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Abstract  We give a new hypergeometric construction of rational approximations to ¢(4), which absorbs
the earlier one from 2003 based on Bailey’s g Fy hypergeometric integrals. With the novel ingredients we
are able to gain better control of the arithmetic and produce a record irrationality measure for ¢(4).
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1. Introduction

Apéry’s proof [1, 6, 18] of the irrationality of {(3) in the 1970s sparked research in arith-
metic on the values of Riemann’s zeta function ((s) at integers s > 2. Some particular
representatives of this development include [4,8,9,13], and the story culminated in a
remarkable arithmetic method [14,15] of Rhin and Viola to produce sharp irrationality
measures for ¢(2) and ¢(3) using groups of transformations of rational approximations to
the quantities. In spite of hopes to (promptly) extend Apéry’s success to ¢(5) and other
zeta values, the next achievement in this direction [3, 16] materialized only in the 2000s in
the work of Ball and Rivoal. The latter result helped to unify different-looking approaches
for arithmetic investigations of zeta values ((s) and related constants under a ‘hypergeo-
metric’ umbrella, with some particular highlights given in [19, 20] by one of these authors.
The hypergeometric machinery has proven to be useful in further arithmetic applications;
see, for example, [7,11,12, 22] for more recent achievements.

The quantity ((4), though known to be irrational and even transcendental, remains
a natural target for testing the hypergeometry. Apéry-type approximations to the num-
ber were discovered and rediscovered on several occasions [5,17,19], but they were not
good enough to draw conclusions about its irrationality. In [19], a general construc-
tion of rational approximations to ¢(4) is proposed, which makes use of very-well-poised
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hypergeometric integrals and a group of their transformations; this leads to an esti-
mate for the irrationality exponent of the number in question provided that a certain
‘denominator conjecture’ for the rational approximations is valid. The conjecture appears
to be difficult enough, with its only special case established in [10] but insufficient for
arithmetic applications. This case is usually dubbed ‘most symmetric’, because the group
of transformations acts trivially on the corresponding approximations.

The principal goal of this work is to recast the rational approximations to ((4) from
[19] in a different (but still hypergeometric) form and obtain, by these means, better
control of the arithmetic of their coefficients. In this way, we are able to produce the
estimate

1(C(4)) < 12.51085940 . ..

for the irrationality exponent of the zeta value, which is better than the conjectural one
given in [19]. This is not surprising, as we do not attempt to prove the denominator
conjecture from [19] but instead investigate the arithmetic of approximations from a
different hypergeometric family.

The plan of our exposition below is as follows. In §2 we give a Barnes-type double
integral for rational approximations to ((4) and then, in §3, work out the particular
‘most symmetric’ case of this integral, which clearly illustrates arithmetic features of the
new representation of the approximations. We recall general settings from [19] in §4 and
embed the approximations into a 12-parametric family of hypergeometric-type sums that
are further discussed in greater detail in §5. Furthermore, § 6 reviews (and recovers) the
permutation group related to the linear forms in 1 and ((4) from a special subfamily of
the approximations constructed. Finally, we investigate arithmetic aspects of the general
rational approximations in §7 and produce a calculation that leads to the new bound for
H(C(4) in §8.

In the text below, we intentionally avoid producing claims (in the form of propositions
and lemmas), to give our exposition the nature of storytelling rather than traditional
mathematical writing.

2. Integral representations

For k > 2 even, fix a generic set of complex parameters
h = (ho,h_1;h1,ha, ... hg)
satisfying the conditions
max{0,Re(hg — h_1)} <Reh; < §Reho forj=1,...,k,
and define as in [21] the very-well-poised hypergeometric integrals
F{(h) = Fj.(ho,h—_1;h1,ha, ..., hg)

100 k . ) B B B
== (ho + 2ty L=zt T 0 - T(h1 = ho = OT (1)

_ . dt.
27” —100 Hj:l P(l + h() — hj —+ t)
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By Bailey’s integral analogue of Dougall’s theorem [2, §6.6],

T'(h_1)T(h)T(ho)T(hy + h_y — ho)T(ha + h—1 — ho)

F/ h h_ h h —
2( 05 1,71, 2) F(1+h0 _hl —hQ)F(hl +h2+h—1 _ho)

Substituting this into the iteration

Fy o o(ho,h—13ha, ... b1, hig, higer, hig2)

1
- D(1+ho — hi — hae))D(1 + ho — hge — hyg2)D(1 + ho — hye1 — hyego)
1 100
X — F(hk + S)F(hk+1 + S)F(hk+2 + S)
2'/Tl — oo

X T'(1 4+ ho — hg — hgy1 — higro — S) -F;é(ho,hfl;—s,hl,...7hk,1)ds

obtained in [21, §3] (which is itself a corollary of Barnes’s second lemma [2, §6.2]), we
deduce that

in(hOa h—l; hla h23 h3a h4)

B T(h_ )T (h)T (ke + b1 — ho)
I'(14 ho — ha — hg)T'(1 4+ ho — ha — ha)T'(1 + ho — hg — ha)

1 100

o | ['(hy + s)T'(hg + s)I'(hg + s)T'(1 + hg — hy — h3 — hy — 5)
F(h,1 — ho — S)F(—S)

X d
F(1+h0 —h1 —|—S)F(h1 +h_1 —ho —S) 5

and

Fg(ho, h—1;h1, ho, hs, ha, hs, he)
N 1
a F(l + ho — hg — h5)F(1 + ho — hg — hG)F(l + ho — hs — hﬁ)

1 ico

—100

X T(1+ho —hg — hs — hg —t) - Fy(ho, h—1; —t, h1, ha, hs) dt

1
" T(1+4ho—hg —hs)L(1+ ho — hg — he)T(1 + ho — hs — he)
. T(h_y)
I'(14 ho —h1 — ho)T'(1 4+ ho — h1 — hg)T'(1 + ho — hy — h3)
1 100
| L(hy + )T (hs + )T (he + )T (1 + ho — hg — hs — hg — t)
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1 100
X TM _ F(hl + S)F(hg + S)F(hg + S)F(l + ho — h1 — hg — hg — S)
F(h_l — ho — t)F(—t)F(h_l — ho — S)F(—S)

dsdt.
T(1+ho+s+OD(hy—ho—s—1t)

