a = 1), the I -divergence (a → 0), the reverse I -divergence
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(a → −1), and the Hellinger distance (a = −1/2). In the econometric literature,
applications of the Cressie–Read distances can be found in Kitamura and Stutzer
(1997)’s Exponential Tilting estimator, Kitamura et al. (2009)’s Minimum
Hellinger Distance Estimator, and in Newey and Smith (2004)’s Generalized
Empirical Likelihood. See Ragusa (2011) for example of other divergences and
their applications in econometrics.

Notice that for the reverse I -divergence, for the Hellinger distance, and, in
general, for members of the Cressie–Read family with α < 0 Assumption A1(v)
holds with limu→+∞ φ′(u) < +∞.

2.3. Projection

We are now ready to formally define conditional density projections. For this, fix
f ∈P . With the φ-divergence as given in Theorem 1, theDφ-projection of f onto
a subset Q of Lν

1(G⊗ E) is defined as follows:

DEFINITION 1. The Dφ-projection of f onto a setQ⊆ Lν
1(G⊗ E) is (when it

exists) a g0 ∈Q satisfying: Dφ(g0, f ) = infg∈QDφ(g, f ).

In most statistical and econometric applications the projection set Q is defined
by a set of either unconditional or conditional moment restrictions. The uncondi-
tional problem is obtained when G is the trivial σ -field, i.e., G ≡ {∅,�}. When G
is any other sub-σ -field of F then the problem is conditional. While the uncondi-
tional problem has been extensively studied in the literature, little is known about
the conditional one. Our setup accommodates both cases.

The choice of the space over which the projection is defined, Lν
1(G⊗ E), merits

some discussion. In principle, one could define the projection over other spaces,
such as for example Lν

p(G ⊗ E) with p > 1. Since it holds that Lν
p(G ⊗ E) ⊂

Lν
1(G ⊗ E) for any 1 < p < +∞, it is natural to define the projection over the

largest space.
Now, consider some known moment function a : � × Rn → R

m (m ∈ N,
m < ∞) that is (G⊗ E,B(Rm))-measurable. Note that the number of components
m can be greater than one. We focus on Dφ-projecting f onto a set of condi-
tional densities that satisfy the conditional moment restrictions E[a(X)|G] = 0
(with probability one). The projection set Q is then characterized as follows:

Q≡
{

g ∈ Lν
1(G⊗ E) :

∫
E

a(ω, x)g(ω, x)dν(x) = 0 and (2)

∫
E

g(ω, x)dν(x) = 1, for a.e.ω

}
.

Put in words, the setQ is a subset of elements in Lν
1(G⊗E) that for a.e. ω integrate

to one, and satisfy the moment condition Eg[a(X)|G] = 0 a.s. (the expectation
being taken under g). Note that though we require that g(ω, ·) integrates to one
for a.e. ω, we purposefully choose not to impose any nonnegativity constraints

https://doi.org/10.1017/S0266466615000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000158


954 IVANA KOMUNJER AND GIUSEPPE RAGUSA

on g. Those will be automatically satisfied if Dφ(g, f ) < +∞. In semiparametric
applications, the moment function a may further be parameterized by some finite
dimensional parameter θ . In that case, the projection set Q also depends on θ .

3. EXISTENCE

3.1. Statement of the Problem

We can now re-formulate our projection problem infg∈QDφ(g, f ) as a con-
strained optimization problem in Lμ

1 (G ⊗ E). Recall (c.f. footnote 1) that
integrability in Lμ

1 (G⊗ E) holds with respect to P ×μ where μ is the conditional
measure corresponding to the conditional density f .

We start by assuming that there is at least one element g0 in Q such that
Dφ(g0, f ) < +∞, i.e. that the optimization problem is feasible. Since the
φ-divergence between g0 and f is finite, we necessarily have g0 ≺≺ f . Now, for

any g ∈ Lν
1(G⊗ E) such that g ≺≺ f , we have Dφ(g, f ) = Iφ

(
g
f

)
where6

Iφ(π) ≡
∫

φ(π)d(P ×μ), π ∈ Lμ
1 (G⊗ E). (3)

The density π above can be simply thought of as the Radon–Nikodym derivative
of g with respect to f . In addition, note that the constraints that define the projec-
tion set Q in (2) are linear in g; therefore by a simple change of variable g = π f
we have that g ∈Q if and only if π ∈ C where we have let

C ≡
{
π ∈ Lμ

1 (G⊗ E) :
∫
E

a(ω, x)π(ω, x)dμ(x) = 0 and (4)

∫
E

π(ω, x)dμ(x) = 1, for a.e. ω

}
.

Note that C is a convex subset of Lμ
1 (G⊗ E).

Our projection problem is then equivalent to a constrained optimization prob-
lem:

inf
π∈ C

Iφ(π). (5)

If a solution π0 to the problem (5) exists, then the projection g0 is simply obtained
by setting g0 = π0 f . Before attempting to characterize a solution to (5), we need
to establish if and under what conditions a solution to the above problem exists.

General proofs of existence are established using a minimizing sequence of (5),
i.e. a sequence {πn} of elements of C such that

lim
n→∞ Iφ(πn) = inf

π∈ C
Iφ(π) = d.

If there is at least one element π0 ∈ C such that Iφ(π0) < +∞, i.e., if the opti-
mization problem (5) is feasible, then we know that d ∈ [0,+∞). The problem
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however is that the minimizing sequence {πn} need not have a limit π0 ∈ C such
that Iφ(π0) = d . In the classical finite dimensional case, the objective function is
continuous on the projection set which is closed and bounded in say Rn . Then,
one can extract a converging subsequence from the minimizing sequence which
converges to a limit in C. That the limit of the subsequence is a solution to the
problem follows by the continuity of the objective function. It is possible to ex-
tend this line of reasoning to infinite dimensional spaces. The idea is to:

(e1) establish the existence of a subsequence {πni } that converges in some sense
to a limit π0;

(e2) establish that the limit π0 is in C;

(e3) show that the limit is a solution by appealing to the lower-semicontinuity
of Iφ on C for an appropriate topology.

A typical setup is the one in which the space under consideration is reflexive.
The topology considered is the weak topology, and the notion of convergence
that of a weak convergence (see, e.g., Chapter 2 in Ekeland and Témam, 1987).
In a reflexive space, it is sufficient to show that the minimizing sequence {πn} is
bounded in order to establish the property (e1). The problem, however, is that the
spaces Lμ

p (G⊗ E) are reflexive only if 1 < p < +∞. In particular Lμ
1 (G⊗ E) is

not reflexive which means that not every bounded sequence in Lμ
1 (G⊗ E) has a

weakly convergent subsequence.

3.2. Existence in L1

We first discuss the conditions for projection existence when the space under con-
sideration is Lμ

1 (G⊗E) equipped with the weak topology. As already pointed out,
bounded subsets of Lμ

1 (G⊗ E) are not necessarily weakly sequentially compact
(i.e., Lμ

1 (G⊗ E) is not reflexive). The idea is to instead use the weak compactness
of the level sets of Iφ seen as subsets of Lμ

1 (G⊗ E) (see, e.g., Borwein and Lewis,
1991b). This requires an additional assumption on the φ function that defines the
divergence.

Assumption A2. limu→+∞ φ(u)
u = +∞.

Assumption A2 requires φ to tend to infinity faster than a linear function which
is not an innocuous restriction. In particular, it excludes several popular choices
for φ such as the reverse I -divergence and the (squared) Hellinger distance. This
assumption is however instrumental in establishing weak compactness of levels
sets of Iφ . In a later section we will present a class of modified divergences whose
behavior at +∞ satisfies Assumption A2.

The proof of the following lemma adapts the arguments used by Borwein and
Lewis (1991b).

LEMMA 1. Let Assumption A1 hold. Then Assumption A2 is sufficient for the
level sets of Iφ of the form

{
π ∈ Lμ

1 (G⊗ E) : Iφ(π) � l
}

with l > 0 to be weakly
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sequentially compact in Lμ
1 (G ⊗ E). Moreover, if μ is not purely atomic, then

Assumption A2 is also necessary.

The result of Lemma 1 can be used to extract a weakly converging sequence
from a minimizing sequence, i.e., establish the property (e1) discussed above.
As shown in the lemma, Assumption A2 is not only sufficient but also necessary
for the result to hold, provided the conditional measure μ is not purely atomic.7

The key insight behind this assumption is discussed in Borwein and Lewis
(1991b) upon which the proof of Lemma 1 is based. Using the results from
Rockafellar (1968), Borwein and Lewis (1991b) show that weak compactness of
the level sets of integral functionals such as Iφ is equivalent to the finiteness of
the conjugate φ∗ on R. It follows immediately that φ∗ is everywhere finite if and
only if its effective domain equals R which by Lemma 4.2 in Borwein and Lewis
(1991a) stated in Appendix A is equivalent to A2. Thus, the sufficiency as well
as necessity of this assumption for the weak compactness of the level sets of Iφ
follows.

We now turn to the second property, i.e., property (e2) above. By definition,
when all weakly converging sequences in C weakly converge to the limits in C,
we say that C is weakly closed. Since the set C in (4) is convex, the property of
being weakly closed is equivalent to being closed. So a simple sufficient condition
for the property (e2) is to require that the set C be closed in the norm topology of
Lμ

1 (G⊗ E). For this, we shall work with the following assumption.

Assumption A3. The moment function a is essentially bounded, i.e., there
exists a positive constant M < ∞ such that for a.e. x ∈ E and a.e. ω,
|a(ω, x)|� M .

According to Assumption A3, the moment function a is in Lμ∞(G ⊗ E), i.e.,
‖a‖μ∞ < +∞. The following lemma formally establishes the needed result.

LEMMA 2. Let Assumption A3 hold. Then the projection set C is closed in the
norm topology of Lμ

1 (G⊗ E).
Having established sufficient conditions for (e1) and (e2), it only remains to

show (e3) that Iφ is lower semi-continuous in the weak topology of Lμ
1 (G⊗ E).

The latter follows from Lemma 1 which implies that the level sets
{
π ∈ Lμ

1 (G⊗E)
: Iφ(π) � l

}
with l > 0 are weakly closed. Hence, we are now in position to

establish the existence of projections g0 in Lν
1(G⊗ E).

THEOREM 2. Let Assumptions A1, A2, and A3 hold. Assume in addition that
the problem is feasible, i.e., there exists at least one g0 ∈Q such thatDφ(g0, f ) <
+∞. Then a Dφ-projection of f onto Q exists and is unique.

Theorem 2 shows that under Assumptions A1 through A3, feasibility of the
minimization problem in (5) is sufficient to establish existence. Once existence is
established, uniqueness follows by the strict convexity of the divergenceDφ(g, f )
on its effective domain (i.e., on the set of g’s for which Dφ(g, f ) is finite).
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Combining the statements in Assumptions A2 and A3, the condition under which
Theorem 2 holds can be restated as

‖a‖μ∞ < lim
u→∞

φ(u)

u
,

with the right-hand side being infinite. Interestingly, in the context of projection
problems involving unconditional densities and unconditional moment restric-
tions, Borwein and Lewis (1991a) show that the above condition (together with
Assumption A1 and a stronger feasibility condition) is sufficient to guarantee ex-
istence. Their result suggests a deep connection between the constraints put on
the moment function a (Assumption A3) and those put on the function φ defining
the divergence (Assumption A2); there is a clear trade-off between restrictions on
the growth rate of φ and the boundedness of the moment function. Rather than
attempting to generalize the result of Borwein and Lewis (1991a) to a conditional
case, we proceed with existence results that obtain even if the moment function is
unbounded.

