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Vertex operator algebras

Vertex operator algebras (VOAs) are a mathematically precise formulation of the notion
of chiral algebra (Section 4.3.2), the symmetry algebra of conformal field theory. They
constitute the simplest expression we have of the machine that associates the Monster
M with the Hauptmoduls. VOAs were first defined by Borcherds, and their theory has
since been developed by a number of people. We begin with the rather complicated
definition, before turning to our greatest interest: their representation theory. The final
section sketches some relations of vertex algebras to geometry. See, for example, [201],
[330], [197], [376] for more complete treatments; a more physically minded introduction
is provided in [242].

Vertex operator algebras are not a type of operator algebra; rather, they are an algebra
of vertex operators. Vertex operators arose first in string theory back in the early 1970s
as a device for computing string amplitudes. They appeared independently in the mathe-
matical literature (starting with [377]) in order to realise affine Kac–Moody algebras and
their modules as algebras of differential operators. Today, just as we define a ‘vector’
to be an element of a vector space, we define a ‘vertex operator’ to be a formal power
series Y (u, z) appearing in a vertex algebra.

5.1 The definition and motivation

5.1.1 Vertex operators

In bosonic string theory, the vertex operator (Section 4.3.1) corresponding to the absorp-
tion of a tachyon with momentum k = (kμ) at world-sheet position z and space-time
position X (z) = (Xμ(z)) is the normal-ordered expression V (k, z) = :eik·X (z) :. Write

Xμ(z) = xμ − ipμ log(z)+ i
∑
n �=0

1

n
αμn z−n,

where xμ and pμ are classically the position and momentum of the string’s centre-of-
mass, and α

μ
n its oscillation coordinates. Then the vertex operator is (chapter 2.2 of

[261])

V (k, z) = exp

(
k ·
∑
n≥1

α−n

n
zn

)
zk·p−1eik·x exp

(
−k ·

∑
n≥1

αn

n
z−n

)
. (5.1.1a)

Independently, Lepowsky and Wilson realised the affine algebra A1
(1) using differ-

ential operators (they tried to do this because finite-dimensional Lie algebras often act
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312 Vertex operator algebras

as differential operators, for example, on the space of functions on an associated Lie
group):

Theorem 5.1.1 [377] A basis for the affine algebra A1
(1) consists of the operators

1, yn,
∂

∂yn
, Yk ∀n ∈

{
1

2
,

3

2
,

5

2
, . . .

}
, k ∈ 1

2
Z,

thought of as operators on the space C[y1/2, y3/2, y5/2, . . .] of polynomials in the yn (we
are ignoring the derivation in A1

(1)). The differential operators Yk are the homogeneous
components of the formal generating function

Y (z) =
∑
k∈ 1

2 Z

Yk zk = exp

(∑
n

yn

n
zn

)
exp

(
−2

∑
n

∂

∂yn
z−n

)
. (5.1.1b)

In particular, (ignoring the derivation �0) A1
(1) is spanned by a central term C , as well as

e ⊗ tm, f ⊗ tm, h ⊗ tm for each m ∈ Z (Section 3.2.2). In Theorem 5.1.1, 1 corresponds
to C . For each n ∈ N+ 1/2, the operators yn and ∂/∂yn correspond (up to numerical
proportionality factors) respectively to e ⊗ t∓n−1/2 + f ⊗ t∓n+1/2, and Y±n corresponds
to −e ⊗ t±n−1/2 + f ⊗ t±n+1/2. For k ∈ Z, the operator Yk corresponds to h ⊗ t k (for
k �= 0) and h ⊗ 1− C/2 for k = 0.

It was Garland who first recognised the formal resemblance between these tran-
scendental expressions (5.1.1a) and (5.1.1b). Note that when expanded out they both
involve a sum over powers of z, unbounded in both the positive and negative directions.
Doubly-infinite series scream of convergence difficulties. The fractional indices n, k in
Theorem 5.1.1 are a signature of what we today call twisted vertex operators.

The geometric meaning of the vertex operator is perhaps best explained in the context
of the loop group (Section 3.2.6). Suppose the loop group LS1 acts on some space H.
For each 0 ≤ s ≤ 2π and ε > 0, consider the loop γ εs ∈ LS1 defined by

γ εs (t) =
{

1 ∈ S1 for |s − t | ≥ ε

exp
(
π i s−t

2ε

) ∈ S1 for s − ε < t < s + ε
,

for all 0 ≤ t < 2π . In words, γ ε
s stays at the identity 1 ∈ S1 for all time t , except for

a small interval around t ≈ s where the loop rapidly winds around S1 once. This loop
corresponds to some operator on H; the limit (appropriately taken) as ε → 0 is an
operator-valued distribution on H called a vertex operator (see chapter 13 of [465] for
details).

5.1.2 Formal power series

As we saw last chapter, the basic object of quantum field theory is the quantum field.
It is tempting to think of it as a choice of operator Â(x) at each space-time point x , but
‘function’ (or ‘section of a vector bundle’ for that matter) is too narrow a concept even
in free theories.
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The definition and motivation 313

The analytic way to make sense of ‘functions’ like quantum fields is through dis-
tributions, and this was the approach taken in Section 4.2.4. We will describe now
the algebraic alternative. These two approaches are not equivalent: you can do some
things in one approach that you can’t do in the other, at least not without difficulty
(Section 5.4.1). But as always the algebraic approach is considerably simpler techni-
cally – there are no convergence concerns to address – and it is remarkable how much
can still be captured. It was first created around 1980 by Garland and Date–Kashiwara–
Miwa to make sense of doubly-infinite series like (5.1.1), and is now the language of
VOAs. Good introductions to the material in this subsection are [201], [330], [376].