Furthermore, if
ho1—ho€Z, ho—hi—hes—hs€Z and hy—hs—hs— hes € Z,
the latter can be given as
Fg(ho,h_1;h1, ho, hs, ha, hs, he)
(—1)(h-1=ho)+(ho—ha—ha—hs)+(ho—ha=hs=he)D(J,_,)
I'(14 ho —h1 — ho)T'(1 4+ hog — h1 — hg)T'(1 + ho — ha — h3)

1
X
T'(14 hog — hy — hs)T'(1 4+ hg — hy — he)T'(1 + ho — hs — he)
L ioc T(hs + )T (hs + )T (he + t)  \°
270 )i T(A+6)T(1 4+ ho — h—1 + t)T'(ha + hs + he — ho +t) \ sint
L /“’O T(hy + s)L(hg + s)T(hs + s) r \°
21t J oo F(l + S)F(l +ho—h_1+ S)F(hl + ho + hg — hg + S) sin s
T(1+hog—h_y+s+t)sinm(s+1) dsdt. )

(1 +ho+s+t) i
3. The most symmetric case

Equation (1) has an interesting structure. For example, in the most symmetric case it
implies

Sym 1 Cl+ioo t 17l s s
F5Y (n)=F6’(3n+2,3n+2;n+1,...,n+1):—/ (( +1) ) ( T )

27T o, —ico n! sin 7t

1 Cz+i°°<(s+1)n)3( T >3( Bnt D! sinm(s 1), oo

27i n! sin s s+ t+1)3p40 T

Co—100

Notice that the function
(Bn+ 1)l sinw(s+1)

(s +t+41)3n42 m
is entire in both its variables, while the poles of

(“) (o)

in a right half-plane are at s =0,1,2,..., and the latter function is analytic in the strip
—(n+1) < Res < 0. There is a similar structure for

() ()
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This implies that one can take ¢1,co € R to be any in the range —(n+ 1) < ¢1, 2 < 0;
we choose ¢; = ¢o = ¢ —n with ¢ = —1/3 for our discussion below.
Now write

sin7(s 4+ t) = sin s cos wt + cos wssin 7,

so that the integral is split into the integration

1 1ot v 1,0\ ow \°
7F5ym _ = n n
26 (n) 2mi /c_n_ioo ( n! sinmt ) T

1 c—n+i0°<(s+|1)n>3( (3n +1)! ( ™ )stdt @

271 n! s+t+1)3p40 \ sinms

c—n—100

(twice, because of the symmetry s < t).
We first deal with the internal integral in (2). The rational integrand is decomposed
into the sum of partial fractions:

<(s+1)n)3 (3n 4 1)! :3”5 Ap(t)

n! (S+t+1)3n+2 =1 S+t+k’
3n+1\ [ (~t—k+1),\°
where Ag(t) = (—1)k_1(£+1) (<'+)> for k=1,2,...,3n+2.
- n!

Then

" (t) B i c—n—+1i0c0o (S + 1)n 3 (37’L+ 1)' - 2d
" o ; n! (s+t+1): sinms )
c—n—ioco . 3n+2

- S A () )

(take vy any from the interval —n < vy < 0)
7_5":2 (s+1n)°  @Bn+1)
= = Os n! (s+t+1D)ans2 /|,y
oo 3n+2 3n+2 o
Ag(t 1
= A —
V;OI;(V—HH—k Z k )U;O(V+t+k)2
3n+2 oo k-1 3n42 b1
S a0 (X SIS
k=1 =1 =1 t'H‘H/O i — t-i—l—i—uo
because
3n+2

> Awlt) =
k=1
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by the residue sum theorem. The choices vy = 0 and vy = —n lead to the equality
3n+2 k—1 3n+2 k—1
— Ar(t — Ag( 3
S A DI DECESO
k=1 1=1 k=1 1=1

since A (t) are polynomials, the two representations imply that the only poles of H,(¥)
are located at the integers

{-1,-2,...,-3n,—-Bn+1)}n{-2n+1),-2n,...,n—2,n — 1}
={-1,-2,...,-2n,—(2n+ 1)}.

Furthermore, the function

Halt) = ((” ”")Sﬂn(t)

n!
has poles only at t=—(n+1),—-(n+2),...,—(2n+1) and vanishes at ¢t= —1,
—2,...,—n. Moreover, H,(t) is in fact a rational function of degree at most —2 (so

that it has the zero residue at infinity); indeed, it is the sum of rational functions

() () s

each of degree at most —2 (in t). This means that we have a partial-fraction decomposition

, where v =0,1,2,...,

. 2n+1 Bj Cj
Hnt) = 2, <(t+j)2 +t+j>

j=n-+1
with Z?"Zlﬂ = 0. With the help of the following consequence of formula (3),
3n+1 3n+2 2n+1 3n+2
TRUTE SRS D S = S
1=1 lc 41 j=—n+1 k—j+n+1
we find that

n!

. 3 3n+4+2
B = 0+, = - (T Y A
k

=j+n+1
. 3 3n+2 . 3
’ k=j+n+1 ’
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and similarly

0
= _(H \2
O = g (Balt)+97)|
_ 9 ((=t+ 1)’ 3§2 (3] G—k+1),\°
ot n! . ‘ k—1 n!
t==J k=j+n+1
(it D, 3 3§2 (Bl O ((—t—k+ 1)\’
n! ; k—1) ot n! e
k=j4+n+1 L==J
Note that
(_j+1)n€Z, (j_k+1)n€Z
n! n!
and
9 ((—=t+1), O ((—t—k+1),
fn 6t< ! >t__j€Z’ fn at( nl 57

for all j,k € Z by the standard arithmetic properties of integer-valued polynomials
[22, Lemma 4], where d,, denotes the least common multiple of 1,2, ..., n. Furthermore,
each term of the sums for B; and C; has a factor of the form

(fj;r! 1n (3}:,_+11) (j fl;'Jr Dn _ (3}:L_+11) <j ; 1) (ki 1),

and these quantities are all divisible by the greatest common divisor ®,, of numbers

( sntl )(a) <b), where a,b € Z
a+b+1/\n/\n

(there are only finitely many non-zero products on the list). Thus,
®.'B;€Z and @,'d,C;€Z forj=n+1,....2n+1.