3.3. Existence in Orlicz Spaces

As already pointed out, the key difficulty in establishing existence of the pro-
jection g0 in Lν

1(G ⊗ E) is that we are working in a space that is not reflexive.
One immediate solution to this problem is to change the space under considera-
tion. For example, instead of working in Lμ

1 (G⊗E) one could work in Lμ
p (G⊗E),

1 < p < +∞, which is reflexive. This, however, would amount to putting stronger
conditions on the conditional densities under consideration, such as for instance
square integrability if one works with p = 2. An alternative approach is to work
in a space whose structure is deeply connected to the form of the φ-divergence
under consideration. Such spaces are called Orlicz spaces and we first give a
brief overview of key definitions and results; for details, see, e.g. the book by
Krasnosel’skii and Rutickii (1961).

3.3.1. Overview of Orlicz Spaces. Let ρ : (0,+∞) → R be a contin-
uously differentiable convex function that satisfies limu→0 ρ(u)/u = 0 and
limu→∞ ρ(u)/u = +∞. To each such function ρ we can associate the
Orlicz space Lμ

ρ (G⊗ E) which is the space of (equivalence classes of) functions
h : �×Rn →R that are (G⊗E)-measurable and such that

∫
ρ (α0|h|)d(P ×μ) <

+∞ for some α0 > 0, i.e.,

Lμ
ρ (G⊗ E) ≡

{
h :

∫
ρ (α0|h|)d(P ×μ) < +∞, for some α0 > 0

}
.

The space Lμ
ρ (G⊗ E) equipped with the (Luxemburg) norm ‖ · ‖μ

ρ given by

‖h‖μ
ρ ≡ inf

{
β > 0 :

∫
ρ

( |h|
β

)
d(P ×μ)� 1

}
,
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is a Banach space. Note that in order to get the usual Lμ
1 (G⊗ E) space, one would

need to set ρ(u) = u. This choice of function ρ, however, does not satisfy the limit
requirement limu→∞ ρ(u)/u = +∞. Still Lμ

1 (G⊗ E) can be viewed as the union
of all the Orlicz spaces (see the discussion on p.61 of Krasnosel’skii and Rutickii
(1961), and the result of Lemma 4 to follow).

Before proceeding let us show why Orlicz spaces are a natural choice of space
in our problem.

LEMMA 3. Let {πn} ∈ C be a minimizing sequence of the problem (5). If the
problem is feasible, i.e., if infπ∈ C Iφ(π) = d < +∞, then {πn} ∈ Lμ

ρ (G⊗ E) with
ρ(u) = φ(1+u).

Lemma 3 shows that when the minimization problem (5) is feasible, any min-
imizing sequence is (eventually) in the Orlicz space Lμ

ρ (G ⊗ E) with ρ being
chosen as ρ(u) = φ(1 + u). In this sense, working with an appropriately chosen
Orlicz space does not impose any additional assumptions (as working with
e.g. L2 would) but rather fully exploits the existing feasibility condition.

Since most of our results rely on duality theory, it will prove useful to carefully
define the paired spaces in which the conjugates of various convex functions are
computed.8 For this, consider the following subspace Eμ

ρ (G⊗ E) of Lμ
ρ (G⊗ E),

Eμ
ρ (G⊗ E) ≡

{
h :

∫
ρ (α|h|)d(P ×μ) < +∞, for every α > 0

}
.

Like Lμ
ρ (G⊗ E), its subspace Eμ

ρ (G⊗ E) equipped with the (Luxemburg) norm
‖ · ‖μ

ρ is a Banach space. The pairing which we consider is

〈u,v〉 ≡
∫

uvd(P ×μ), u ∈ Lμ
ρ (G⊗ E), v ∈ Eμ

ρ∗(G⊗ E), (6)

where ρ∗ is the conjugate of ρ. In particular, if ρ(u) = φ(1 + u), then ρ∗(v) =
φ∗(v)−v where φ∗ is the conjugate of φ. The quantity 〈u,v〉 in (6) is well-defined
in view of the Hölder inequality in Orlicz spaces:∫

|uv|d(P ×μ)� 2‖u‖μ
ρ ‖v‖μ

ρ∗ . (7)

In particular, uv ∈ Lμ
1 (G⊗ E).

The pairing 〈u,v〉 in (6) behaves much like an inner product except that the
u argument is restricted to Lμ

ρ (G⊗E) and v to Eμ
ρ∗(G⊗E). We now equip the two

spaces with topologies such that the linear functionals 〈·,v〉 on Lμ
ρ (G⊗ E) are all

continuous and every continuous linear function on Lμ
ρ (G⊗E) can be represented

in the form 〈·,v〉 for some v ∈ Eμ
ρ∗(G⊗ E), with an analogous result for the space

Eμ
ρ∗(G⊗ E).9
On Lμ

ρ (G⊗ E), we consider the E-weak topology, which is the weakest topol-
ogy on Lμ

ρ (G ⊗ E) that makes all the functionals 〈·,v〉, with v ∈ Eμ
ρ∗(G ⊗ E),
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continuous. A functional l : Lμ
ρ (G ⊗ E) → R is E-weakly continuous if for any

E-weakly convergent sequence {un}, un
E−→u0 implies limn→∞ l(un) = l(u0).

A sequence {un} ∈ Lμ
ρ (G⊗ E) is said to E-weakly converge to u0 ∈ Lρ(G⊗ E),

property which we denote by un
E−→u0, if limn→∞

∫
unvd(P ×μ) = ∫

u0vd(P ×
μ) for every v ∈ Eμ

ρ∗(G⊗E).10 The main advantage of working with this topology

on Lμ
ρ (G⊗ E) is that every E-weakly continuous linear functional l on Lμ

ρ (G⊗E)
is of the form l(u) = 〈u,v〉 with v ∈ Eμ

ρ∗(G ⊗ E) (see, e.g., Theorem 14.7 in
Krasnosel’skii and Rutickii, 1961).

If we reverse the roles played by ρ and its conjugate ρ∗, then the above
result also says that the functionals l∗ : Lμ

ρ∗(G⊗ E) →R defined by l∗(v) = 〈u,v〉
(where u ∈ Eμ

ρ (G⊗E)) are precisely all the E-weakly continuous linear function-
als on Lμ

ρ∗(G⊗ E). The problem is however that we are working with the space

Lμ
ρ (G⊗ E) which in general is strictly larger than Eμ

ρ (G⊗ E), so we need to be
able to characterize functionals of the form v �→ 〈u,v〉 where u ∈ Lμ

ρ (G⊗ E) ⊃
Eμ

ρ (G⊗ E). One easy solution to this problem is to impose conditions on ρ that
will ensure that the two spaces coincide. A necessary and sufficient condition for
this is the so called 
2-condition on the function ρ (see, e.g., Chapter II §10 in
Krasnosel’skii and Rutickii, 1961):

lim
u→∞

uρ′(u)

ρ(u)
< +∞. (8)

Condition (8) effectively restricts the growth of ρ to be slower than that of an ex-
ponential. Under this condition, Lμ

ρ (G⊗E) = Eμ
ρ (G⊗E). In terms of the function

φ entering the divergence, the 
2-condition in (8) is equivalent to the following.

Assumption A4. limu→∞ uφ′(u)
φ(u) < +∞.

As already pointed out, Assumption A4 restricts the growth of φ to be slower
than that of an exponential. This restriction is easily satisfied by all the members
of the Cressie–Read family, including the I -divergence. Under this restriction,
the notion of E-weak convergence is equivalent to the usual weak convergence,
and we can consider the usual weak topology on Lρ∗(G⊗ E). Since we are inter-
ested in linear functionals 〈u, ·〉 on Eμ

ρ∗(G⊗ E) which is a subset of Lρ∗(G⊗ E),
it suffices to consider the induced topology on Eμ

ρ∗(G⊗ E).
Now that we have equipped the spaces Lμ

ρ (G⊗ E) and Eμ
ρ∗(G⊗ E) with com-

patible topologies and have defined the notions of convergence and continuity, we
can proceed with establishing sufficient conditions for the requirements (e1)–(e3)
in the general proof of existence.

3.3.2. Existence using strong Cramér condition. We now go back to our gen-
eral proof strategy and establish existence of the solution π0 to the problem (5)
in the Orlicz space Lμ

ρ (G⊗ E) with ρ(u) = φ(1+u). For this, recall that we first
need to: (e1) extract a subsequence {πni } from a minimizing sequence {πn} that
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converges in some sense to a limit π0. Here, the notion of convergence is that
of E-weak convergence, which is particularly useful because every Orlicz space
Lμ

ρ (G⊗ E) is E-weakly compact (see, e.g., Theorem 14.4 in Krasnosel’skii and
Rutickii, 1961), i.e., every bounded sequence contains an E-weakly converging
subsequence. This property will allow us to establish (e1) provided we can show
that the minimizing sequence {πn} is bounded. This in turn will follow from the
assumed feasibility of the problem and Lemma 3.

Next, we need to ensure that (e2) the E-weak limit of the subsequence obeys
the moment condition. Recall that the subsequence is E-weakly converging to
π0 ∈ Lμ

ρ (G⊗E) means that limi→∞
∫

T πni d(P ×μ) = ∫
T π0d(P ×μ) for every

T ∈ Eμ
ρ∗(G⊗ E). In particular, take T = 1. Then,

∫
ρ∗(α|T |)d(P ×μ) = ρ∗(α) <

+∞ for every α > 0, where the last inequality follows because ρ∗ is finite.
(This is a direct consequence of the fact that ρ is a real convex function satis-
fying limu→∞ ρ(u)/u = +∞, and Lemma 4.2 in Borwein and Lewis (1991a)
stated in Appendix A.) Thus, T = 1 is an element of Eμ

ρ∗(G⊗ E), and the limit π0

satisfies:
∫

π0d(P ×μ) = limi→∞
∫

πni d(P ×μ) = 1. Now, recall that in order
for π0 to satisfy the constraints that define the projection set C in (4), we need
to have

∫
E

π0(ω, x)dμ(x) = 1 for a.e. ω. In other words, it is not sufficient that
only the unconditional restriction

∫
�

∫
E

π0(ω, x)dμ(x)dP(ω) = 1 hold; rather, for
a.e. ω the conditional restriction

∫
E

π0(ω, x)dμ(x) = 1 needs to be satisfied. Of
course, the conditional restriction being stronger than the unconditional one, we
shall need to work a set of unconditional restrictions which when taken together
are equivalent to the conditional one.

This problem is akin to the problem of transforming a conditional moment
restriction to an equivalent set of unconditional moment restrictions. Elegant
solutions to this problem have been proposed in the literature on specification
testing, and we shall in particular follow here the approach of Stinchcombe and
White (1998). The key idea is simple: an element m ∈ L1(G) is equal to zero,
m = 0 a.s., if and only if for every l ∈ L∞(G), ∫� m(ω)l(ω)dP(ω) = 0. Here,
m(ω) ≡ ∫

E
[π0(ω, x)−1]dμ(x) which is in L1(G) in view of the Hölder inequal-

ity (7). So if every l ∈ L∞(G) is in Eμ
ρ∗(G⊗ E) then m = 0 a.s.11 Now recall that

ρ∗ is finite, so |∫ ρ∗ (| l|)d(P ×μ)|�maxv∈[0,L] |ρ∗(v)| < +∞ where L ≡ ‖l‖∞.
So any l ∈ L∞(G) is also in Eμ

ρ∗(G⊗E). This establishes that the limit π0 satisfies∫
E

π0(ω, x)dμ(x) = 1 for a.e. ω.
In order to ensure that π0 satisfies the conditional moment constraints as de-

fined by the moment function a in (4), similar reasoning applies. It is sufficient
to require that ai ∈ Eμ

ρ∗(G⊗ E) for every component i of the moment function a.
This leads to the following assumption.