Keep in mind that in CFT we are trying to capture operator-valued ‘functions’ on
two-dimensional Euclidean space-time (Section 4.3.2). Locally space-time looks like
C; as explained in Section 4.3, we like to compactify the external legs – for exam-
ple, for an incoming string tracing a cylindrical world-sheet, the space-time point
(x, t) is associated with the complex number z = et+ix , so time t = −∞ corresponds
to z = 0.

Let W be any vector space. Define W[[z±1]] to be the set of all formal series∑∞
n=−∞wnzn , where the coefficientswn lie in our space W . We don’t ask here whether a

given series converges or diverges; z is merely a formal place-keeping variable. We will
also be interested in the space W[z±1] of Laurent polynomials, that is, expressions of
the form

∑N
n=−M wnzn . W[[z±1]] itself forms a vector space, using the obvious addition

and scalar multiplication.
Our aim here is to describe quantum fields, so we want our formal series to be operator-

valued. To do this, choose W to be a vector space of operators (matrices if you prefer):
W = End(V), for some space V . We are actually interested in V being the infinite-
dimensional state-space of the theory, but in the following examples we take V = C,
that is power series with numerical coefficients.

We can now multiply our formal series in the obvious way. For example, consider
V = C, and take c(z) = z21 − 5z100 and d(z) =∑∞

n=−∞ zn . Then

c(z) d(z) =
∑
n∈Z

zn+21 − 5
∑
n∈Z

zn+100 =
∑
n∈Z

zn − 5
∑
n∈Z

zn = −4d(z).

This simple calculation tells us many things.

(i) We can’t always divide: c(z) d(z) = −4d(z) shows that the cancellation law fails
and that C[[z±1]] isn’t even an integral domain.

(ii) Try to compute the square d(z)2: we get infinity. That is, you can’t always
multiply in W[[z±1]].

(iii) Working out a few more multiplications of this kind, we find that f (z) d(z) = f (1)
× d(z) for any f for which f (1) exists (e.g. any Laurent polynomial f ∈W[z±1]).
Thus d(z) is what we have called the Dirac delta δ(z − 1) centred at z = 1. (You
can think of it as the Fourier expansion of the Dirac delta, followed by a change of
variables.) So of course it makes perfect sense that we couldn’t work out d(z)2 –
we were trying to square the Dirac delta, which we know is impossible!
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314 Vertex operator algebras

There is a certain divergence of notations here: should δ be written additively (i.e.
δ(z − 1)), in the familiar way, or should it be written multiplicatively (i.e. δ(z)), in the
more honest way? Throughout this chapter we use the multiplicative notation. So we get

δ(z) :=
∞∑

n=−∞
zn. (5.1.2)

In fact, the best notation of all would be the awkward δ(z) dz, since the Dirac delta
centred at z = a is

∑
n zna−n−1 = a−1δ(z/a).

Making contact with Section 1.3.1, the Laurent polynomials (EndV)[z±1] play the
role here of the smooth functions C∞

cs with compact support, and the formal power
series (EndV)[[z±1]] play the role of its dual. So these power series f ∈ (EndV)[[z±1]]
are formal distributions – this is why f (z) usually diverges. The evaluation f (p) of a
distribution f ∈ (EndV)[[z±1]] on the test function p ∈ (EndV)[z±1] is given by the
‘formal residue’ Resz( f (z) p(z)) ∈ EndV , where

Resz

(∑
n∈Z

bnzn

)
= b−1. (5.1.3a)

The idea is that, up to a factor of (2π i)−1, this would equal the contour integral of
g(z) =∑

bnzn around a small circle about z = 0, at least for meromorphic g. Hence
Resz obeys many of the familiar properties of integrals, such as integration by parts:

Resz(g ∂z f ) = −Resz( f ∂zg), (5.1.3b)

where ∂z f is the formal (term-by-term) derivative of f (z). For example, the formal
distribution a−k−1(∂k

z δ)(z/a) takes the test function f (z) to the value (−1)k(∂k
z f )(a).

Because of the usefulness of the notion of residue, we write

f (z) =
∑
n∈Z

anzn =:
∑
m∈Z

a(m)z
−m−1, (5.1.3c)

where a(m) = Resz(zm f (z)) = a−m−1 is called a mode.
Similar remarks hold for several variables zi . The distributions are the formal series

f (z1, . . . , zk) =
∑
ni∈Z

an1,...,nk zn1
1 · · · znk

k =
∑
mi∈Z

a(m1,...,mk )z
−m1−1
1 · · · z−mk−1

k

in W[[z±1
1 , . . . , z±1

k ]], and the test functions f (z1, . . . , zk) ∈W[z±1
1 , . . . , z±1

k ] consist
of those power series with only finitely many nonzero terms. The Dirac delta centred at
z1 = z2 is given by z−1

2 δ(z1/z2) = z−1
1 δ(z2/z1).