Now

1 c—n+ico T 3
F¥™(n) = — Ho(t ¢dt.
pFe () 27ri/c ( )(smms) osT

Since

3
1
T cosmt = +O0(t—v) ast—veLZ,
sin 7t t
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we have

1 ogm, ~ r \° 1K 9PH, ()
§F6 (n) = ReVan(t)< - ) cosmﬁ-i Z 5z

B t= sin 7t = i
S ()
= — 5
V——n_] n+1 V+‘] (V+‘])
2n-+1 2n+1
=3 B Z it 2.0 Z
Jj=n+1 v=—n V+'7 Jj=n-+1 v=—n V+‘]
2n+1 2n+1 j—m—1 2n+1 j—n—1 1
=32 B (32 B Y v Y 6 X )
j=n+1 j=n+1 j=n+1 =1

This implies that
10 1AL ™ (n) € ZC(4) + Z

In §7 we reveal details of the computation of ®,, (and its asymptotics as n — c0); we
show that ®,, is divisible by the product over primes

n » @
p>V3n
2/3<{n/p}<1
This corresponds to the ‘denominator conjecture’ from [19]; for the most symmetric case
in this section, it was established earlier in [10] using different hypergeometric techniques.

4. Old approximations to ¢(4)

We now concentrate on a specific setting of § 2, where kK = 6 and the parameters
h = (ho,h—1; 1, ha, hs, ha, hs, he)
are positive integers satisfying the conditions
ho—h_1 < hj < ihy for j=1,2,3,4,56.
Define the rational function

o [15__ T(h +1)
R(t) = R(h;t) = ~v(h)(ho + 2t) T15__  T(L+ho — hj +1)

(t+Dp,—1 (E+1+ho—ho)py—1

= (h 2t
(ho +26) =735 (hs — 1)
(t +1+ho — h5)h5+h71*h0*1 (t + 14 ho — h*1>h6+h—1*h071
(hs +h_1—ho—1)! (he + h_1 — hg — 1)!
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L (o —ha—ha)l (o — by — hy)!
(t 4+ h2)ho—ho—hat1 (t + P3)ho—hy—ha+1

(o —hs—he)l (o —hy— hs)!
(t + ha)ho—ha—ho+1 (E+ N5)ho—hs—hs+1

with
+(h) = (ho — ha — ha)!(ho — h1 — h3)!(ho — ha — he)!(ho — hs — h3)!
(hl — 1)'(h2 — 1)'(]15 +h_1—hy— 1)'(h6 +h_1—hy— 1)' '

Then

F(h) =2 (R)Fi(h) = — 3 S R(h:1) € Q +QC(4)

t=to

with any tg € Z, 1 — min {h]} <tgp<1— max{O, ho — hfl},
1<j<6

is essentially the very-well-poised hypergeometric integral given in [19]. Notice, however,
that the arithmetic normalization factor y(h) differs slightly from the one used in [19].
Rearranging the order of parameters in (1) we obtain

(71)h71+h0+h1+'“+h6(h_1 - 1)'7(’7’)
(ho — B — h3)\(ho — hy — hs)!(ho — hs — hs)!
1
h (ho — ha — ha)l(ho — k2 — he)!(ho — ha — hg)!
| i L(hy + )T (ha + t)L(he + ) ( u )3

X = :
sin 7t

270 ) _joo T(A+)T(1 4+ ho — h—1 + t)I'(ho 4+ ha + he — ho + t)
xlfw T(hy + $)T(hs + $)T(hs + 5) T\
276 ) oo T(1 4+ 8)IN(1 4+ hg — h_1 + 8)T'(hy + hz + hs — ho + ) \ sin7s
F(1+h0 —h_1 +S+t> Sin?T(S+t)
[(1+ho+s+t)
—_ (_1)h—1+"'+h6

F(h) =

dsdt

o L /ioo (t+ D)py—1 (t+ Do+ ha+he — ho)ho—hy—he
2mi J oo (ho —1)! (ho — ha — hg)!
(t +1+ho — h—l)heﬂ‘hfl—ho—l ( 7T )3
(he + h_1 —hg —1)!
1" (s+ Dnyo1 (s+ b1+ hs+ hs — ho)ng—hi—ns
211 —ico (hl - 1)' (ho - hl - h5)'
(s+14+ho—h_1)hs+h —ho—1 ( m )3
(hs + h—1 — ho — 1)!
(h_y —1)! sinm(s +t)
(t+$+1+h0—h_1)h71 ™

sin 7t

sin s

dsdt. (5)
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The double integral we arrive at belongs to a more general (12-parametric) family, which
we discuss in the next section.

5. General approximations to ¢(4)

The integral in (5) is a special case of

G(a b) = L /Zoo (t + b2)a2—bg (t + b4)a4—b4 (t + b6)a5—b6 m ’
’ 211 —ico ((12 — bg)' (a4 — b4)' (a6 - bﬁ)' sin 7t

L /1Oo (s + bl)a1—b1 (s+ b3)l13—b3 (s+ b5)a5—b5 m ’
211 oo (a1 — bl)' (ag — b3)' (a5 — b5)' sin s

(bg —ap— 1) sinw(s+1)

X

ds dt, 6
(t+$+a0)b0_a0 ™ ( )

where the integral parameters
a = (ag; a1, az,a3,a4,as,a6) and b= (by;b1,b2,bs, b, bs, bg) (7)

are subject to the conditions

bo —ag —2 > (a1 + a3 + as) — (by + bz + bs),
b07a0—22(a2+a4+a6)f(b2+b4+b6),

and
max{b1, b3, b5} < min{ai,as,as}, max{bs, by, b} < min{as,aq,ag}.