Assumption A5. Each coordinate ai (1 � i � m) of the moment function a
satisfies:∫

φ∗ (τ |ai |)d(P ×μ) < +∞ for every τ > 0.
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Assumption A5 is best interpreted in the special case of I -divergence, for
which φ∗(v) = exp(v) − 1. In this case, the above requirement becomes
E[exp(τ |ai (X)|)] < +∞ for all τ > 0, where the expectation is being taken
under P × μ. Thus, Assumption A5 says that the moment generating function
of the moment function ai has to be finite for all τ > 0 and is akin to the
Cramér condition. Although strong, this requirement is substantially weaker
than requiring a to be bounded as was done in Assumption A3. Indeed, in
most statistical and econometric applications, Assumption A3 is too strong and
it is often ruled out by the nature of the model itself. For instance, consider
a model with a conditional mean restriction in which ai (ω, x) = x for a.e.
ω, and let X be conditionally normally distributed. This simple setup vio-
lates Assumption A3; Assumption A5 on the other hand remains satisfied
for all divergences of the Cressie–Read family with a ≥ 0. In particular, this
includes the I -divergence, obtained when a = 0. In the context of the uncon-
ditional projection problem, similar condition to Assumption A5 can be found
Csiszár (1995).

Finally, we need to ensure (e3) that Iφ remains lower semi-continuous on
C in the E-weak topology. Here, the importance of working with the Orlicz space
Lμ

ρ (G⊗ E) in which the 
2-condition (8) (or equivalently Assumption A4) holds
comes to full light: in those spaces the notions of weak convergence and E-weak
convergence coincide. So it will be sufficient to ensure that Iφ is lower semi-
continuous on C in the weak topology of Lμ

ρ (G ⊗ E). As already pointed out, a
direct implication of Lemma 1 is that Iφ is lower semi-continuous in the weak
topology of Lμ

1 (G ⊗ E). Since Iφ is convex, this is equivalent to lower semi-
continuity in the norm topology of Lμ

1 (G ⊗ E) (see, Corollary I.2.2 in Ekeland
and Témam, 1987). In order to show that lower semi-continuity remains when we
change the space to Lμ

ρ (G⊗ E), the following result will be crucial.

LEMMA 4. Let Assumptions A1 and A2 hold and take ρ(u) = φ(1+u). Then,
Lμ

ρ (G⊗ E) ⊆ Lμ
1 (G⊗ E), and there exists q > 0 such that q‖ · ‖μ

1 � ‖ · ‖μ
ρ .

Put in words, Lemma 4 says that for any sequence in the Orlicz space Lμ
ρ (G⊗

E), convergence in Luxemburg norm ‖ · ‖μ
ρ implies convergence in ‖ · ‖μ

1 . Now,
for any minimizing sequence {πn}, letting ρ(u) = φ(1+u) we know that {πn} ∈
Lμ

ρ (G⊗ E). Thus, if ‖πn −π0‖μ
ρ → 0 then by the above lemma ‖πn −π0‖μ

1 → 0;
by the lower semi-continuity of Iφ in Lμ

1 (G⊗ E), we then have liminfn Iφ(πn)�
Iφ(π0). That is, Iφ is lower semi-continuous in the norm topology of Lμ

ρ (G ⊗
E), and by convexity the result remains true if we change topology to the weak
topology (see again, Corollary I.2.2 in Ekeland and Témam, 1987). We then have
the following result.

THEOREM 3. Let Assumptions A1, A2, A4, and A5 hold. Assume in
addition that the problem is feasible, i.e., there exists at least one g0 ∈ Q
such that Dφ(g0, f ) < +∞. Then a Dφ-projection of f onto Q exists and is
unique.

https://doi.org/10.1017/S0266466615000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000158


962 IVANA KOMUNJER AND GIUSEPPE RAGUSA

As already discussed, the key feature of the existence approach based on
Orlicz spaces is that it allows us to relax the boundedness assumption on
the moment condition. This however comes at a cost: Theorem 3 imposes strong
moment conditions on the function a. These conditions can be relaxed, albeit
under stronger conditions on the function φ that defines the divergence.

3.4. Existence using weak Cramér condition

Recall that the role of Assumption A5 was to ensure that all the components ai

of the moment function a that defines the projection set C belong to the space
Eμ

ρ∗(G ⊗ E). In general, the space Eμ
ρ∗(G ⊗ E) is a strict subspace of the Orlicz

space Lμ
ρ∗(G⊗ E). One immediate way to weaken the restrictions imposed on a

is to ensure that the two spaces coincide. This is accomplished by imposing the
following.

Assumption A6. limu→∞ uφ′(u)
φ(u) > 1.

Recall that under Assumption A2, the ratio φ(u)/u increases to infinity when
u gets large. This implies in particular that limu→∞ φ′(u) = +∞. So the state-
ment in Assumption A6 can be interpreted as saying that φ′(u) increases faster
than φ(u)/u. It is straightforward to check that Assumption A6 holds for all the
members of the Cressie-Reed family with a > 0. It does not hold, however, for the
I -divergence. Indeed, the limit condition in Assumption A6 can be interpreted as
saying that φ increases at infinity strictly faster than u lnu.

When the function φ satisfies the growth requirements in Assumption A6,
the subspace Eμ

ρ∗(G ⊗ E) is actually equal to the entire space Lμ
ρ∗(G ⊗ E), i.e.,

Eμ
ρ∗(G⊗ E) = Lμ

ρ∗(G⊗ E) (see, e.g., Krasnosel’skii and Rutickii, 1961). When on

the other hand, Assumption A6 fails, Eμ
ρ∗(G⊗ E) is a strict subset of Lμ

ρ∗(G⊗ E).
Since under Assumption A6, Eμ

ρ∗(G⊗ E) = Lμ
ρ∗(G⊗ E), we can now work with

the following condition instead of the moment requirement in Assumption A5.

Assumption A7. Each coordinate ai (1 � i � m) of the moment function a
satisfies:∫

φ∗ (τi |ai |)d(P ×μ) < +∞ for some τi > 0.

The key difference between Assumptions A7 and A5 is that the latter imposes
integrability for all values of τ > 0, while the first only requires the result to
hold for some τi > 0. This difference is significant for functions φ which fail
to satisfy the requirements in Assumption A6. Indeed, if φ(u) fails to grow at
infinity strictly faster than u lnu, then its conjugate φ∗(v) grows as an exponential
(or faster). In those cases, a moment function a may well pass the integrability
requirement in Assumption A7 yet fail the one in Assumption A5. We then obtain
the following result.
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THEOREM 4. Let Assumptions A1, A2, A4, A6, and A7 hold. Assume in
addition that the problem is feasible, i.e., there exists at least one g0 ∈ Q
such that Dφ(g0, f ) < +∞. Then a Dφ-projection of f onto Q exists and is
unique.

To summarize, there are several sets of assumptions that can be used to establish
existence (and uniqueness) of the Dφ-projection of f onto a set of conditional
moment restrictions. They all involve a trade-off between restrictions put on the
function φ used to define the divergence, and the moment function a which defines
the projection set. The table below summarizes the key conditions; these are in
addition to the feasibility assumption which needs to hold in all cases.

Existence and Uniqueness Results
Theorem 2 Theorem 3 Theorem 4

ai bounded ∀τ > 0, E
[
φ∗(τ |ai |)

]
< +∞ ∃τi > 0, E

[
φ∗(τi |ai |)

]
< +∞

limu→∞ φ(u)
u = +∞ limu→∞ φ(u)

u = +∞ limu→∞ φ(u)
u = +∞

limu→∞ uφ′(u)
φ(u) < +∞ limu→∞ uφ′(u)

φ(u) < +∞
limu→∞ uφ′(u)

φ(u) > 1

In the table above, ai refers to the component i (1 � i � m) of the moment
function a, the expectation is taken with respect to the product P ×μ, i.e., under
the conditional density f .

4. CHARACTERIZATION

Now that we have provided several sets of conditions that guarantee existence and
uniqueness of the Dφ-projection of f onto a set of conditional moment restric-
tions, we turn our attention to the characterization of the said projection.

4.1. General Problem

To be specific, we first need to set our optimization problem in a particular space.
As in the previous section, where we have discussed existence, there are a couple
of possible choices for the space in which to work: Lμ

1 (G⊗ E) is a natural candi-
date because we are dealing with conditional densities. This space, however, does
not take into account the shape of the Dφ-divergence; as a result, the conditions
imposed on the moment function a (that of being bounded) are unnecessarily
strong (c.f. Theorem 2). An alternative is to work in the Orlicz space Lμ

ρ (G⊗ E)
whose geometry is intimately linked to the shape of the Dφ-divergence, obtained
by setting ρ(u) = φ(1+u). Working in Orlicz spaces allows for weaker assump-
tions on the moment function a such as those given in Assumptions A5 or A7.
This is the approach we shall follow in order to characterize the projection. More
specifically, in order to obtain results that apply to a wide range of divergences,
including the I -divergence, we shall hereafter work under the assumptions of
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Theorem 3. Of course, the characterization remains valid if additional divergence
restrictions are imposed, as was done in Theorem 4.

As before, we are interested in solving the constrained optimization problem in
Equation (5), infπ∈ C Iφ(π), when π is an element of the Orlicz space Lμ

ρ (G⊗ E),
and the projection set C is a convex subset of Lμ

ρ (G⊗ E) defined by the moment
function a, i.e.,

C ≡
{
π ∈ Lμ

ρ (G⊗ E) f :
∫
E

a(ω, x)π(ω, x)dμ(x) = 0,∫
E

π(ω, x)dμ(x) = 1, for a.e. ω

}
.

The projection set C is defined by m + 1 linear equality constraints with m being
the dimension of the moment function codomain, and we can write that π ∈ C if
and only if (T π)(ω) = c for a.e. ω, where T : Lμ

ρ (G⊗ E) → Lm+1
1 (G) = L1(G)

×·· ·× L1(G) (m +1 times) is a linear operator defined by

(T π)(ω) ≡
(∫

E

a(ω, x)′π(ω, x)dμ(x),

∫
E

π(ω, x)dμ(x)

)′
, (9)

and

c ≡ (0′,1)′ ∈ Rm+1.

Our optimization problem can then be written as:

minimize Iφ(π) subject to T π = c a.e., (10)

where π ∈ Lμ
ρ (G⊗ E). Note that the problem (10) is a convex optimization prob-

lem under linear equality constraints. There are however several important points
to be made:

(i) There are numerous existence and characterization results derived for
moment equality constraints (see, e.g., Borwein and Lewis, 1991a,b, 1993).
The key difference between those works and our problem (10), is that
we work with constraints that are stochastic. Hence, there is an infi-
nite number of linear constraints in our convex optimization problem.
This feature makes the conditional problem very different from the un-
conditional problem in which there is only one (or a finite number) of
constraints.12

(ii) In principle, the problem (10) can be analyzed using the Lagrange mul-
tiplier theorem. However, the application of this result is typically car-
ried out under some differentiability assumption for the objective func-
tion Dφ(·, f ). The problem here is that Dφ(·, f ) is only finite on the
positive cone P . If the true density f is such that it reaches the bound-
ary of the cone P , i.e., if the density f can be arbitrarily close to 0,
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then establishing differentiability of Dφ(·, f ) can be a problem. Indeed,
if for example the support of f is the entire real line, then we would need
to establish the differentiability of Dφ(g, f ) with respect to g, where g has
the same support as f and is thus arbitrarily close to 0. This is a problem
since Dφ(g, f ) becomes infinite as one moves away from g in directions
that would lead to a negative density.13 More formally, say that we work in
Lν

1(G⊗ E); then, the gradients of lower semi-continuous convex functions
such as Dφ(·, f ) can only be computed on the interior of their effective
domain (see, e.g., p.33 in Rockafellar, 1974). Since the effective domain
of Dφ(·, f ) is a subset of the positive cone P in Lν

1(G⊗ E), and since the
latter has empty interior, it follows that the interior of the effective domain
of Dφ(·, f ) is also empty.

(iii) An elegant solution to the differentiability problem is to work with the dual
of the problem in (10). As we shall proceed to show below, working with the
dual does not require differentiability assumptions on the primal. Moreover,
the dual will be stated in terms of Lagrange multipliers η(ω) and λ(ω) that
are functions of the conditioning variable ω alone, unlike the primal which
involves optimizing over functions g(ω, x) of both ω and x .