But we must not get overconfident:

Paradox 5.1 Consider the following product:

δ(z) =
[(∑

n≥0

zn

)
(1− z)

]
δ(z) =

(∑
n≥0

zn

)
[(1− z) δ(z)] =

(∑
n≥0

zn

)
[0 δ(z)] = 0.

When physicists are confronted with ‘paradoxes’ such as this, they respond by tread-
ing with care when they are involved in a calculation reminiscent of the paradoxes,
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and otherwise trusting their instincts. Mathematicians typically over-react: after kicking
themselves for walking head first into a ‘paradox’, they devise a rule absolutely guar-
anteeing that the paradox will always be safely avoided in the future. We will follow
the mathematicians’ approach, and in the next few paragraphs describe how to avoid
Paradox 5.1 by forbidding certain innocent-looking products.

Recall that we are actually interested in the space W = End(V). We call infinitely
many linear mapsw(i) ∈ End(V) algebraically summable if for every vector v ∈ V , only
finitely many values w(i)v ∈ V are different from 0. In other words, fixing a basis for
V , only finitely many of the matrices w(i) have a nonzero first column, only finitely
many have a nonzero second column, etc. The usual notation ‘

∑
i w

(i)’ will denote the
well-defined endomorphism sending each v ∈ V to that effectively finite sum

∑
i w

(i)v.
Consider a family (possibly infinite) of formal seriesw(i)(z) ∈W[[z±1]]. We certainly

have a well-defined sum
∑

i w
(i)(z) if for each fixed n, the set {w(i)

n } (as i varies) of maps
is algebraically summable. We shall call such a sum algebraically defined, and write

∑
i

w(i)(z) =
∑
n∈Z

(∑
i

w(i)
n

)
zn.

All other sums are forbidden. Likewise, we certainly have a well-defined product∏m
i=1 w

(i)(z) of finitely many formal power series if for each n, the set{
w(1)

n1
w(2)

n2
· · · w(m)

nm

}∑
ni=n

(vary the ni subject to the constraint
∑

i ni = n) is algebraically summable. Again, call
such a product algebraically defined and set it equal to

m∏
i=1

w(i)(z) =
∑
n∈Z

( ∑
n1+···+nm=n

w(1)
n1
w(2)

n2
· · · w(m)

nm

)
zn,

where the second sum is over all m-tuples (ni ) obeying
∑

i ni = n. All other products
(e.g. all infinite ones) are forbidden. An algebraically defined product is necessarily
associative.

There are certainly more general ways to have a well-defined product or sum. For
example, according to our rule, the series

∑
n 2−n would be forbidden. In this way we

avoid the more complicated realm of convergence issues. In short, we are doing algebra
here, and don’t want to be distracted by the dust clouds kicked up by mere analytic
concerns. Such restrictions are common in infinite-dimensional algebra (recall footnote
14 in chapter 1). The product of a distribution f ∈W[[z±1

1 , . . . , z±1
k ]] with a test function

p ∈W[z±1
1 , . . . , z±1

k ] is always defined, and will be a distribution. The explanation of
Paradox 5.1 is that although (

∑
zn)(1− z) exists and equals 1, and (1− z) δ(z) exists

and equals 0, the triple product (
∑

zn)(1− z)δ(z) is forbidden.
A consequence of our algebraic approach is that the product z

1
2 δ(z) does not equal

1
1
2 δ(z) = δ(z) – their formal power series are very different. In hindsight this ‘failing’ is

understandable: it is artificial here to prefer the positive root of 1 over the negative root.

https://doi.org/10.1017/9781009401548.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.006


316 Vertex operator algebras

Proposition 5.1.2 Let W be any vector space, and f ∈W[[z±1
1 , z±1

2 ]]. Then (z1 −
z2)N f (z1, z2) = 0 for some integer N ≥ 1, iff

f (z1, z2) =
N−1∑
j=0

c j (z2) ∂ j
z2
δ(z1/z2),

where c j (z2) = Resz1 ((z1 − z2) j f (z1, z2)) ∈W
[[

z±1
2

]]
.

Proof: First, (z1 − z2) f (z1, z2) = 0 iff am−1,n = am,n−1 ∀m, n, iff am,n = a0,m+n

∀m, n, iff

f (z1, z2) =
(∑

n∈Z

a0,nzn+1
2

)
δ(z1/z2).

Also, for any j ≥ 1,

(z1 − z2) ∂ j
z2

(
z−1

2 δ(z1/z2)
) = (z1 − z2)

∑
n∈Z

n (n − 1) · · · (n − j + 1)z−n−1
1 zn− j

2

= j ∂ j−1
z2

(
z−1

2 δ(z1/z2)
)
.

Hence

(z1 − z2) f (z1, z2) =
M∑

j=0

b j (z2) ∂ j
z2

(
z−1

2 δ(z1/z2)
)

has general solution

f (z1, z2) =
M∑

j=0

1

j + 1
b j (z2) ∂ j+1

z2

(
z−1

2 δ(z1/z2)
)
.

For reasons given next subsection, we call any formal distributions a(z), b(z) mutually
local if f (z1, z2) := [a(z1), b(z2)] satisfies the condition in Proposition 5.1.2. In a vertex
algebra or VOA (Definition 5.1.3), all fields are mutually local.