Note that simultaneous shifts of ag, a1, as, as and by, by, b3, bs by the same integer do not
affect G(a,b); the same is true for simultaneous shifts of ag, as,aq,as and by, ba, by, be.
(In particular, the shifts by given 1 — by and 1 — bs, respectively, allow us to assume that
by = by = 1.) The latter two symmetries potentially leave 12 out of 14 parameters (7)
independent. Furthermore, we choose

* Lk * * * * * * Lk * * * * *
a* = (ap; aj, a3, a3,ay,a5,a5) and  b* = (bo; b7, b3, b3, by, b5, bg) 9)

to be a reordering of the parameters (7) (so that (9) and (7) coincide as multisets) such
that

a; <aj <ai, b <b;<b and ab<a) <aj, by <by <G
Additionally, we assume
ap +1 > b5 + bj. (10)

Similar to the most symmetric case in §3, we may choose the integration paths in (6) to
be the vertical lines {c1 + iy : y € R} for s and {co + iy : y € R} for ¢, with

—a} <c <1—=0bf, —aj<co<1-—0bg,
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and we take ¢; = 1/3 —af and co = 1/3 — a}. Also, the rational function in s and ¢ at
the integrand in (6) has degree at most —2 both in s and in ¢, and the functions

1 COS TS

- , - and ——
. S 2 ;
sinws’  (sinws) sin 7t
are bounded in their respective integration domains. By
sin(s +t) = sinwscos mt + cos ws sin e,

the integral G(a,b) is split into two absolutely convergent integrals, and, after inter-
changing the order of integrations in s and in ¢ in the second integral, we obtain

100 3
G(a,b) = L/ (t 4 b2)as—by (t 4 ba)as—by (¢ + 6)ag—bs ( o t) cost
Sin m

271 oo (CLQ — bg)‘ (a4 - b4)' (0,6 — bs)'
1 % (54 b1)ay—by (S + b3)ay—by (S + b5)as—bs m \’
271 J_joo (a1 —b1)! (az — b3)! (a5 — bs)! \sinms

(bo —ap — 1)'
(t +s+ aO)bO*ao

+ a similar integral with a;,b; changed to ar_j,by—; for j=1,...,6. (11)

dsdt

As already seen in the most symmetric case, the integral
H(t) = H(ao, a1, a3, as; bo, b, b3, bs; 1)

= L oo (S + bl)al—bl (S + b3)03—b3 (8 + b5)a5—b5
2mi ¢1—ico (al - bl)' (a3 - b3)' ((15 - b5)'

(by — ag — 1)! ( ™ )2d5 (12)

(t+ s+ ag)pg—ao \SInTS

is a rational function in ¢, and we may even vary c; in the interval —aj < c¢; <1 — b3,
because a power of sin7s is dropped in the denominator of (12) with respect to the
integral (6). In executing this, we do not have to take care of possible poles coming from
(t+ s+ ao)py—a,, because it never vanishes if ¢ is chosen in an appropriate region of the
complex plane, and two rational functions that coincide in such a region must coincide
everywhere.
Explicitly, we have
(5 + b1)as—ty (5 + 3)ag—by (5 +b5)agpy, (bo—ag—1)! ’”Z*l
(a1 =b1)! (a3 —b3)! (a5 —bs)! (t+ s+ a0)he—ao

Ag(t)
t+s+k’

k‘:ao

where

. bo—agp—1 (—t—k‘—f—bl)a,b
— (-1 k+ao 1—01
Ak(t) ( ) ( k — an ) (a1 — bl)'
(7t —k+ b3)a3—b3 (7t —k+ b3)(l5—b5
(CL3 — bg)' ((l5 — b5)'

fOI‘k:ao,...,bO—l (13)
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satisfy Zk o Ar(t) = 0. Then

bo—1 bo—1 S
H(t):_;;oasther . kzajoAk VZ;D 1/+t+k
bo—1 k—1 1
:*kz Ar(t lz (t+1+1)? "
ag ag

where 1y is any integer in the interval 1—af <y <1—105. Since all Ag(t) are
polynomials, the poles of function (14) are only possible at

t—a3—b0+1a3—bo+2 b—ao—l.

For a similar reason, with v in the larger interval 1 — af < vy < 1 — b}, the function

0o bo—1 bo—1 k—1

1
Y YA - Y A0y

v=vo k=aq k=ago l=ag
has poles possible only at
t:a;—bo—l—Lag —b0+2,...,b*{—a0—1.

Since

HOt+1+wv0)?|,__,_, = ZAk I—vp) =I(t)(t+1+w0)|,_
k=141

—l—l/o

when 1 — a3 < vp < 1 — b3, it follows that the set of double poles of H(t) coincides with
the set of simple poles of I(t) and therefore is also contained at integers in [af — by + 1,
by — ap — 1]; however, H(t) may still possess simple poles at integers in [a§ — by + 1,
b5 — ap — 1]. Arguing as in §3, we arrive at the partial-fraction decomposition

(t + b2)¢l2*b2 (t + b4)a4*b4 (t + b6)a6 be H( )
((12 — bg)' (a4 — b4)' ( ag — bﬁ)
b()*agfl