(iv) Due to the way we extended φ on R, a solution g0 to the problem (10)
(when it exists) is automatically nonnegative valued, provided there exists
at least one g ∈Q such that Dφ(g, f ) < +∞.

4.2. Dual Problem

Given the paired spaces Lμ
ρ (G⊗E) and Eμ

ρ∗(G⊗E), and the pairing 〈·, ·〉 in (6), we
can proceed with the discussion of the dual to the optimization problem (10). For
this, we first transform the latter into an unconstrained optimization problem by
modifying the objective function to be minimized. Let δ(·|E) denote the indicator
function of a given set E , i.e.,

δ(x |E) ≡
{

0, x ∈ E
+∞, otherwise.

The indicator function δ is convex if and only if the set E is a convex set; this
will be the case in our setup. The constrained optimization problem in (10) is then
equivalent to:

minimize
[
Iφ(π)+ δ(T π |{c})], (11)

where π ∈ Lμ
ρ (G⊗ E), the linear operator T : Lμ

ρ (G⊗ E) → Lm+1
1 (G) is as previ-

ously defined in (9), and c = (0′,1)′ ∈ Rm+1 as before.
A careful discussion of the operator T is needed at this point. As discussed

in the previous section, for the integrals in (9) to be well-defined, we need to put
some restrictions on the moment function a. Specifically, if we let Assumption A5
hold, i.e., if we assume every component ai is in Eμ

ρ∗(G⊗ E), then
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∫
�

|(T π)(ω)|dP(ω) =
∫

�

( m∑
i=1

∣∣∣∣
∫
E

ai (ω, x)π(ω, x)dμ(x)

∣∣∣∣
+
∣∣∣∣
∫
E

π(ω, x)dμ(x)

∣∣∣∣
)

dP(ω)

�
m∑

i=1

∫
�

∫
E

|ai (ω, x)π(ω, x)|dμ(x)dP(ω)

+
∫

�

∫
E

|π(ω, x)|dμ(x)dP(ω)

=
m∑

i=1

∫
|ai ||π |d(P ×μ)+

∫
|π |d(P ×μ) < +∞,

where the last inequality follows by the Hölder inequality in Orlicz spaces
(see Equation (7)). Thus, T is well defined. Now for every τ ∈ Lm+1∞ (G) consider
the linear functional l : Lμ

ρ (G⊗ E), u �→ l(u) ≡ ∫
(T u)′τdP . More specifically,

l(u) =
∫

�
(T u)(ω)′τ(ω)dP(ω)

=
∫

�

( m∑
i=1

τi (ω)

∫
E

ai (ω, x)u(ω, x)dμ(x)+ τm+1(ω)

∫
E

u(ω, x)dμ(x)

)
dP(ω)

=
∫

�

∫
E

(
m∑

i=1

τi (ω)ai (ω, x)+ τm+1(ω)

)
u(ω, x)dμ(x)dP(ω)

=
∫

�

∫
E

v(ω, x)u(ω, x)dμ(x)dP(ω),

where we have let

v(ω, x) ≡
m∑

i=1

τi (ω)ai (ω, x)+ τm+1(ω). (12)

Recall that under Assumption A5, each term in the above sum is in Eμ
ρ∗(G⊗ E)

(see the proof of Theorem 3 for details). Since Eμ
ρ∗(G⊗ E) is a subspace, it then

follows that the sum itself is in Eμ
ρ∗(G⊗ E), i.e., v ∈ Eμ

ρ∗(G⊗ E). Then, using the
pairing in (6) we can write that l(u) = 〈u,v〉 is a continuous linear functional.

The expression for v in Equation (12) allows us to define the conjugate func-
tional T ∗ : Lm+1∞ (G) → Eμ

ρ∗(G⊗ E) as T ∗τ = v . We are now ready to define the
dual of the primal problem in (11):

maximize
[〈τ,c〉− Iφ∗

(
T ∗τ

)]
, (13)
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with τ ∈ Lm+1∞ (G). Recall that c = (0′,1)′ ∈ Rm+1. Letting λ denote the first m
components of τ , and η denote its last component, i.e., λ ≡ (τ1, . . . ,τm) and η ≡
τm+1, an explicit expression for the dual is given in the lemma below.

LEMMA 5. Let Assumptions A1, A2, A4, and A5 hold. Then the projection
problem:

ming∈Q Dφ(g, f ) (P)

has a dual:

max(η,λ)∈(L∞(G), Lm∞(G))

×
[∫

�
η(ω)dP(ω)−

∫
�

∫
E

φ∗ (η(ω)+λ(ω)′a(ω, x)
)

dμ(x)dP(ω)

]
. (D)

The key feature of the duality approach is that it transforms an optimization
problem in π (or g) which is a function of two variables ω and x , into an opti-
mization problem in η and λ which are only functions of ω. In particular, in the
unconditional version of the problem considered by Borwein and Lewis (1991a,
1993), η and λ are simply constants in R and Rm , respectively. Though the above
result gives the dual of our projection problem, nothing is said about whether the
dual is attained. This is the goal to which we turn next.

4.3. Strong Duality

For the dual formulation in Lemma 5 to be useful, one needs to ensure that the
strong duality relation between the primal problem (11) and the dual problem (13)
holds, i.e., that

min(P) = max(D).

The above equality requires a so-called constraint qualification condition. There
is a variety of constraint qualification conditions that have been proposed in the
literature (see, e.g., Gowda and Teboulle, 1990; Zălinescu, 1999, for reviews). In
this paper, we shall work with the following constraint qualification proposed by
Zălinescu (1999) (Theorem 8(v)):

c ∈ icr
(
T domIφ

)
, (14)

where T domIφ is the image by T of the effective domain of Iφ , i.e., T domIφ ≡
{u ∈ L1(G) : u = T π, Iφ(π) < +∞}, and for any set A, icr(A) denotes the intrinsic
core of A, i.e., icr(A) ≡ {a ∈ A : ∀b ∈ aff(A)\{a},∃x ∈ (a,b), [a, x] ⊂ A}, aff(A)
is the affine hull generated by A, i.e., aff(A) = {∑

αi xi :
∑

α1 = 1, xi ∈ A
}
,

and [x, y] (resp. (x, y)) denotes the line segment between x and y �= x , i.e.,
[x, y] = {αx + (1−α)y : 0� α � 1} (resp. (x, y) = [x, y]\{x, y}) (see, e.g., p.7-8
in Holmes, 1974). The condition (14) is an interiority condition. A simple suffi-
cient condition is given by the following assumption.
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Assumption A8. For every g1 ∈ domDφ(·, f )\Q (i.e., such that Dφ(g1, f ) <
+∞ and g1 /∈ Q) there exist 0 < α < 1 and g2 ∈ domDφ(·, f ) \Q satisfying
αg1 + (1−α)g2 ∈Q, i.e., such that:

α

∫
E

a(ω, x)g1(ω, x)dν(x)+ (1−α)

∫
E

a(ω, x)g2(ω, x)dν(x) = 0

α

∫
E

g1(ω, x)dν(x)+ (1−α)

∫
E

g2(ω, x)dν(x) = 1.

Put in words, Assumption A8 simply says that for any nonfeasible g1 in the
effective domain of the φ-divergence (i.e., such that g1 does not satisfy the mo-
ment restrictions but the φ-divergence between g1 and f is finite), it is possible
to find some nonfeasible g2 also in the effective domain, such that some convex
combination of g1 and g2 satisfies the moment restrictions in Q. Put differently,
for any g1 not in the projection set Q, it is possible to find some α, 0 < α < 1,
and a g2 not inQ such that αg1 + (1−α)g2 is inQ. In this sense, Assumption A8
can be seen as an interiority condition: indeed if the set Q was at the boundary of
the domain of Dφ(·, f ), then it would be impossible to always find a line segment
(g1,g2) that passes through Q. Figure 1 illustrates the point.

Before proceeding, we comment on the constraint qualification condition (14),
as compared to the ones previously used in the literature. In the case where
the projection set is defined by unconditional moment restrictions, Borwein and
Lewis (1993) propose to work with a constraint qualification condition of the
form:

c ∈ qri
(
T domIφ

)
, (15)

where qri(A) denotes a quasi-relative interior of A, qri(A) ≡ {
a ∈ A : cone(A −a)

is a subspace
}
, cone(B) denotes the cone generated by B, i.e., cone(B) ≡ {λb :

FIGURE 1. (left) Assumption A8 holds; (right) Assumption A8 is violated.
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λ � 0,b ∈ B}, and cone(B) is its closure. This notion is introduced and studied
extensively in Borwein and Lewis (1992a,b). What makes this notion particu-
larly useful is the property that for linear mappings T with codomain Rm+1,
T qri(domIφ) ⊂ qri

(
T domIφ

)
(see Proposition 2.7 in Borwein and Lewis, 1992a).

Thus, a simple sufficient condition for c ∈ qri
(
T domIφ

)
is that there exists

π0 ∈ qri(domIφ) such that T π0 = c a.e. Translated in terms of densities, this gives
the constraint qualification condition used in Borwein and Lewis (1993):14

there exists g0 ∈ qri(domDφ(·, f )) such that g0 ∈Q. (BL)

It is worth emphasizing that Borwein and Lewis’s (1993) constraint qualification
(15) and its sufficient condition (BL) are only valid for projection sets defined by
unconditional moment restrictions. The reason again is that the notion of quasi-
relative interior has useful properties when the linear mapping T under consider-
ation has a codomain Rm+1. In the case of conditional moment restrictions this is
obviously not the case and we are dealing with a linear mapping T that maps to
Lm+1

1 (G).
It would be useful however to be able to compare our constraint qualification

condition (14) with that of Borwein and Lewis (1993) stated in (15) (or their suf-
ficient conditions given in Assumption A8 and Equation (BL), respectively). For
this, we need a generalized version of Borwein and Lewis’s (1993) quasi-relative
interior condition, which works for linear mappings that map into general Ba-
nach spaces. Gowda and Teboulle (1990) propose one such generalized condi-
tion, based on the notion of a strong quasi-relative interior, whereby sqri(A) ≡
{a ∈ A : cone(A −a)is a closed subspace}. Their condition can be written as:

c ∈ sqri
(
T domIφ

)
. (16)

As shown by Gowda and Teboulle (1990) and Zălinescu (1999), the strong quasi-
relative interior condition (16) and our condition (14) based on the intrinsic core
are related to each other by the following equivalence:

c ∈ sqri
(
T domIφ

)⇐⇒
{

c ∈ icr
(
T domIφ

)
aff
(
c − T domIφ

)
is a closed subspace.

Thus, our constraint qualification condition (14) is strictly weaker than that of
Gowda and Teboulle (1990) in (16) (which we recall again is the generalization
of the constraint qualification condition by Borwein and Lewis (1993) that works
for problems with conditional moment restrictions). Specifically, our condition
(14) does not involve any closedness requirements. This we should point out is
one important advantage of working with algebraic interior notions such as the in-
trinsic core, which unlike the (strong) quasi-relative interior do not depend on the
topology. Moreover, without putting strong assumptions on the set c − T domIφ
it is generally very difficult (if not impossible) to ensure that aff

(
c − T domIφ

)
is

closed, thus preventing one from using the strong quasi-relative interior condition.
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Under the constraint qualification condition (14) we obtain the following strong
duality result.

THEOREM 5. Let Assumptions A1, A2, A4, A5, and A8 hold. Assume in ad-
dition that the problem is feasible, i.e., there exists g0 ∈Q such that Dφ(g, f ) <
+∞. Then min(P) = max(D), and there is a unique solution g0 to P, and a unique
solution (η0,λ0) to D.