We need ways to make new formal power series from old ones. First, for any n ∈ Z,
we define the binomial formula to hold:

(z1 + z2)n :=
∑
k∈N

(n

k

)
zn−k

1 zk
2, (5.1.4a)

where we define
( n

k

) = n(n − 1) · · · (n − k + 1)/k! for any n. Equation (5.1.4a) lets us
define, for any formal power series f (z) =∑

n anzn ∈W[[z±1]],

f (z1 + z2) :=
∑
n∈Z

∑
k≥0

an

(n

k

)
zn−k

1 zk
2 ∈W

[[
z±1

1 , z2
]]
. (5.1.4b)

Paradox 5.2 Expand (1− z)−1 in a formal series in z to get
∑

n≥0 zn, and (1− z)−1 =
−z−1 (1− z−1)−1 in a formal series in z−1 to get −∑n<0 zn. Subtract these equal
expressions; we presumably should get 0, but we actually get δ(z) . Similarly, applying
(5.1.4a) to (1+ z)−1 = (z + 1)−1 again gives us the contradiction 0 = δ(z).
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The analytic explanation is that the left expansions in Paradox 5.2 converge only for
|z| < 1, while the second converges for |z| > 1, so it would be naive to expect their formal
difference to be 0. We see from this that it really matters in which variable we expand
rational functions. The seemingly harmless (5.1.4a) is actually a convention saying that
we’ll expand in positive powers of the second variable. For instance, at first glance

z−1
0 δ

(
z1 − z2

z0

)
− z−1

0 δ

(
z2 − z1

−z0

)
= z−1

2 δ

(
z1 − z0

z2

)
(5.1.5)

is nonsense; it only holds if you expand the terms in positive powers of z2, z1 and z0

respectively. A rational function by itself does not define a unique formal power series.
When we need to be explicit, we write ιz( f ) to expand a rational function f in positive
powers of z (i.e. for expanding it about z = 0). For example,

ιz

(
1

w − z

)
− ιz−1

(
1

w − z

)
= δ(z/w).

Recall the operator product expansion (OPE) of quantum fields (4.3.2), introduced
to interpret pointwise products. Here we can study this more explicitly. For most pairs
a(z), b(z) ∈ (EndV)[[z±1]], the naive product a(z) b(z) will not be algebraically defined.
It is easy to prove directly from Proposition 5.1.2 (see theorem 2.3 of [330]) that if
(z1 − z2)N [a(z1), b(z2)] = 0, then

a(z1) b(z2) =
N−1∑
j=0

c j (z2)

(z1 − z2) j+1
+ :a(z1) b(z2) : (5.1.6a)

separates a(z1)b(z2) into its singular and regular parts, where

:a(z1) b(z2) :=
(∑

n≥0

anzn
1

)
b(z2)+ b(z2)

(∑
n<0

anzn
1

)
, (5.1.6b)

c j
(k)(z2) =

N−1∑
�=0

j!

�! ( j − �)!
a( j−�−k) b(�). (5.1.6c)

By 1/(z1 − z2) j+1 in (5.1.6a) we mean to expand z2 in powers from− j to∞. The point
of (5.1.6a) is that the normal-ordered product (5.1.6b) is algebraically defined even at
z1 = z2 (Question 5.1.6) so any singular behaviour of a(z1) b(z2) as z1 → z2 is captured
by the finitely many series c j . Equations (5.1.6) are the desired relation in CFT between
the singular part of the OPE of quantum fields and the commutators of modes, mentioned
in Section 4.3.2. The clarity that vertex algebras bring to quantum field theory (especially
CFT) alone makes its definition worth all the pain.

5.1.3 Axioms

We are now prepared to introduce the important new structure called vertex operator
algebras (VOAs). Although VOAs are natural from the CFT perspective and appear to
be an important and rapidly developing area in mathematics, their definition is difficult
and nontrivial examples are not easy to find.
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A VOA is an infinite-dimensional graded vector space V = ⊕n≥0Vn with infinitely
many bilinear products u ∗n v respecting the grading (in particularVk ∗n V� ⊆ Vk+�−n−1),
obeying infinitely many constraints. We can collect all these products into one generating
function: to each u ∈ V associate the formal power series (a vertex operator)

Y (u, z) :=
∑
n∈Z

u(n)z
−n−1 ∈ (EndV)[[z±1]].

For each u ∈ V , the coefficients u(n) (called modes (5.1.3c)) are maps from V to V . The
product u ∗n v is now written u(n)v := u(n)(v). The bilinearity of ∗n translates into two
things: that u �→ Y (u, z) is linear, and that each function v �→ u(n)v is itself linear (i.e.
u(n) is an endomorphism of V).

Definition 5.1.3 (a) Let V be a graded vector space V = ⊕∞n=−∞Vn such that each
subspace Vn is finite-dimensional. Suppose we have a linear assignment u �→ Y (u, z) =∑

n∈Z u(n)z−n−1 from V into (EndV)[[z±1]] and a distinguished vector 1 ∈ V in V0,
obeying the following properties ∀u, v ∈ V:

va1. (grading) For u ∈ Vk , u(n) is a linear map from V� into Vk+�−n−1;
va2. (vacuum) Y (1, z) is the identity (i.e. 1(n)v = δn,−1v);
va3. (state-field correspondence) Y (u, 0)1 exists and equals u;
va4. (locality) (z1 − z2)M [Y (u, z1), Y (v, z2)] = 0 for some integer M = M(u, v);
va5. (regularity) there is an N = N (u, v) such that u(n)v = 0 for all n ≥ N.