-y

j=1+ao—b7

H(t) = H(a,b;t) =

b07a§71

B;
GRS

j=1+ao—b3

Cj
t+

: (15)

because the rational function H(t) has degree at most —2 by (8). Noticing that the

expression
(t+02)ay by (t+b4)as—b, (t+b6)ag—bs
(ag —b2)!  (asg —bg)!  (ag — bg)!
has at least simple zeroes at t =1 — ag, ..., —b5 and at least double zeroes at t = 1—aj,
2 —aj,...,—b}, and taking into account condition (10), we find that H(¢) does not have
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poles in the half-plane Ret > ¢o; hence, the expansion (15) ‘shortens’ to

bg—a;—l bo—a;—l
~ B C.
H(t) = —I L.
=2 Gpt X i
J=as Jj=as

In fact, the second sum is over the interval max{aj}, 1+ ag — b5} < j < by — a} — 1, while
the first one is over max{ag, 1 + ag — b} < j < bp — af — 1 and may be even empty if the
interval is empty. With the explicit expressions (13) and (14) (used, for example, with
vop = 1 —a}) in mind, we conclude that the coefficients

~ 0

Bj=H)(t+35)? and C;= a(f{r(t)(t +4)?) for j € Z
t=—j
satisfy
Bj €7, dij IS/
with m = max{a1 — bl, as — bg, az — b3,a4 — b4,a5 - b5,a6 - b6}7
but also
. bo—ao—lJ Lk—aoJ \f)o—k—lJ
ord, B;, ord,(d,,C;) > min — o ——
) By ondy(dnC) = min (| . !
) — br | — T r br
- > (5 )
re{2,4,6} p p p
k—j—0b, k—j—a, r»— by
- > (=)
re{1,3,5} p p p
for primes p > /by — ag (see [20, Lemmas 17, 18]). Furthermore,
1 co+i00o - 3
— H(t)< . > cosmt dt
270 J ey —ioo sinmt
P N (7 LR R RN &
v=1—aj j=a3 j=a3
bo—ai—1 bo—ai—1 j—aj 1 bo—aj;—1 j—al 1
—xw > B-(3X BY gt Y GYg)
j=max{a§,14+a0—b7} j=a} =1 j=a} =1

where Zj C; =0 is implemented. Proceeding in the same way for the second double
integral in (11), we conclude that

G(a,b) = B(a,b)((4) — C(a,b), where B € Z, d>, d,,C € Z (16)
with m; = max{by — a5 — a5 — 1,bp — a7 —a; — 1},

* * * *
mo = max{by — a5 —a; —1,bp —aj —a —1,a1 —b1,...,a6 — bs},
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and

—ag—1 il —j—1-1
ord, B, 4 + ord, C>m1n({b0 o J—V—H GOJ—\‘bO j-l J

JIEL P D »
- 2 (15
- 3 (1515 ) w

for primes p > /by — ag — 2.

Finally, we remark that condition (10) is conventional (and happens to hold in our
applications, even in the form of equality b3 + b} = ag — 1) but can potentially be dropped
without significant arithmetic losses. For example, if b7 4+ b5 > ag — 1 then the partial-
fraction decomposition (15) translates into

_ b;—l bo as -1 bz—l C bo—a;—l C
H(t) = “r ! -+ 1 oy
®) Z (t +] Z Z t+j Z t+7
j=1+ag— j=ag j=1+ao—b} j=a}

so that there are poles of H (t) to the right of the contour Ret = ¢y. The corresponding
residues of the integrand are

3
~ Y
tf:{gsj H(t) (sin mf) cosmt = D; —6((4) B
1 04 10% [~ B; C;
ith D; = —— (H(¢)(t 2 - -2 (H® - i
with D; = o7 e (HO)( H))t:_j 28t2< A (FaE t+j> —_—

where j is an integer in the interval 1 +ap — b3 < j < b] — 1 and we use the expansion

(sirirt) cosml = ﬁ —6C(4)t+5)+O((t+7)?) ast— —j.

Proceeding as above we deduce that

1 ca+ico - 3 oo B - 3
— H(t tdt = Res H(t t
2m ; ( )<sin7rt> cosT Z = ( )<sin7rt> s T

Cco—100

v=1-—aj
bs—1 bs—1 oo bo—ai—1 00 1
CORD I EEED ST SEE RIS SRS SR
j=14ao—b7 j=14ao—b7} l:j+1—a2 j=ag l=j+1—a}
1#0
by—1 bo—aj—1 1
+ZCZP+ZCZ;37
j=1+ao—bj l=j+1—aj j=aj I=j+1—aj
1#0

which again can be seen to be a linear form in Z¢(4) + Q.
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6. The group structure for ¢(4)

Following [19], to any set of parameters h from §4 we assign the 27-element multiset of
non-negative integers

eoj:hj—L on:hj—l—h,l—ho—l for 1 <j <6,

. (18)
Ejk:hofhjfhk for1<]<k§6,
and set H(e) = F(h) for the quantity defined in that section. By construction,
eo1!enaleps!ens!
+(h) "' F(h) = 01:€02'€05:€06
613!624!635!646!
is invariant under any permutation of the parameters hi,ho,..., hg (which we can

view as the ‘h-trivial’ action). Clearly, any such permutation induces the corresponding
permutation of the parameter set (18).
On the other hand, it can be seen from (6) that the quantity

6
[T(a; ~ )t Gla.b)

does not change when the parameters in either collection a1, as, as or as, a4, ag permute;
we can regard such permutations as ‘a-trivial’. (The same effect is produced by ‘b-trivial’
permutations, when we change the order in by, b3, bs or bo, by, bg.) We can also add to the
list the ‘trivial’ involution

i:aj<—>a7,j, bj<—>b7,j forjzl,.‘.,G,

which reflects the symmetry s < ¢ of the double integral (6). In addition, we recall that
G(a,b) is left unchanged by the simultaneous shifts of ag, a1, as,as and by, by, bz, bs (or
of ag, as, a4, as and by, ba, by, b, respectively) by the same integer. We regard the action
of all these transformations (permutations, shifts and involution) and their compositions
as the ‘(a, b)-trivial’ action.
By setting
ap=1+hyo—h_1, aj=h; forj=1,...,6,
bo=1+hg, bi=by=1 bs=0bsg=1+ho—h_q, (19)
bs =hy +hs+ hs —hg, by =ho+ hg+ hg— ho,
we have F'(h) = G(a,b). If we request that the condition

h_1=2+3ho — (h1 4 ha + hg + ha + hs + he) (20)
holds, then the shift of hg, h1, hs, hs by 1 + hg — h1 — hg — hs, that is, the transformation
biss: h— (1 +2hg — hy — hg — hs,h_1;1 + hg — hs — hs, ho,