4.4. Optimality Criterion

At last, we are able to characterize the projection by using the strong duality result
of Theorem 5. For this, we first need to introduce the notion of a subgradient.
Recall again that we are working in the space Lμ

ρ (G⊗ E) paired with Eμ
ρ∗(G⊗ E)

with the inner product defined in (6), i.e., for every (u,v) ∈ Lμ
ρ (G⊗ E)× Eμ

ρ∗(G⊗
E), 〈u,v〉 = ∫

uvd(P × μ). For the function Iφ defined in (3), we say that v ∈
Eμ

ρ∗(G⊗ E) is a subgradient of Iφ at u ∈ Lμ
ρ (G⊗ E) if

Iφ(u′)� Iφ(u)+〈u′ −u,v〉 for all u′ ∈ Lμ
ρ (G⊗ E), (17)

which due to the property of the conjugate Iφ∗ of Iφ , Iφ∗(v) =
supu

[〈u,v〉− Iφ(u)
]
, is then equivalent to

Iφ∗(v) = 〈u,v〉− Iφ(u).

The set of all subgradients of Iφ at u is denoted by ∂ Iφ(u). The subgradient
set ∂ Iφ(u) may be empty; when nonempty, it is always closed and convex in
Eμ

ρ∗(G⊗ E).
Identical equations to those above will hold for other paired spaces, e.g.

Lm+1
1 (G) and Lm+1∞ (G). In particular, we can use them to characterize the sub-

gradient of τ �→ 〈τ,c〉, τ ∈ Lm+1∞ (G),c = (0′,1)′ ∈ Rm+1, which is no other than
the support function of the set {c} (the latter being the conjugate of the indicator
function δ(·|{c}) introduced before). We simply have that for all τ ∈ Lm+1∞ (G),
∂〈τ,c〉 = c.

We can now use the above notion of subgradients to derive the optimality con-
dition for the φ-projection g0 of f ontoQ, or equivalently for π0 that solves (11).
From Theorem 15 in Rockafellar (1974) (see also his Example 11’ on p.50), we
know that π0 solves (P), τ 0 solves (D) and min(P) = max(D), if the pair (π0,τ 0)
solves the Kuhn-Tucker condition

T π0 = ∂〈τ 0,c〉 = c and T ∗τ 0 ∈ ∂ Iφ(π0).

As shown in Rockafellar (1971), the second property is equivalent to T ∗τ 0 ∈
∂φ(π0) = {φ′(π0)} since φ is differentiable by Assumption A1(i). Now, recall that
for any v ∈ R we have (φ′)−1(v) = (φ∗)′(v) (Lemma 6(v) and Assumption A2),
so the last equality can be written as π0 = (φ∗)′

(
T ∗τ 0

)
. Translating this result in

terms of the projection g0 = π0 f , we have thus shown the following.
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COROLLARY 6. Under the conditions of Theorem 5, the solution g0 to P is
given by

g0(ω, x) = (φ∗)′
(
η0(ω)+λ0(ω)′a(ω, x)

)
f (ω, x),

where (η0,λ0) is the unique solution to D.

5. DISCUSSION AND CONCLUSION

5.1. Modified divergences

In proving the existence of the projection g0 one faces the trade-off between the
restrictions on the growth rate of φ and the boundedness of the moment function.
Assumption A2 could be relaxed only if one is willing to consider a bounded mo-
ment function (or a bounded space �). Even in this case, however, Borwein and
Lewis (1993) have shown that Assumption A2 is necessary in order to guarantee
that the solution does not posses singular components. For general case of a pos-
sibly unbounded moment function, the proof of existence of the Dφ-projection
based on weak compactness in Orlicz spaces relies on Assumption A6 which im-
poses an additional constraint on the the growth rate of φ.

These constraints on the rate of growth of φ are satisfied only by a small sub-
set of the functions φ introduced in Section 2.3. Assumption A2 holds for the
Kullback–Leibler distance and for members of the Cressie–Read class with a > 0;
on the other hand, Assumption A6 holds only for members of the Cressie–Read
with a > 0. It is, however, possible to modify a function φ in order to make it
compatible with the rate of growth prescribed by the aforementioned assump-
tions. The idea is to modify the behavior of the divergence only in the “tail” while
leaving it unchanged otherwise.

Consider a divergence function φ which satisfies Assumption A1, but not As-
sumption A2, that is, d ≡ limu→+∞ φ′(u) < +∞. Note that d < +∞ implies that
φ does not satisfy Assumption A6.

For some ϑ > 0, let uϑ ≡ 1+ϑ . The modified divergence φϑ is defined as

φϑ(u) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ(uϑ)+φ′(uϑ)(u −uϑ)+ 1
2φ′′(uϑ)(u −uϑ)2, u � uϑ

φ(u), u ∈ (0,uϑ)

limu→0+ φ(u), u = 0

+∞, u < 0

.

Put in words, the modified divergence φϑ mimics the behavior of the original
divergence φ up to a cut-off uϑ that is strictly greater than one; beyond that cut-off,
the original divergence is replaced by a quadratic that is a “smooth” continuation
of φ, i.e., whose level and slope match that of φ at uϑ .

It is immediate to verify that the modified divergence satisfies all the require-
ments of Assumption A1. Furthermore, it holds that

lim
u→∞

φϑ(u)

u
= +∞, and lim

u→∞
uφ′

ϑ(u)

φϑ(u)
= 2,
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which implies that: (i) the rate of growth of φϑ is consistent both with Assump-
tion A2 and Assumption A6, and (ii) the image of φ′

ϑ is the real line and thus
domφ∗

ϑ = (−∞,+∞). The expression for the conjugate is obtained by applying
the Legendre–Fenchel transform to obtain

φ∗
ϑ(υ) =

{
aϑυ2 +bϑυ + cϑ , υ > φ′(uϑ),

φ∗(υ), υ � φ′(uϑ)
,

where aϑ = 1/(2φ′′(uϑ)), bϑ = uϑ −2aϑφ′(uϑ), and cϑ = −φ(uϑ)+aϑφ′(uϑ)−
u2

ϑ/aϑ . Importantly, the conjugate φ∗
ϑ(u) has a closed form expression whenever

the original divergence function φ does so. The example below illustrates the
computation and the properties of the modified divergence.

Example (Reverse I -divergence)
The reverse I-divergence, φ(u) = − lnu + u − 1, does not satisfy either Assump-
tion A2 or Assumption A6. The modified reverse I -divergence is given by

φϑ(u) =

⎧⎪⎨
⎪⎩

− ln(uϑ)+ (1− 1
uϑ

)u + 1
2u2

ϑ

(u −uϑ)2, u > uϑ

− lnu +u −1, 0 < u � uϑ

+∞, u � 0.

. (18)

The conjugate of φθ is given by

φ∗
ϑ(υ) =

{
aϑυ2 +bϑυ + cϑ , υ > 1− 1

uϑ

− ln(1−υ), υ � 1− 1
uϑ

,
(19)

where aϑ = u2
ϑ/2, bϑ = uϑ(2 − uϑ), and cϑ = ln(uϑ)− uϑ − 1 + uϑ(uϑ − 1)/2.

Figure 2 draws the I -divergence, the modified versions for ϑ = 1 and ϑ = 2, and
the corresponding conjugate functions. The modified divergences’ rate of growth
is faster than the original one, but slower than the I -divergence.

5.2. An example

We consider now a simple example that highlights the extent to which the dis-
cussed conditions for existence can differ in applications. We focus on an uncon-
ditional example; its extension to the conditional case is immediate.

Consider projecting the normal N (μ,σ 2) probability density

f (x) = 1√
2πσ

exp

{
−(x −μ)2

2σ 2

}

onto the set Q of elements g that satisfy the mean zero and unit variance condi-
tions:∫

xg(x)dx = 0, and
∫ (

x2 −1
)
g(x)dx = 0.
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FIGURE 2. The reverse I -divergence and its modifications.

The two components of the moment function a that defines the projection set are
thus: a1(x) = x and a2(x) = x2 −1.

Consider first the case in which the divergence used to project f onto Q is the
I -divergence. Recall that the I -divergence satisfies the growth condition in
Assumption A4. Under Theorem 3, the I -divergence projection exists and is
unique if Assumption A5 holds, that is, if∫

exp[τ1|x |] f (x)dx < +∞,

∫
exp

[
τ2|x2 −1|

]
f (x)dx < +∞,
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for every τ1 > 0 and every τ2 > 0, respectively. The first integral is finite for every
τ1 ∈R in view of the fact that it is the moment generating function a folded normal
distribution which is everywhere finite. The second integral fails to be finite for
every τ2 > 0, since its minorant

∫
exp

[
τ2
(
x2 −1

)]
f (x)dx =

exp
[
τ2

(
μ2

1−2σ 2τ2
−1

)]
√

1−2σ 2τ2

,

is finite only for τ2 < 1/(2σ 2).
Although Assumption A5 is not satisfied, the projection of f onto Q with the

I -divergence exists and it is given by a normal distribution with mean zero and
unit variance. This follows from the fact that

g0(x) = 1√
2πσ

exp
[
τ1a1(x)+ τ2a2(x)+ τ3

]
exp

[
−(x −μ)2

2σ 2

]

is the density of standard normal distribution—and thus g0 ∈ Q—for τ1 =
−μ/σ 2, τ2 = (

1 − σ 2
)
/
(
2σ 2

)
, and τ3 = (

1 + μ2 + σ 2
)
/
(
2σ 2

)
. That g0 is the

projection follows from Theorem 3 of Csiszar (1975).
It is straightforward to show that for the reverse I -divergence and, in general,

for all members of the Cressie–Read family of divergence with a < 0 Assumption
A5 fails because for these divergences φ∗(τ1|x |) = +∞ for every x ∈ (− 1

aτ1
, 1

aτ1

)
and all τ1 > 0. The projection of f onto Q could still exist in this case, but since
A5 does not hold we are not able to establish it rigorously.

When f is projected onto Q using one of the modified divergences defined in
Section 5.1 checking whether the conditions for existence and characterization are
satisfied is simpler. Define Bτ = {x ∈ R : φ∗ (τ1|a1(x)|+ τ2|a2(x)|+ τ3) < +∞}
and let Bc

τ denote its complement. For the modified divergences Assumption A5
becomes∫

Bτ

φ∗ (τi |ai (x)|) f (x)dx +aϑ

∫
Bc

τ

(τi |ai (x)|)2 f (x)dx

+bϑ

∫
Bc

τ

τi |ai (x)| f (x)dx < +∞,

for every τi > 0, i = 1,2. By the continuity of a1 and a2 the set Bτ is μ-
measurable; furthermore,

∫
Bτ

f (x)dx < ∞. As a consequence, Assumption A5
holds in this case if the two rightmost terms of the previous display are finite.
A sufficient condition for the two terms to be finite is that the fourth noncentered
moment of X is finite, which is the case here because under f all moments of X
exist.

The example of this section highlights several important points that hold more
generally. First, it is important to have a portfolio of conditions for the projec-
tion existence that can be used in different situations. Second, with the modified
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divergences Assumption A5 reduces to the existence of higher moments of the
functions characterizing the set Q. This is a useful feature especially in econo-
metric applications because conditions on the existence of higher moments of the
moment function a are often required for establishing the limit behavior of esti-
mators based on sample projections. Last, but not least, the conditions proposed
here are all sufficient but not necessary for the projection to exist.

5.3. Conclusions

In this paper we give sufficient conditions under which the projection of a condi-
tional density onto a set defined by conditional moment restrictions exists, and can
be characterized in terms of the dual of the original projection problem. The prim-
itive conditions relate to the properties of the function φ defining the divergence,
and to the existence of certain higher moments of the moment function a. Both
sets of conditions are relatively easy to check in specific applications. It is worth
mentioning that, unlike most of the literature, our setup allows for unbounded mo-
ment functions. This feature of our approach is of particular in econometric appli-
cations where the random variables under consideration usually have unbounded
supports. Our results can be thought of as extensions of the results available for the
unconditional case, e.g., Borwein and Lewis (1991a, 1993) and Csiszar (1995).
The extension is, however, not trivial as each conditional moment constraint can
be thought of as an infinity of unconditional moment constraints.