Any such triple (V, Y, 1) is called a vertex algebra. The distributions Y (u, z) are called
vertex operators, and the vector 1 is called the vacuum.
(b) A vertex algebra (V, Y, 1) is called a vertex operator algebra (VOA) if there is a
distinguished vector ω ∈ V2 such that

voa1. (conformal symmetry) Ln := ω(n+1) forms a Vir-module, whose central term C
in (3.1.5) acts as c idV for some c ∈ C;

voa2. (conformal weight) L0v = nv whenever v ∈ Vn;
voa3. (translation generator) Y (L−1v, z) = ∂zY (v, z);
voa4. (CFT type) V0 = C1 and Vn = {0} for all n < 0.

The vectorω is called the conformal vector, and c is called the central charge, conformal
anomaly or rank. The grading n of u ∈ Vn is called its conformal weight.
(c) A quadruple (V, Y, 1, ω) is called a near-VOA if all axioms of a VOA are satisfied,
except for voa4, and in addition the homogeneous subspaces Vn are allowed to be
infinite-dimensional.

We prefer the more descriptive name ‘conformal vertex algebra’ to the historical ‘ver-
tex operator algebra’, although it is probably too late to dislodge the latter name. We
study the Virasoro algebra in Section 3.1.2, where we discuss its relation to conformal
transformations. We are more interested in VOAs than vertex algebras, since the Virasoro
algebra is essential for the relation of V to higher genus and in particular to modular
functions. The central charge c is an important invariant of V . The original axioms
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[68] by Borcherds didn’t involve Vir nor require dim(Vn) <∞. The conformal axioms
voa1–voa3 were introduced in [201] along with the name ‘vertex operator algebra’.
Although voa4 holds for most important VOAs and yields the richest theory, it is not
standard and is included here for simplicity. Note though that with it, va5 becomes redun-
dant and can be dropped. The name ‘near-VOA’ is not standard; we need the notion in
Section 7.2.2.

In the physics literature, the vacuum 1 is often denoted |0〉, and in place of the expansion
Y (u, z) =∑

n u(n)z−n−1 for u ∈ Vk appears the expression
∑

n u{n}z−n−k (so Ln = ωins).
This new expansion cleans up some formulae a little; it has the disadvantage though of
artificially favouring the ‘homogeneous’ vectors u ∈ Vk .

By Proposition 5.1.2, the peculiar-looking va4 simply says that the commutator
[Y (u, z1), Y (v, z2)] of two vertex operators is a finite linear combination of derivatives
of various orders of the Dirac delta centred at z1 = z2; this powerful locality axiom is at
the heart of a vertex algebra. A recommended exercise is to show that in a VOA, M = 4
works in va4 for u = v = ω; more generally see Question 5.1.4.

By V = ⊕Vn here, we mean that any vector u ∈ V can be expressed as a finite
sum

∑
n u(n) of homogeneous vectors u(n) ∈ Vn . To emphasise this finiteness, the

notation

V =
∐
n∈N

Vn

is often used. Note that in a vertex algebra, any series Y (u, z)v will be a finite sum – that
is, the infinite sum Y (u, z) is algebraically defined (Section 5.1.2).

An immediate consequence of va1, va2 and voa2 is that 1 ∈ V0 and ω ∈ V2 – we
needn’t assume these.

Let V be a vector space with a linear map Y : V → EndV , such that Y (u) Y (v) =
Y (v) Y (u). Also, assume that there exists a distinguished vector 1 ∈ V such that Y (1) is the
identity, and such that Y (u) 1 = u for all u ∈ V . It isn’t hard to identify such a structure.
Given any u, v ∈ V , define the ‘product’ u ∗ v to be the value Y (u) v. The linearity
of Y : V → EndV , as well as the linearity of each map Y (u), yields the distributivity
laws. Also, 1 ∗ u = Y (1) u = I u = u and u ∗ 1 = Y (u) 1 = u, so 1 is a unit. Evaluating
Y (u) Y (v) = Y (v) Y (u) on the right by w, gives

u ∗ (v ∗ w) = Y (u) (Y (v)w) = Y (v) (Y (u)w) = v ∗ (u ∗ w).

Substitutingw = 1 gives u ∗ v = v ∗ u, that is the product is commutative. Likewise, u ∗
(v ∗ w) = u ∗ (w ∗ v) = w ∗ (u ∗ v) = (u ∗ v) ∗ w, so the product is associative. Thus
a vertex algebra is an analogue of a commutative associative algebra with unit, where
there is a product u ∗z v = Y (u, z) v at each point z in a punctured disc. A vertex algebra
isn’t as obscure as it may first look.

Theorem 5.1.4 The following are equivalent:
(i) V is a commutative vertex algebra, i.e. Y (u, z1) Y (v, z2) = Y (v, z2) Y (u, z1) for

all u, v ∈ V;
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(ii) V = ⊕∞n=0Vn is a Z-graded commutative associative algebra with unit and
derivation, with each dim(Vn) <∞;

(iii) V is a vertex algebra where each vertex operator Y (u, z) involves only
nonnegative powers of z, i.e. u(n) = 0 for all n ≥ 0.