1+ ho —hi — hs,ha, 1+ hg — hy — hs, he),

induces the composition of the shift of ag,aq,a3,a5 and by, by,b3,b5 by 14 hg—
hi — hg — hs and the permutation (by b3)(bs bg). Therefore, byss, which also induces
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the permutation

b = (eo1 e35)(eo3 €15)(eos €13)(€o2 €46)(€oa €26)(€os €24)

on the parameter set (18), is an (a,b)-trivial transformation. As a consequence, the
quantity

6
H(a]‘ — bj)' . G(CL, b) = 601!602!605!606!615!626!H(6)
j=1

does not change by the action of the permutation b. We remark that (20) is a very natural

condition for the application of the (a, b)-trivial action to F(h). Indeed, by (19) we have

by — bs = by — bg, and (20) is equivalent to by — b3 = by — bg or to by — bs = by — by.
Taking the multiset

& = {eo3, €o4, €05, €06, €01, €02, €035 €04, €13, €24, €35, €46 |
we conclude that the quantity

H(e) 1 601!602 !505 !506!

= — -
[Tcee! [T,—; eos'eo;! e13leaslessleqq!

is invariant under the h-trivial permutations and also, by

H(e) [15_1(aj —b;)! - G(a,b)

1 6 —
[Tece €' erslerslessleaslensles! [1;- eoj'eo;!

under the permutation b. The permutation group of the multiset (18), which is generated
by all h-trivial permutations and the permutation b, coincides with the group & (of order
51840) considered in [19]. (Note that the group contains the above involution i as well.)
By these means, we also recover the invariance of the quantity

1;]1'((2, where H(e) = 603!604!605!606!601!602!Eog!504!613!624!635!646!,
under the action of & and corresponding to the arithmetic normalization of H(e) =
F(h) =G(a,b) in §4.

Because our access to the arithmetic of coefficients of linear forms H (e) € Z¢(4) + Q is
through their G(a, b)-representation, we are interested in collecting a set of representa-
tives which are distinct modulo (a, b)-trivial transformations. For a generic set of integral
parameters h subject to (20), such a set of representatives contains 120 different elements.
Indeed, by (19) and (20), the subgroup of all the (a, b)-trivial permutations in & contains
313 . 2! = 432 elements and is generated by:

e the a- and h-trivial permutations (hy hs) and (hs hs);

e the a- and h-trivial permutations (ho hy) and (hy he);

e the b-trivial permutation (by bs)(bs be) (that is, by byss); and
e the involution i (that is, by (hy he)(ha hs)(hs ha)).
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This subgroup also contains (be b4)(bs bs) (namely, bays = ib135i) and is isomorphic to
&3 x Gy. Now, the group & is generated by (hi h3), (hs hs), (ha ha), (hs he), biss
and (hs h4). Note that (hy hg), (hs hs), (he hs) and (hy hg) commute with bygs, while
(hs h4) acts on (a,b) by as < a4, bg — bz + aq4 — as, by — by + a3 — a4 (and leaves a;, b;
unchanged for ¢ # 3,4). Hence there are exactly |®|/432 = 120 elements in & that are
distinct modulo the (a, b)-trivial subgroup, each for any simultaneous choice of a sub-
set {a1,a3,as} (or {as,as,a6}) of {h1,...,he} (among all () =20 such subsets) and a
permutation in the b-trivial subgroup (of 3! = 6 elements) generated by by35 and bage.

7. Arithmetic of linear forms

In order to compute the minimum on the right-hand side of (17), we distinguish between
two different situations: (a) j + 1 — ag is coprime with p; and (b) j + 1 — ao is divisible
by p. In case (a), we get | (j +1—ao)/p] = (j+1—ao—1)/p], so that the minimum in
(17) is greater than or equal to

Qi (a, b,p)—mm({bo_ao_w_V+l_a0_1J_v0—j—l—1J

J,lEZ p P P

« 2, -5 )
cx, EEEE)) e

re{1,3,5}

In case (b), we have | = —j 4 ag + pp for some p € Z, and

{JHJ
= (515
@,,5}(_5;"1—Vﬂ—ﬁﬂ)
- > (1515 )
S (P )
M i ral)
> ([P e

+

+

re{l 3,5}

TE{2 4,6}

re{l 3,5}
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for primes p > /by — ap — 2, using the property |a+ p] = |a] + p together with the

passage
-1 — -1
{a }—l—{a}:p, where a € Z,
p p p

for the fractional part {a} = o — || of a number. This means that in case (b) the
minimum in (17) is equal to

22 (a.bip) = min ( > Q] ;bTJ - V _paTJ B VT;bTD

re{2,4,6}

- 2 (e ) e

re{1,3,5}

Combining the two cases, we conclude that
ord, B(a,b), ord, d}, dn,,C(a,b) > min{Q(a, b;p),2(a,b;p)}
for primes p > /by — ag — 2, where the quantities €; and €9 are defined in (21) and (22).
When we choose
a;=a;n+1 forj=0,1,...,6,
J J (23)
b0:ﬂ0n+3 and bJ:ﬂ]n—Fl fOI‘j:L...,6,

for some positive set of integer directions (a, 3), then computing 1, Qs reduces to the
computation of the minima wj(z) and w3 (z) of functions

wi(z,y,2) = | (Bo — a0)x] — |y + 2 — apz] — | Box — (y + 2) ]
+ 3 (ly-Bea) — ly - avz) - |(ar - B)z))

re{2,4,6}
+ > (lz=Bez) = |2 — vz — (o — Br)z])
re{1,3,5}
and

wa(z,y) = Z (I_y = Brz] = ly — arz] — (a7 — 5r)xJ)

re{2,4,6}

+ Y (ly+( —ao)z] = ly+ (B — ao)e] = [(ar = Br)z))

re{1,3,5}
over y, z and over y, respectively. Indeed,
j—171-1 j—1
Qi (a,b;p) =w; (” I, ) and  Qs(a,b;p) = w, (" J)
p

p p p p

for the settings above. This means that

ord, B(a,b), 4+ ord, C(a,b) > min {w; <”> WS <”) } (24)
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for primes p > /(8o — ag)n.