There are numerous practical cases where our results are relevant. When the
moment function a is finitely parameterized, the conditional density projections
correspond to the population counterpart of the objective function of semipara-
metric efficient estimator (Kitamura et al., 2004). Having sufficient conditions for
the existence of the limit of the objective is the building step to study the proper-
ties of these estimators under misspecification. Other immediate applications of
the results here are to cases in which one wants to recover a likelihood from a set
from conditional moment restrictions. Typical examples are DSGE models, which
in their nonlinear form can be cast in terms of a set of restrictions on the condi-
tional expectations of the control variables. The projection studied here could
provide a way to conduct likelihood-based inference in this class of models.

More generally, the conditional density projections could be useful in all those
cases in which additional information is available in terms of conditional moment
conditions: the projection of an initial conditional distribution onto the set defined
by these conditions could form the basis for inference. We have pointed in the
introduction to several works that already use these ideas, but additional research
assessing the viability of these approaches could be a welcoming addition to the
literature. Regardless of the specific application, finding the projection density
is a formidable computational task. Devising efficient algorithms for computing
the projections would also be an interesting area of research. Equally interesting
would be extending the existence and characterization results to situations in
which the projection set is defined by moment inequality restrictions.
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NOTES

1. We use the superscript ν in Lν
1 to emphasize that integrability needs to hold with respect to

P × ν. Later on, we shall introduce spaces with integrability conditions with respect to P ×μ where
μ is the conditional measure corresponding to the conditional density f . Such spaces will bear a
superscript μ.

2. Divergences are also referred to as directed divergences, generalized entropies, relative entropy
functionals, or pseudo-distances in the literature (see, e.g., Ullah, 1996).

3. Note that the nonnegativity of φ is also ensured by the strict convexity of φ on (0,+∞), and the
requirements in Assumption A1(iii,iv).

4. Note, however, that our definition of φ-divergence (and thus that of Kitamura and Stutzer (1997)
and Kitamura (2001)) slightly differs from that of Ali and Silvey (1966) or Csiszár (1995) who allow
the divergence to possibly remain finite even if μ1 is not dominated by μ2. In this case, there is an
indeterminacy problem caused by the singular component of μ1 whenever limu→∞ φ(u)/u < +∞.
We avoid this problem by defining the divergence between g and f to be infinite, whenever the support
of g is not included in that of f . It is worth emphasizing that our definition does not require the
support of f to be included in that of g so that we may well have regions where g(ω, x) = 0 and yet
f (ω, x) > 0. In this case, the behavior of Dφ will depend on the value of the function φ at zero. In
particular, if φ(0) = +∞, the divergence between such g and f will become infinite.

5. Note that our extended-real valued φ used in the definition of χ2 distance differs from the
definition used for example in Borwein and Lewis (1991a). Since φ is in this particular case well
defined on R, one possibility would be to simply extend it from (0,+∞) to R by using the same
formula. This is the approach taken in Borwein and Lewis (1991a). We shall see later on, however,
that this definition of φ could lead to negative densities, problem which as we shall demonstrate does
not occur with our extension of φ.

6. For a detailed derivation of this equality see the proof of Theorem 1 and Equation (B.1) in
Appendix.

7. Note that this excludes the case where μ is the empirical measure, for example.
8. The notion of paired spaces has been introduced by Rockafellar (1974).
9. In the familiar case in which u ∈ Lμ

1 (G⊗ E) and v ∈ Lμ∞(G⊗ E), the weak topologies on the
two spaces satisfy this requirement.

10. In the terminology of Krasnosel’skii and Rutickii (1961), this type of convergence is called
EN -weak convergence (see Chapter 2 §14 in Krasnosel’skii and Rutickii, 1961).

11. The reasoning is as follows. Take any l ∈ L∞(G). Then,

lim
i→∞

∫
�

∫
E

l(ω)πni (ω, x)dμ(x)dP(ω) = lim
i→∞

∫
�
l(ω)

[∫
E

πni (ω, x)dμ(x)

]
dP(ω)

=
∫
�

l(ω)dP(ω)

=
∫
�

∫
E

l(ω)π0(ω, x)dμ(x)dP(ω),

where the last equality follows if l ∈ Eμ
ρ∗ (G ⊗ E). So letting m(ω) = ∫

E
[π0(ω, x) − 1]dμ(x), we

obtain
∫
� m(ω)l(ω) = 0.

12. The other difference between our approach and that of Borwein and Lewis is that they work
in L1. Thus, as discussed before, they rely on the boundedness of the moment function to establish
existence and characterize the solution.

13. Page 330 in Borwein and Lewis (1991a) contains a simple example illustrating this point.
14. See condition (PC Q2) on p. 255 in Borwein and Lewis (1993)
15. Though in this case the support of the dominating counting measure ν is data dependent.
16. When the conditioning is done with respect to a sub-σ -field generated by a subvector of X ,

then the above Lν
1-norm induces the metric of “integrated Lν

1-distance” used in Tang and Ghosal
(2007).
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17. Note that the non-negativity of φ is also ensured by the strict convexity of φ on (0,+∞), and
the requirements in Assumption A1(iii,iv).
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APPENDIX A: Preliminaries

A.1. Conditional measures and densities

Let (�,F , P) be a probability space and suppose that G is a sub-σ -field of F . When G
is the trivial σ -field, i.e., G ≡ {∅,�}, then we deal with an unconditional case; otherwise,
the problem is conditional. Here, we do not put any restrictions on G other than G ⊂ F ,
so our setup accommodates both the conditional and the unconditional problem. Further,
let (E,E) be a measurable space in which E is a complete separable metric space and E is
the σ -algebra of Borel sets. Then, given an F -measurable random element X : � → E we
shall be interested in the regular conditional measure of X given G, which we denote by μ.
That μ is a regular conditional measure means that μ : �× E→ R+ satisfies: (i) for each
B ∈ E , ω �→ μ(ω, B) is a version of P(X (ω) ∈ B|G), and (ii) for a.e. ω, B �→ μ(ω, B) is
a probability measure on (E,E).

Let ν be a σ -finite measure on (E,E). For instance, the measurable space could be
(Rn,B(Rn)), with ν being the Lebesgue measure; or if the set E is countable, we could let
E be the set of subsets of E, with ν being the counting measure. We shall assume that for
a.e. ω, μ(ω, ·) is absolutely continuous with respect to ν. Then, there exists f : �×E→
R+ that is (G⊗ E,B(E))-measurable and such that for a.e. ω we have:

μ(ω, B) =
∫

B
f (ω, x)dν(x), (A.1)

i.e., f is the conditional density of X given G. Note that since no requirements other than
σ -finiteness are put on the dominating measure ν, our setup accommodates continuous
as well as discrete random variables. In particular, our setup accommodates the case in
which μ is the empirical measure.15 It follows from joint measurability of f that f is
jointly integrable with respect to the product measure P × ν (see, e.g., Theorem 11.28 in
Aliprantis and Border, 2007), so∫

f d(P ×ν) =
∫
E

∫
�

f (ω, x)dP(ω)dν(x) =
∫
�

∫
E

f (ω, x)dν(x)dP(ω) = 1, (A.2)

where the last equality uses (A.1).
Now, for 1 � p < ∞, let Lν

p(F ⊗ E) be the space of (equivalence classes of) functions
g : �×E→ R that are (F ⊗ E,B(R))-measurable and such that |g|p is P ×ν-integrable.
We use the superscript ν in Lν

p to emphasize that integrability needs to hold with respect to
P ×ν. Later on, we shall introduce spaces with integrability conditions with respect to
P ×μ where as before μ is the conditional measure corresponding to the conditional den-
sity f . Such spaces will bear a superscript μ. For any g ∈ Lν

p(F ⊗ E), the Lν
p-norm of g is

defined by:

‖g‖ν
p ≡

[∫
|g|pd(P ×ν)

]1/p
.
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The Lν∞-norm (or the essential sup norm) of g is defined as: ‖g‖ν∞ ≡ inf
{

M > 0 :
|g(ω, x)| ≤ M for P-a.e. ω, and ν-a.e. x

}
. We say that two elements g1 and g2 of Lν

p(F⊗
E) belong to the same equivalence class—property which we denote g1 = g2 a.s.—if
‖g1 − g2‖p = 0.

It follows from (A.2) that f ∈ Lν
1(F ⊗ E). In what follows, we shall work with the

Lν
1(F ⊗ E) space equipped with the Lν

1-norm ‖ · ‖1, which is a Banach space. The set of
functions h ∈ Lν

1(F ⊗ E) that are (G⊗ E,B(R))-measurable forms a closed subspace of

Lν
1(F ⊗ E) that we denote by Lν

1(G⊗ E).16 In particular, we shall be interested in those
elements of Lν

1(G⊗ E) that are nonnegative valued, so we let P ≡ {g ∈ Lν
1(G⊗ E) : g(�×

E) ⊆ R+} be the positive cone in Lν
1(G⊗ E). It follows that f ∈ P . Hereafter, we shall

reserve the letter f to denote conditional densities in P; elements of the space Lν
1(G⊗ E)

(not necessarily nonnegative) shall be denoted by g.
Finally, we pay particular attention to those elements g ∈ Lν

1(G⊗ E) whose supports are
included in that of f . More formally, if the support of g is included in that of f we shall
denote this property by g ≺≺ f ; more formally,

g ≺≺ f if for P-a.e. ω and ν-a.e. x , f (ω, x) = 0 implies g(ω, x) = 0.

Note that this property is equivalent to the property of absolute continuity between the
corresponding measures. Indeed, if for every B ∈ E , we let μg(ω, B) ≡ ∫

B g(ω, x)dν(x),
then μg(ω, ·) is a finite signed measure on (E,E). If A(ω) is a null set of μ(ω, ·), i.e., if∫

A f (ω, x)dν(x) = 0, then for ν-a.e. x ∈ A, f (ω, x) = 0. When g ≺≺ f , the latter implies
that for ν-a.e. x ∈ A, g(ω, x) = 0, i.e.,

∫
B g(ω, x)dν(x) = 0 for every B ⊆ A, so A is a null

set of μg(ω, ·); in other words, μg(ω, ·) is absolutely continuous with respect to μ(ω, ·),
i.e., μg(ω, ·) � μ(ω, ·). By the Radon–Nikodym theorem (see, e.g., Thereom 13.18 in
Aliprantis and Border, 2007) there then exists a (P ×μ-almost) unique function π that is
(G⊗ E,B(R))-measurable and P ×μ-integrable such that

g = π f.

Moreover, since g is in Lν
1(G⊗ E), it follows that

∫ |π |d(P ×μ) = ∫ |g|d(P × ν) < +∞
so π ∈ Lμ

1 (G⊗ E), which is the space of (equivalence classes of) functions π : �×E→R

that are (G⊗ E,B(R))-measurable and such that |π | is P ×μ-integrable. In what follows,
we shall often use this fact which allows us to transform our projection problem stated in
terms of g into a constrained optimization problem in π .

A.2. Convex Functions and Their Conjugates

Most of our analysis to follow involves real convex functions and their conjugates. To start,
we recall some useful concepts from convex analysis; for a detailed discussion, see, e.g.,
Rockafellar (1970) and Hiriart-Urruty and Lemarechal (1993). We consider nonnegative
valued real functions φ : (0,+∞) → [0,+∞) with the following properties:

Assumption A1. (i) φ is twice continuously differentiable on (0,+∞); (ii) φ is
strictly convex on (0,+∞); (iii) φ(1) = φ′(1) = 0; (iv) limu→0+ φ′(u) < 0; (v)
limu→+∞ φ′(u) > 0.