Proof: The equivalence (i)⇔ (ii) was essentially established in the previous paragraph.

(i)⇒ (iii): Consider the equality∑
n∈Z

u(−n−1)v zn
1 = Y (u, z1)v = Y (u, z1) Y (v, z2) 1|z2=0

= Y (v, z2) Y (u, z1) 1|z2=0 =
∑
n≥0

v(−1)u(−n−1) 1 zn
1 .

Since the expression on the right side involves nonnegative powers of z1 only, the same
must hold for the left side.

(i)⇐ (iii): For any power series f (z1, z2) =∑∞
m,n=0 amnzm

1 zn
2 ∈W[[z1, z2]], Proposi-

tion 5.1.2 implies that (z1 − z2)M f (z1, z2) = 0 ⇒ f (z1, z2) = 0, since each residue of
f (z1, z2) will be 0. Applying this to f (z1, z2) = [Y (u, z1), Y (v, z2)] gives the desired
result.

Locality va4 can be rewritten in the form (see Section 3.2 of [376])

z−1
0 δ

(
z1 − z2

z0

)
Y (u, z1) Y (v, z2) − z−1

0 δ

(
z2 − z1

−z0

)
Y (v, z2) Y (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (u, z0)v, z2), (5.1.7a)

where the formal series are expanded appropriately. This embodiment of commutativity
and associativity in the vertex algebra is called the Jacobi identity since it plays an
analogous role in VOAs as the Jacobi identity plays in Lie algebras. It corresponds
directly to the duality of the sphere with four points removed (namely Figure 6.3(a)).
Expanding it out, the coefficient in front of z�0zm

1 zn
2 gives Borcherds’ identity:∑

i≥0

(−1)i

(
�

i

) (
u(�+m−i) ◦ v(n+i) − (−1)�v(�+n−i) ◦ u(m+i)

)
=
∑
i≥0

(m

i

)
(u(�+i)v)(m+n−i). (5.1.7b)

Specialising (5.1.7b) to � = 0 and m = 0, respectively, gives us

[u(m), v(n)] =
∑
i≥0

(m

i

)
(u(i)v)(m+n−i), (5.1.7c)

(u(�)v)(n) =
∑
i≥0

(−1)i

(
�

i

) (
u(�−i) ◦ v(n+i) − (−1)�v(�+n−i) ◦ u(i)

)
. (5.1.7d)

In any vertex algebra, define an endomorphism T : V → V by

T u = u(−2)1. (5.1.8a)
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This is the derivation of Theorem 5.1.4(ii). Indeed, applying (5.1.7d) to it and using va2,
we get Y (T u, z) = ∂zY (u, z). Thus in any VOA, voa3 says

L−1u = u(−2)1. (5.1.8b)

Moreover, (5.1.7c) tells us that any u ∈ V2 automatically obeys [u(0), Y (v, z)] =
Y (u(0)v, z). Thus in any VOA

[L−1, Y (u, z)] = ∂zY (u, z).

More generally, a more subtle argument (see e.g. proposition 3.1.19 of [376]) shows that
in any vertex algebra, we have

Y (u, z)v = ezT Y (v,−z)u.

These equations also allow us to compute explicitly the grading of u(n)v in a VOA,
recovering va1: let u ∈ Vk, v ∈ V�, then

L0(u(n)v)=ω(1)(u(n)(v))=u(n)(ω(1)v)+(ω(1)u)(n)v+(ω(0)u)(n)v = (k + �− n − 1)u(n)v.

Duality (5.1.7a) also implies (see section 3.8 of [376])

Y
(
u(−m)v, z

) = 1

(m − 1)!
:
(
∂m−1

z Y (u, z)
)

Y (v, z) :, (5.1.9a)

Y
(
u(n)v, z

) = Resz1 (z1 − z)n[Y (u, z1), Y (v, z)], (5.1.9b)

where m ≥ 1 and n ≥ 0. As we see next section, this is quite useful as a way of obtaining
the full VOA from a small number of generators.

Unexpectedly, modular functions arise in VOA theory through the generating functions
of the dimensions of the homogeneous spaces:

trVq L0 =
∞∑

n=0

dimVn qn. (5.1.10a)

We also see this important theme in, for example, Section 3.1.2. As in (3.1.10), a small
refinement should be made: by the graded dimension χV (τ ) of V we mean

χV (τ ) := trVe2π iτ (L0−c/24) = q−c/24
∞∑

n=0

dimVn qn, (5.1.10b)

where as always q = e2π iτ . The reason for the q �→ τ change-of-variables here will
turn out to be the same as why Gauss and Jacobi introduced it into Euler’s generating
function 1+ 2x + 2x4 + 2x9 + · · · : both the graded dimension of V and Euler’s gen-
erating function are naturally associated with tori. Explanations for the now-familiar
−c/24 shift are given in Sections 3.2.3 and 5.3.4. Incidentally, the term character is
also used in the literature for χV (τ ), but Section 5.3.3 contains our diatribe against this
misnomer.