Notice that the functions wy and wy (and hence their minima) are 1-periodic in each
variable, so it is sufficient to compute them on the interval [0,1). In the most symmetric
case

()é():ﬁl:"-:ﬁ@:o, a1:-~-=a6:1 and 60:3,
we already get (by dropping the four non-negative terms in both wy and ws)
Bz] = ly+z] - Be—(w+2)]+ (] - ly—=] = [z]) + (lz] = [z — =] = [])
=13z] - |ly+z]-[Bz—(y+2)] - ly—=] - [z—x] =21 forze[31)
and
(lyl = ly—=z| = [=]) + (ly + =] — ly] — [=])
=ly+az]-ly-2z]21 forze51).
Indeed, when z € [2,1), the first inequality follows from
Bz] = ly+z] —[3v—(y+2)] 20 and |y—z]+[z—-2]<-1

ifeithery<xorz<x;otherwise,%<x<y<1and%<x<z<limply

Bz] =2, ly+z]=1 Br-(+2)=lz-(y—2)—-(2-2)=0

and |y—=z]=|z—=z]=0.
A proof of the second inequality, when z € [%, 1), makes use of |y —z| = =1, [y + 2| >0

ifo<y< %7 and |y+z| =1, [y—=z] <0 if % <y < 1. The two inequalities together

mean that the quantity ®,, from §3 is divisible by (4).

It looks quite plausible (although we do not possess any proof of this) that we always
have w3 (x) > wi(x) except for possibly finitely many rational points on the interval [0, 1).
(Notice that wy(z,y, apr —y) coincides with we(x,y) apart from finitely many rational
lines crossing the square [0,1)2.)

Now assume that the linear forms G(a,b) originate from the forms F(h) of §4, and
condition (20) written as

200 +ap = a1 +as + asz + ag + as + ag

holds. In this case we can scale all the parameters in (18) to discuss the set en instead,
where

€05 = Oy, on:aj—ao fOI‘lg]
eijﬁo—Ozj—Oék for 1 <j < k<6,

and record the related quantities by H(en) = B(en)((4) — C(en) € Z{(4) + Q, where
n=0,1,2,.... The discussion above (see (24)) implies that

ord, B(en), 4+ ord, C(en) > w* (e; n) for primes p > /(8o — ag)n,
p
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where
w*(e;2) = min{wi (e 2), wi es2) )

hence also
ord, B(gen), 4+ ord, C(gen) > w* (ge; n) for primes p > /(80 — ao)n and g € &,
p

where ge denotes the image of the multiset e under the action of g € &. At the same
time,

B(en)  B(gen) and C(en) C(gen)

II(en) II(gen) (en) Ti(gen)

for all g € &, in view of the invariance of H(en)/II(en) under the action of & (and of
the irrationality of ((4)). This implies that

ord, B(en), 4+ ord, C(en) > ord, (1_111((;672) w* (ge; Z))

(2]l )

ecf

for primes p > /(8y — ap)n and all g € &, hence

ord, B(en), 4+ ord, C(en) > w <e; n> for primes p > /(8o — ao)n,
p

where

oleia) = max ( S(lea] - Laea]) + " (gei)). (25)

8e® ecf
The maximum can be restricted to distinct representatives modulo the group of

(a,b)-trivial permutations.

8. One concrete example of an irrationality measure for {(4)
In the notation of §4 we take
ho=mnon+2, h_i1=n-in+2, hi=mn+1,....,h¢=mnen+1
with
n=no,n-1;M,...,m6) = (68,57;22,23,24,25,26,27).

If weset F,, = F(h) = G(a,b) = u,((4) — v, then the asymptotics of F, and u,, as n — oo
can be computed with the help of [19, Proposition 1] (adapted here to address a slightly
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different normalization of F'(h)):

log [un|

= 36.47011287 ...

log |F
Cy = — lim log | Fn| — 106.34774225 . ...

n—oo n

and Cp = lim

n—oo
The above choice of h translates the form F,, = F'(h) from (5) into G(a, b) from (6) with
the parameters (23) as follows:

a = (11;22,23,24,25,26,27), B =(68;0,0,4,7,11,11). (26)

The denominator of v, = C(a,b) in (16) is d3;,,dss,,. The following table lists 31 out of 120
representatives under the action of group & on (26) modulo the trivial (a, b)-action, only
those that contribute to the computation of the corresponding function w(z) = w(e; x)