Assumptions A1(i)–(iii) are fairly standard. In particular, the normalizations φ(1) =
φ′(1) = 0 and φ′(1) = 1 do not restrict generality, since for any differentiable convex
function φ there exists another, say φ, satisfying φ(1) = φ

′
(1) = 0.

https://doi.org/10.1017/S0266466615000158 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000158


EXISTENCE AND CHARACTERIZATION OF DENSITY PROJECTIONS 981

It is convenient to view φ as an extended-real valued function, defined on R and tak-
ing values in [0,+∞] (see, e.g. p. 23 in Rockafellar, 1970). This means that the convex
function φ being defined a priori on (0,+∞) we can extend it outside its domain by set-
ting φ(u) = +∞ for all u ∈ (−∞,0). As for the boundary value of zero, we let φ(0) =
limu→0+ φ(u), knowing that this limit is possibly +∞.17 This ensures that the extension
of φ is lower-semicontinuous on R (or “closed” in the terminology of Rockafellar (1970)).
Note that since by Assumption A1(ii) φ is convex on (0,+∞), its extension is convex on
R. Further, to deal with zero and infinity we adopt the understanding that φ(+∞) =
limu→+∞ φ(u), φ′(0) = limu→0+ φ′(u), φ′(+∞) = limu→+∞ φ′(u), and 0 ·φ

(
0
0

)
= 0.

The conjugate of the convex extended-real valued function φ on R, φ∗, is itself a convex
lower semi-continuous function. Moreover, it follows from the above definition, that φ∗ is
increasing on R. The following result will play an important role in what follows.

Lemma 4.2 in Borwein and Lewis (1991a). Let φ : [0,+∞) → [0,+∞] be convex,
lower semi-continuous, and such that φ(x) < +∞ for at least one x ∈ [0,+∞). Define
d ≡ limu→+∞ φ(u)/u. Then domφ∗ = (−∞,d ] where domφ∗ ≡ {v ∈R : φ∗(v) < +∞}
denotes the effective domain of φ∗.

Since φ is differentiable on (0,+∞), we can relate its conjugate to its Legendre trans-
form. For this, we first need to define the image by φ of its derivative φ′. Let Iφ′ denote the
image Iφ′ ≡ φ′((0,+∞)) = {v ∈ R : v = φ′(u),u ∈ (0,+∞)}. Under assumptions A1(i)
and (ii), φ′ is continuous and strictly increasing on (0,+∞); hence Iφ′ = (φ′(0),φ′(+∞)).
Under assumptions A1(iv) and (v), 0 belongs to Iφ′ . Note that if Assumptions A1(iv)–
(v) hold with limu→0+ φ′(u) = −∞ and limu→+∞ φ′(u) = +∞, then Iφ′ = R. The

Legendre-Fenchel transform of φ is a real mapping φ̃ : Iφ′ → R which to every v ∈ Iφ′
associates:

φ̃(v) ≡ v(φ′)−1(v)−φ
(
(φ′)−1(v)

)
.

The following lemma establishes several useful properties of φ̃.

LEMMA 6. Under Assumption A1, we have: (i) φ̃ is twice continuously differentiable
on Iφ′ , (ii) φ̃ is strictly convex on Iφ′ , (iii) for any v ∈ Iφ′ , φ̃(v) > 0 whenever v > 0, (iv)

φ̃′ > 0 on Iφ′ , (v) φ̃′(v) = (φ′)−1(v) for any v ∈ Iφ′ , (vi) φ̃′′(v) = [φ′′((φ′)−1(v))]−1 for
any v ∈ Iφ′ .

Proof of Lemma 6. As already noted, assumptions A1(i) and (ii) imply that φ′ is a
homeomorphism, hence an open map. This means in particular that the image of φ′, Iφ′ , is

open. Now, note that from the expression of the Legendre conjugate, φ̃ is continuous and
differentiable on Iφ′ . In addition, the derivative of φ̃ is given by:

φ̃′(υ) = (φ′)−1(υ), for any υ ∈ Iφ′ .

Given the strict convexity of φ in Assumption A1(ii), φ′ is continuous and strictly increas-
ing on (0,+∞); so its inverse φ̃′ is continuous and strictly increasing on Iφ′ . Hence, φ̃

is strictly convex. Since limu→0 φ′(0) = inf Iφ′ we have limυ→inf Iφ′ (φ′)−1(υ) = 0, i.e.,

limυ→inf Iφ′ φ̃′(υ) = 0. This combined with the fact that φ̃′ is continuous and strictly in-

creasing on Iφ′ then gives φ̃′ > 0 on Iφ′ . Now, under assumption A1(iii) we have φ̃(0) = 0.
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Then, for any υ ∈ Iφ′ , we have φ̃(υ) > 0 if υ > 0. Finally, A1(ii) implies φ′′ > 0 on

(0,+∞) so φ̃′ is continuously differentiable on Iφ′ with derivative:

φ̃′′(υ) = 1

φ′′((φ′)−1(υ))
.

This completes the proof of Lemma 6. n

Recall that we can extend φ to be a lower semi-continuous convex function on all R
with (0,+∞) as its effective domain. Thus, we can relate the Legendre conjugate φ̃ to the
ordinary conjugate of the extended φ as: φ̃ = φ∗|Iφ′ , i.e., φ̃ is simply the restriction of φ∗
to Iφ′ (see, e.g., Theorem 26.4 in Rockafellar, 1970).

The following family of functions φ ∈ K introduced by Cressie and Read (1984) is of
particular interest in econometrics:

φa(u) =

⎧⎪⎨
⎪⎩

ua+1−1
a(a+1) − 1

a u + 1
a , u > 0

1
a+1 , u = 0
+∞, u < 0

, a ∈ A ⊂ R (A.3)

with 0a = 0 for a > −1, 0a = +∞ for a < −1, φ−1(u) = lima→−1 φa(u), and φ0(u) =
lima→0 φa(u), and where the set A contains those a ∈R for which φφ satisfies Assumption
A1. Note that the image of φ′

a depends on the particular value of a, and we have Iφ′
a

=
(−1/a,+∞) if a > 0, Iφ′

a
= R if a = 0, and Iφ′

a
= (−∞,−1/a) if a < 0. The conjugate

of φa is given by

φ∗
α(v) =

{
1

1+a (1+av)(1+a)/a − 1
1+a , v ∈ Iφ′

a+∞, v /∈ Iφ′
a

.

APPENDIX B: Proofs of the results stated in the main text

Proof of Theorem 1. Fix f ∈ P , and consider any g ∈ Lν
1(G⊗ E). If the support of g

does not contain that of f then Dφ(g, f ) = +∞ and so is well-defined; thus we only need
to consider the case in which the support of g contains that of f , i.e., g ≺≺ f . We then have

Dφ(g, f ) =
∫
�

∫
E

f (ω, x)φ

(
g(ω, x)

f (ω, x)

)
dν(x)dP(ω)

=
∫
�

∫
A(ω)

f (ω, x)φ

(
g(ω, x)

f (ω, x)

)
dν(x)dP(ω)

=
∫
�

∫
A(ω)

φ

(
g(ω, x)

f (ω, x)

)
dμ(ω, x)dP(ω)

=
∫
�

∫
E

φ

(
g(ω, x)

f (ω, x)

)
dμ(ω, x)dP(ω),

where A(ω) ≡ {x ∈ E : f (ω, x) > 0}, the second equality follows by 0 ·φ(0/0) = 0, the
third by change of measure, and the fourth because Ac(ω) is of μ(ω, ·) measure zero.
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Let π ≡ g/ f and note that π is well-defined P ×μ a.e. Moreover, |π | is P ×μ-integrable
since

∫ |π |d(P ×μ) = ∫
(|g|/ f )d(P ×μ) = ∫ |g|d(P ×ν). So consider the following func-

tional defined on Lμ
1 (G⊗ E):

Iφ(π) ≡
∫
�

∫
E

φ
(
π(ω, x)

)
dμ(ω, x)dP(ω). (B.1)

Then Iφ
(

g
f

)
=Dφ(g, f ).

To show that Iφ(π) is well-defined, we use the result of Theorem 1 in Rockafellar
(1968). For this, first note that since φ is convex and lower semi-continuous on R, it is
a normal convex integrand (see, Lemma 1 in Rockafellar, 1968). Next, we need to show
that there exists at least one π0 ∈ Lμ∞(G⊗ E) such that Iφ∗(π0) < +∞, i.e.,∫
�

∫
E

φ∗(π0(ω, x)
)
dμ(ω, x)dP(ω) < +∞, (B.2)

where ‖π0‖μ∞ ≡ inf{M > 0 : |π0(ω, x)| ≤ M, for P-a.e. ω, and μ-a.e. x} < ∞. Now, take
any v ∈ R such that φ∗(v) < +∞, and let π0(ω, x) = v . Then, ‖π0‖μ∞ = |v| < +∞, and∫
�

∫
E

φ∗(π0(ω, x)
)
dμ(ω, x)dP(ω) = φ∗(v)

∫
�

∫
E

dμ(ω, x)dP(ω) = φ∗(v) < +∞,

which shows (B.2). We can now apply Theorem 1 in Rockafellar (1968) to show that Iφ(π)

is a welldefined convex function on Lμ
1 (G⊗ E) with values in (−∞,+∞]. That Iφ(π) is

strictly convex on its effective domain follows by the strict convexity of φ on (0,+∞).
It remains to show that Dφ(g, f ) � 0 with equality only if g = f with probability one.

Take any g ∈ Lν
1(G⊗ E) such that Dφ(g, f ) < +∞; then necessarily g ∈ P . Since g ∈ P ,

we have that
∫

gd(P ×ν) = 1, so from Jensen’s inequality, we obtain∫
f φ

(
g

f

)
d(P ×ν) ≥ φ

(∫
f

g

f
d(P ×ν)

)
= φ

(∫
gd(P ×ν)

)
= φ(1) = 0,

with equality only if g = f with probability one. n

Proof of Lemma 1. First, note that since 1 ∈ Lμ
1 (G ⊗ E), we have infπ∈Lμ

1 (G⊗E)

Iφ(π) = 0. To show that under Assumption A2, the level sets of Iφ are weakly compact,
we use Theorem 2.7 in Borwein and Lewis (1991b). Specifically, since the measure P ×μ
is finite Theorem 2.7(B) applies, and the level sets of Iφ of the form {π ∈ Lμ

1 (G ⊗ E) :
Iφ(π)� d}, d > 0, are weakly compact. That Assumption A2 is also necessary when ν is
not purely atomic (so that P ×μ is not purely atomic) follows by Theorem 2.10 in Borwein
and Lewis (1991b) by noting that finiteness of φ∗ is equivalent to the growth condition in
Assumption A2. n

Proof of Lemma 2. We show that under Assumption A3, the projection set C is closed
in the norm topology of Lμ

1 (G⊗ E). For this, let {πi } be any convergent sequence in C, and

denote by π̄ its limit, limi→∞ ‖πi − π̄‖μ
1 = 0. We now show that then q̄ ∈ C, i.e., the set

C is closed. We have:∫
�

∣∣∣∣
∫
E

a(ω, x)π̄(ω, x)dx

∣∣∣∣dP(ω)�
∫
�

∣∣∣∣
∫
E

a(ω, x)[π̄(ω, x)−πi (ω, x)]dx

∣∣∣∣dP(ω)

+
∫
�

∣∣∣∣
∫
E

a(ω, x)πi (ω, x)dx

∣∣∣∣dP(ω)
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=
∫
�

∣∣∣∣
∫
E

a(ω, x)[π̄(ω, x)−πi (ω, x)]dx

∣∣∣∣dP(ω)

�
∫
�

∫
E

|a(ω, x)| · |π̄(ω, x)−πi (ω, x)|dxdP(ω)

� M‖πi − π̄‖μ
1 ,

where the first equality uses πi ∈Q(θ), and the last inequality follows by Assumption A3.
Taking the limit of the above as i → ∞ it then follows that∫
�

∣∣∣∣
∫
E

a(ω, x)π̄(ω, x)dx

∣∣∣∣dP(ω) = 0

and since the quantity inside the first integral is everywhere nonnegative, the above implies
that for a.e. ω,∫
E

a(ω, x)π̄(ω, x)dx = 0.