Section 1.5 illustrates the usefulness of the Killing form in Lie theory. Similarly,
our VOAs all have a nondegenerate invariant bilinear form [199] – a bilinear pairing
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(u|v) ∈ C for u, v ∈ V , such that

(Y (u, z)v|w) = (
v|Y (ezL1 (−z−2)L0 u, z−1)w

)
, ∀u, v, w ∈ V. (5.1.11a)

That this complicated definition is right is explained in remark 5.3.3 of [199] and equa-
tion (54) of [242]. For such a form, the homogeneous spaces Vm are mutually orthog-
onal, symmetry (u|v) = (v|u) holds, and we recover familiar RCFT formulae such as
(Lnu|v) = (u|L−nv). It is known (section 3 of [380]) that there is a unique invariant
bilinear form (up to a scalar factor), provided that V is simple (defined in Section 5.3.1)
and

L1V1 = 0 (5.1.11b)

– both conditions are always satisfied by our VOAs. In this case the bilinear form restricted
to each space Vn will be nondegenerate. The most convenient normalisation is

(1|1) = −1, (5.1.12a)

because for this choice the bilinear form on the homogeneous space V1 becomes

(u|v) = u1v, ∀u, v ∈ V1. (5.1.12b)

The invariant bilinear form plays an important role in CFT as well as Moonshine.
By a vertex operator superalgebra we mean there is a Z2-grading of V = V0̄ ⊕ V1̄ into

even and odd parity subspaces, and for u, v both odd the commutator in, for example,
Axiom va4 is replaced by an anti-commutator. Their basic theory is very similar to that
of VOAs (see e.g. [330]). For instance, we write

χV (τ ) := χV0̄
(τ )− χV1̄

(τ ).

Although we occasionally allude to vertex operator superalgebras (e.g. in Sections 5.4.2
and 7.3.5), we won’t develop their theory.

In RCFT,V would be the ‘Hilbert space of states’ (more carefully,V is a dense subspace
of it), and z = et+ix would be a local complex coordinate on a Riemann surface. L0

generates time translations, and so its eigenvalues (the conformal weights) are energy. For
each state u, the vertex operator Y (u, z) is a meromorphic (chiral) quantum field. Y (ω, z)
is the stress–energy tensor T . Physically, the requirement that Vn = 0 for n < 0 says that
the vacuum 1 = |0〉 is the state with minimal energy. Also, z = 0 in va3 corresponds
to the time limit t →−∞. The most important axiom, va4, says that quantum fields
commute away from z1 = z2, and so are local. It is equivalent to the duality of chiral
blocks in CFT, discussed in Sections 4.3.2, 4.4.1, 6.1.4.

In Segal’s language (Section 4.4.1), Y (u, z) appears quite naturally. Consider the
virtual event of two strings combining to form a third. To first order (i.e. the tree-level
Feynman diagram), this would correspond in Segal’s language to a ‘pair-of-pants’, or
a sphere with three punctures, two of which are negatively oriented (corresponding to
incoming strings) and the other positively oriented. We can think of this as the Riemann
sphere C ∪ {∞}; put the punctures at ∞ (outgoing) and z and 0 (incoming). Segal’s
functor T associates with this a z-dependent homomorphism ϕz : V × V → V , where
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ϕz(u, v) = Y (u, z)v ∈ V . Incidentally, the symbol ‘Y ’ could have been chosen because
of this ‘pair-of-pants’ picture (time flows from the top of the ‘Y ’ to the bottom).1

By voa1, any VOA is a Vir-module. For most VOAs, this module is highly reducible.
By a conformal primary v of conformal weight k we mean Lnv = 0 for all n > 0
and L0v = kv for some k. These states are especially well behaved. Any such pri-
mary generates a highest-weight module for Vir, on the space spanned by the elements
L−n1 · · · L−nmv. The VOAs we are interested in are generated by the conformal primaries
together with the operators Ln , in the sense that V can be decomposed into a direct sum
(usually infinite) of highest-weight Vir-modules.

Question 5.1.1. Theorem 5.1.1 actually provides a realisation for a highest-weight rep-
resentation of A1

(1). Identify that representation.

Question 5.1.2. Using the notion of algebraic summability, write down an algebraic defi-
nition of limz1→z2 F(z1, z2) valid for formal power series F(z1, z2) ∈W[[z±1

1 , z±1
2 ]] real-

ising the intuition of substituting in z1 = z2. Prove that limz1→z2 F(z1, z2) ‘algebraically
exists’ iff the product F(z1, z2) δ(z1/z2) does, in which case F(z1, z2) δ(z1/z2) =
F(z2, z2) δ(z1/z2).

Question 5.1.3. (a) Given any formal power series F(z) ∈W[[z±1]], prove that

ew
d
dz F(z) = F(z + w).

(b) Prove (5.1.5).

Question 5.1.4. (a) Let V be any VOA, and u, v ∈ V . Then for any k ∈ Z, prove that

(z1 − z2)k [Y (u, z1), Y (v, z2)] =
∑
�≥0

1

�!

(
∂�z2

z−1
1 δ(z2/z1)

)
Y
(
u(k+�)v, z2

)
.

(b) Let u ∈ Vm, v ∈ Vn be homogeneous vectors in any vertex algebra V . Prove that
M(u, v) = m + n works in va4.