in (25):
1| (68; 22, 23, 24, 25, 26, 27) 11 | (67; 21, 22, 23, 25, 27, 26) 22 | (65; 19, 21, 22, 23, 26, 27)
2 | (68; 22, 23, 24, 25, 27, 26) 12 | (67; 21, 22, 23, 26, 25, 27) 23 | (65; 19, 21, 22, 23, 27, 26)
3 | (68; 22, 23, 24, 26, 25, 27) 13 | (67; 21, 22, 25, 23, 26, 27) 24 | (65; 19, 21, 23, 22, 26, 27)
4 | (68; 22, 23, 25, 24, 26, 27) 14 | (66; 20, 21, 23, 24, 26, 27) 25 | (65; 19, 21, 23, 22, 27, 26)
5 | (68; 22, 23, 25, 24, 27, 26) 15 | (66; 20, 21, 23, 24, 27, 26) 26 | (65; 19, 21, 26, 22, 27, 23)
6 | (68; 22, 23, 26, 24, 27, 25) 16 | (66; 20, 21, 23, 26, 24, 27) 27 | (65; 19, 22, 21, 23, 26, 27)
7 | (68; 22, 24, 23, 25, 26, 27) 17 | (66; 20, 21, 24, 23, 27, 26) 28 | (65; 19, 23, 20, 24, 27, 25)
8 | (68; 22, 24, 23, 25, 27, 26) 18 | (65; 19, 20, 23, 24, 25, 27) 29 | (64; 18, 19, 23, 25, 24, 26)
9 | (68; 22, 25, 23, 26, 24, 27) 19 | (65; 19, 20, 23, 24, 27, 25) 30 | (64; 19, 20, 21, 22, 27, 26)
10 | (67; 21, 22, 23, 25, 26, 27) 20 | (65; 19, 20, 23, 25, 24, 27) 31 | (64; 19, 21, 20, 22, 26, 27)
21 | (65; 19, 20, 24, 23, 27, 25)
Here we give the representatives in the format (5o; a1, ..., a6) = (n0; 71, - - ., m6); all other
parameters are completely determined by the data.
Then
_ : 2 1 2 725 11 28 8 7 22 56
w(xz) =0 ifze |0, 57) U [15’ 77 ) U [16’ 57) U [23’ 57) U [15’ 13) U [23’ 57) )
_ 2 1\(D) 1 1\ 11\ 1\(3) 2 1\(D)
w)=1 ifre & 5) Ulymax) Yltie) Yl s YUls s
2 3\ 13 8\ e 4D s 2y s 1\
U[15’22) U[22757) U[7727) U[zs’g) U[21’57)
4 3\(D 2 7\ 5 8\ 7 20)(2) 6 5\
Ul &) 'V[3 %) "Uls ) YUln®) Uit g)
2 23\(2) 10 7\(L 25 11\(1) 10 11\(1) 28 1\()
U[3,8)" Ul ) Ul k) Ylds) V[E )
9 8\ 1z 3\ e 1\t 35\ 112 4n\(D
U[17’15) U[13757) U[23’1s) U[lS’S?) U[17’57)
17 3\(L 13 10\(1) 4 46\(1) 19 5\(L 20 7\(1)
Ulz.3) Vi) 'Vls ) Vlmd) Ul d)
7 50)\(2) 19 10)\(1) 10 52\(7 21 11)\(1) 20 21\(D)
Ulg. ) Ul VB UlEGn) Yk %)
21 22)\(7) 56 1)(L
U[22’23) U[57’1) )
_ 1 1\ 1 1\(D 11\ 1(2) 1 2\
w@)=2 ifr€[5,5) Ulsmm) Ylis) Ylew) YUls s
2 1\(L) 1 3\(2) 2 7\(D 21\ (3) 8 1\(4)
Ulf:5) 'Ulgiss) Ulis) Uls ) Uls 1)
4 3300 r3 2\B) 13 1MW 14 10\ 13 23D
U[27’20) U[20?13) U[w’e) 23> 7) U[17’11)
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U[2,5) P 0 H P o HM o )P g Y
U505 YUk P 0 Y uHY
U5 2P ulE 2" uE )Y oL, )P UL, 57
U[E )0 [E )P u[E 5 u(E )P Ul )"
O[5 H) 02 9P &5 u[5 YV U5 5"
0[5 )Y 0B P UL 5P u[E 9 ulL "
U u[E YU )P P uE Y
U )M 08P 048 o s )Y u e, Y
VB vl Mo P uE )Yl n®
O, HP U oY L 5P u g 5)Y
VBBV UEHYUE DMUMo »)®
VS YU T U 8)Y 0L 9Pl )?
U )P u e P o HM U, Y U)W
VB P DY UL Y u[ )oY
U272 o " uE 5 u[S 8"
U2, 2)P U 2) v 8P uE P,
wie)=3 ifoe & L) VUL 5P ulE 5" uE LM 5™
U[E 5" 025" ulE B U 2P uE HY
UL u[E, 5" 05 o5 u (s )™
U[E &) 05 B ™ g H Y u L HPulg 5™
U2 US55 Ul 5" ulE 5 vl 5"
O[5 v 5" o2 5" U 5)"
VR 2P uL 5" s 5 R BT UL, 5"
U[Z )P U B U 2) U)oL, )"
O[5 U )P U5 8)" UL B Uk, )™
U[& B UL, 2o 5P UL, B U, )"
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[ [ ——
m‘w w‘@
&
= Y
T — — —

c cCc Cc Cc «C
— — E —
‘ =

26 21 25° 19 137 20 207
)P ulE o) uRE s
B oL e,
w@)=4 itze (g 4)" Ul )" ulE &) vl 2 uE 5
U5l ) U )BT 5
Ul )" U DU R ® v )",
w@)=5 itze[f 5" U™ u[E ",

where the notation [a,b)V) means that the maximum in (25) is attained on the Nth
representative. Denoting
P, = H pe(n/p)

p>V5Tn

we conclude that @, u, € Z and ®,,1d3,, da3,v, € Z; in other words,
Ot ds dozn Fr € ZC(4) +Z forn=1,2,....

At the same time, the asymptotics of ®, 'd3;, d23, are controlled by the prime number
theorem:

lim log(®,,'d3,,,d23n)

n— o0 n

Cy =

1
=321 423 / w(z) d(z) = 25.05460171 . . .,
0

where 1(z) is the logarithmic derivative of the gamma function. Now [19, Proposition 3]
implies that the irrationality exponent of ((4) is bounded above by

Co+ C

—— = 12.51085940....
Co—Cy

Finally, we point out that the general family of rational approximations to ¢(4) from §5 is
only exploited here when it is linked to the old approximations reviewed in §4. The main
reason for this is easy access to the asymptotic behaviour of the corresponding forms
G(a,b) and their coefficients B(a,b). One may hope to gain better control of general
approximations from §5 by covering analytic aspects of the 12-parametric family there;
however, this will not necessarily have (significantly) better arithmetic consequences.
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