Hence, π̄ ∈ C. n

Proof of Theorem 2. Since the problem is assumed feasible, infπ∈ C Iφ(π) = d < +∞.

We need to show that there exists π0 ∈ C such that Iφ(π0) = d. For this, consider

Cd ≡ {π ∈ C : Iφ(π)� 2d}, (B.3)

and let {πi } be a sequence in Cd for which

lim
i→∞ Iφ(πi ) = inf

π∈C Iφ(π) = d. (B.4)

Note that Cd = C∩L2d where Ld ≡ {π ∈ Lμ
1 (G⊗ E) : Iφ(π)� d}. Weak sequential com-

pactness of level sets Ld established in Lemma 1 implies that there exists a subsequence
πik tending weakly to some π0 ∈ L2d . Now, by Lemma 2 C is closed, and since in addi-
tion C is convex, it is also weakly closed. Thus, the limit π0 of the subsequence must be in
C. It remains to be shown that π0 is a solution to the problem (5), i.e., that Iφ(π0) = d.
This follows by the weak lower semi-continuity of Iφ established using Lemma 1, since

Iφ(π0) � liminfk Iφ(gik ) = d. Uniqueness follows by the strict convexity of Iφ on its
effective domain. n

Proof of Lemma 3. Consider a minimizing sequence {πn} ∈ C, Iφ(πn) →
infπ∈ C Iφ(π) = d. If d < +∞, then with no loss of generality, we may assume all
Iφ(πn) to be finite. Then necessarily πn(ω, x) � 0 for P-a.e. ω and μ-a.e. x . Now let
ρ(u) = φ(1+u), and note that under Assumptions A1(ii,iii) and A2, ρ satisfies the needed
convexity and limit conditions. Then, it follows from strict convexity of φ on (0,+∞) that
for α0 = 1/2,∫

φ

(
1+ 1

2
πn

)
d(P ×μ) <

1

2

[
φ(2)+

∫
φ (πn)d(P ×μ)

]
= 1

2

[
φ(2)+ Iφ(πn)

]
< +∞,

i.e., {πn} ∈ Lμ
ρ (G⊗ E). n
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Proof of Theorem 3. The beginning of the proof is similar to that of Theorem 2: consider
a sequence {πi } in Cd defined in Equation (B.3) which satisfies the property in Equation
(B.4). Letting ρ(u) = φ(1+u) we have that for every i , πi ∈ Lμ

ρ (G⊗ E) and

‖πi ‖μ
ρ � inf

k>0

1

k

(
1+

∫
ρ (k|πi |)d(P ×μ)

)
� 2

[
1+

∫
φ

(
1+ 1

2
πi

)
d(P ×μ)

]

� 2

[
1+ 1

2

(
φ(2)+

∫
φ (πi )d(P ×μ)

)]
= 2+φ(2)+ Iφ(πi )� 2+φ(2)+2d,

where the first inequality is a classical inequality between the Luxembourg norm and the
so-called Orlicz norm (see, Krasnosel’skii and Rutickii, 1961). Thus, the sequence {πi } is
bounded. It follows from Theorem 14.4 in Krasnosel’skii and Rutickii (1961) that there
exists a subsequence πik tending E-weakly to some π0 ∈ Lμ

ρ (G⊗ E).
We have already shown (see the discussion preceding the statement of the theorem) that

1 ∈ Eμ
ρ∗(G⊗ E) implies that π0 satisfies

∫
E

π0(ω, x)dμ(x) = 1 for a.e. ω. We now repeat
the reasoning with Assumption A5. First, since every component aj (1 � j � m) of the
moment function a is in Eμ

ρ∗(G⊗ E), it follows that

lim
k→∞

∫
aj πik d(P ×μ) =

∫
aj π

0d(P ×μ) = 0,

where the second equality follows because πik ∈ C. In particular, it follows from Hölder’s
inequality (see Equation (7)) that aj π

0 ∈ Lμ
1 (G⊗ E). So letting

m(ω) ≡
∫
E

aj (ω, x)π0(ω, x)dμ(x), (B.5)

we have∫
�

|m(ω)|dP(ω)�
∫
�

∫
E

|aj (ω, x)π0(ω, x)|dμ(x)dP(ω) < +∞,

so m ∈ Lm
1 (G). We now show that for every l ∈ Lm∞(G),

∫
� l(ω)′m(ω)dP(ω) = 0, which

will then imply that m = 0 a.s. For this, take any l ∈ Lm∞(G) and any τ > 0; letting L ≡
‖l‖∞, note that for any component j (1� j � m),∫

φ∗ (τ |aj lj |
)

d(P ×μ)�
∫

φ∗ (τ |aj |L
)

d(P ×μ) < +∞,

where the first inequality follows because φ∗ > 0 and φ∗′ > 0 on (0,+∞) (Lemma 6),
and the last inequality follows by Assumption A5. Thus aj lj ∈ Eμ

ρ∗(G⊗ E). So for every
component j (1� j � m),

lim
k→∞

∫
lj aj πik d(P ×μ) = lim

k→∞

∫
�

lj (ω)

[∫
E

aj (ω, x)πik (ω, x)dμ(x)

]
dP(ω) = 0

=
∫

lj aj π
0d(P ×μ) =

∫
�

lj (ω)mj (ω)dP(ω),

which implies that
∫
� l(ω)′m(ω)dP(ω) = 0. Thus, m = 0 a.s. and π0 ∈ C. It remains to

be shown that π0 is a solution to the problem (5), i.e., that Iφ(π0) = d. This follows
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by the weak lower semi-continuity of Iφ in Lμ
ρ (G ⊗ E) shown using Lemma 4, since

liminfn Iφ(πn) � Iφ(π0). As before, uniqueness follows by the strict convexity of Iφ on
its effective domain. n

Proof of Lemma 4. We first show that Lμ
ρ (G⊗ E) ⊆ Lμ

1 (G⊗ E). Since ρ is a proper
convex function, there exist s > 0 and v � 0 such that for every u ∈ [0,+∞), ρ(u) �
su − v . In particular, for any t ∈ R and any α > 0, there exist aα > 0 and bα � 0 such that
|t |� aαρ(α|t |)+bα . Take h ∈ Lμ

ρ (G⊗ E) and the corresponding α0 > 0; then,∫
|h|d(P ×μ)� aα0

∫
ρ(α0|h|)d(P ×μ)+bα0 < +∞,

i.e., h ∈ Lμ
1 (G⊗ E). Now, the Luxemburg norm ‖ · ‖μ

ρ satisfies

∫
ρ

(
|h|

‖h‖μ
ρ

)
d(P ×μ) = 1

(see, e.g., II §9 in Krasnosel’skii and Rutickii, 1961). It is easy to see that under Assump-
tion A1, ρ(u) = φ(1 + u) is positive and strictly increasing on (0,+∞) so k1 � k2 > 0 if
and only if

∫
ρ(|h|/k1)d(P ×μ) �

∫
ρ(|h|/k2). Using the same inequality as above, we

have∫
ρ

(
|h|

q‖h‖μ
1

)
d(P ×μ)� s

∫ |h|
q‖h‖μ

1

d(P ×μ)− v = s

q
− v,

so choosing 0 < q � s/(1+ v), we get∫
ρ

(
|h|

q‖h‖μ
1

)
d(P ×μ)� 1 =

∫
ρ

(
|h|

‖h‖μ
ρ

)
d(P ×μ),

which implies q‖h‖μ
1 � ‖h‖μ

ρ as desired. n

Proof of Theorem 4. The beginning of the proof is similar to that of Theorems 2 and
3. We again consider a sequence {πi } in Cd defined in Equation (B.3) which satisfies the
property in Equation (B.4). As established in the proof of Theorem 3, the sequence {πi }
is bounded. It then follows from E-weak compactness of Lμ

ρ (G ⊗ E) that there exists a

subsequence πik tending E-weakly to some π0 ∈ Lμ
ρ (G ⊗ E). To show that π0 ∈ C the

proof is similar to that of Theorem 3. In particular, for any l ∈ Lm∞(G), letting L ≡ ‖l‖∞
and τL ≡ τj /L we have∫

φ∗ (τL |aj lj |
)

d(P ×μ)�
∫

φ∗ (τL |aj |L
)

d(P ×μ) =
∫

φ∗ (τj |aj |
)

d(P ×μ) < +∞,

where the first inequality follows because φ∗ > 0 and φ∗′ > 0 on (0,+∞) (Lemma 6), and
the second inequality follows by Assumption A7. Thus aj lj ∈ Lμ

ρ∗(G ⊗ E). By E-weak
convergence of the subsequence πik it then follows that

lim
k→∞

∫
lj aj πik d(P ×μ) = lim

k→∞

∫
�

lj (ω)

[∫
E

aj (ω, x)πik (ω, x)dμ(x)

]
dP(ω) = 0

=
∫

lj aj π
0d(P ×μ) =

∫
�

lj (ω)mj (ω)dP(ω),
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with m as defined before in Equation (B.5). Thus, m = 0 a.s. and π0 ∈ C. That π0 is
a unique solution to the problem (5) follows by the same reasoning as in the proof of
Theorem 3. n

Proof of Lemma 5. To establish the form of the dual, we apply the results of Rockafellar
(1974) (see, e.g., Example 11 on p. 26-27). We only need to formally establish the convex
conjugates of the functions δ(·|{c}) and Iφ . For the first, note that by definition, for any

τ ∈ Lm+1∞ ,

δ∗(τ ) = sup
x∈domδ(·|{c})

[〈τ, x〉− δ(x |{c})] = sup
x=c

[〈τ, x〉− δ(x |{c})]

= 〈τ,c〉 =
∫
�

τ(ω)′cdP(ω)

=
∫
�

τm+1(ω)dP(ω),

since c = (0,1)′ ∈Rm+1. For the second, we apply Theorem 2 in Rockafellar (1968) to the
integral functional Iφ defined in (B.1); the result shows that I∗

φ = Iφ∗ . For Rockafellar’s

(1968) result to go through, we need to check that there exists at least one π0 ∈ Eμ
ρ∗ (G⊗E)

such that Iφ∗(π0) < +∞ (this was established in the proof of Definition 1), and that there
exists at least one π ∈ Lμ

ρ (G⊗ E) such that Iφ(π) < +∞. For this, it suffices to take any
point u such that φ(u) < +∞, and let π(ω, x) = u. Then, Iφ(π) = φ(u) < +∞. n

Proof of Theorem 5. We use the result of Theorem 8(v) Zălinescu (1999). For this,
we need to show that our Assumption A8 implies the constraint qualification condition
(14). Notice that the condition (14) can equivalently be written as 0 ∈ icr

(
c − T domIφ

)
.

Now, since the set
(
c − T domIφ

)
is convex, we can use the following fact (see, e.g., p.8 in

Holmes, 1974): when A is convex, a ∈ icr(A) is equivalent to the requirement that for all
x ∈ A\{a} there exists y ∈ A such that a ∈ (x, y). Note that necessarily x �= 0 and y �= 0. So
we need to show that for all u1 ∈ (c − T domIφ

)\{0}, there exists u2 ∈ (c − T domIφ
)\{0}

such that 0 ∈ (u1,u2). Since u1 = c − T π1 with π1 ∈ domIφ and u2 = c − T π2 with π2 ∈
domIφ , 0 ∈ (u1,u2) is equivalent to c ∈ (T π1,T π2). Now, recall that u1 �= 0, i.e., T π1 �= c
so π /∈ C; similarly, π2 /∈ C. Thus, a sufficient condition is that for all π1 ∈ domIφ \C, there
exists π2 ∈ domIφ \C such that π0 ∈ (π1,π2) with π0 ∈ C, i.e., T π0 = c, which is what
Assumption A8 states. n
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