Question 5.1.5. (a) Prove that in any vertex algebra, the vacuum 1 is translation-invariant,
i.e. T 1 = 0.
(b) In any VOA, verify that the span of L−1, L0, L1 is the Lie algebra sl2(C). Verify that
the vacuum is invariant under it.

Question 5.1.6. Prove that for any a, b, c in a vertex algebra V , every coefficient zn of
:a(z) b(z) : u involves a finite sum, and for all but finitely many negative n this sum is 0.

5.2 Basic theory

A VOA is a remarkably rich algebraic structure, with infinitely many heavily constrained
products. In this section we continue to work out the easy consequences of the axioms.

1 But it wasn’t. Remarkably, the actual historical reason is that Y comes after X, and X was the name
arbitrarily chosen in [201] for a pre-vertex operator. The symbol Y first appeared in their chapter 8;
Borcherds used the symbol Q.
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The deep role of the Virasoro algebra remains hidden in this section. We also associate
VOAs with lattices and affine algebras.

5.2.1 Basic definitions and properties

For any u ∈ Vn , define o(u) = u(n−1). Then va1 tells us o(u) preserves each grade, that
is it maps each homogeneous space Vm to itself. In particular, every space Vn has an
algebraic structure defined by u × v = o(u) v. In the CFT literature, these are called the
zero-mode algebras (because u(n−1) = u{0}).

Typically, the zero-mode algebras Vn are quite complicated. However, consider
V1. Put � = m = n = 0 in (5.1.7b) and hit it with any w ∈ V: we get u(0)(v(0)w)−
v(0)(u(0)w) = (u(0)v)(0)w. If we now formally write [xy] := x(0) y, then this becomes
[u[vw]]− [v[uw]] = [[uv]w], which is one of the forms of the Lie algebra Jacobi iden-
tity (1.4.1b). Thus our bracket will be anti-associative if it is anti-commutative, in which
case V1 will be a Lie algebra. But is it anti-commutative? From (5.1.9) we get

u(n)v =
∑
i≥0

1

i!
(−1)i+n+1(L−1)i (v(n+i)u) (5.2.1)

so u(0)v ≡ −v(0)u (mod L−1V). However, from va1, voa4 and Question 5.1.5, we get

(L−1V)1 = L−1(V0) = L−1(C1) = {0}.
Thus, in any VOA, V1 is a finite-dimensional Lie algebra. Each homogeneous space Vn

is a module for V1.
Given any u, v ∈ V1, u(1)v ∈ V0 = C1, and so define (u|v) ∈ C by (u|v) 1 = u(1)v.

From (5.2.1), (u|v) = (v|u), so (�|�) defines a symmetric bilinear form on V1. We would
like (�|�) to respect the Lie algebra structure, that is be [��]-invariant. We compute from
(5.1.7) and va2

([uv]|t) 1 = −v(0)((u|t)1)+ (u|[vt]) 1 = (u|[vt]) 1, (5.2.2)

that is ([uv]|t) = (u|[vt]) and (�|�) is indeed [��]-invariant. Of course, this bilinear
form is identical with that of (5.1.12b), and so provided (5.1.11b) is satisfied, it will be
nondegenerate.

The existence of this bilinear form severely restricts the possibilities for the Lie algebra
V1. Such Lie algebras are called self-dual and are precisely those for which the Sugawara
construction (3.2.15) works. They are studied, for instance, in [415], [189], [384] –
see also example 2.1 in [156]. If we also demand that the VOA be weakly rational
(Definition 5.3.2), then V1 will be reductive (i.e. a direct sum of simple and trivial Lie
algebras) [156].

The affinisation V1
(1) of the Lie algebra V1 also appears naturally in the VOA V . In

particular, the modes u(n), for all u ∈ V1 and n ∈ Z, have the commutators

u(m) ◦ v(n) − v(n) ◦ u(m) = ([u, v])(m+n) + m (u|v)δm+n,01(−1).

Thus these u(n), together with centre C1(−1) and derivation L−1, span a V1
(1)-module.
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More generally, in Section 7.2.2 we need to obtain a Lie algebra from a near-VOA V .
As before, we obtain a Lie algebra structure on V/L−1V , and it has an invariant bilinear
form if we restrict to V1/L−1V0. In the situations we will be interested in, this algebra is
too large, but it can be reduced as follows. Define

PV n := {u ∈ Vn | Lmu = 0 for all m > 0}, (5.2.3)

i.e. the conformal primaries with conformal weight n. Then a straightforward calculation
verifies thatPV 1/(L−1V0 ∩ PV 1) is itself a Lie algebra, with the usual bracket. Through
the map u �→ u(0), this Lie algebra acts on V and this action commutes with that of Lm .
These associations of Lie algebras to (near-)VOAs are due to Borcherds [68].

By an automorphism (or symmetry) α of a VOA V we mean an invertible linear map
α : V → V obeying

α(Y (u, z) v) = Y (α(u), z)α(v),

together with α(1) = 1 and α(ω) = ω. This is how group theory arises in VOAs. The
automorphism group can be finite (e.g. Aut(V �) = M) or infinite (e.g. Aut(V(�)) ∼=
(R×)24×Co0), but it can be finite only if V1 = 0 (Question 5.2.2). Conjecturally, at least
when V is sufficiently nice, Aut(V) will be finite if (and only if) V1 = 0.

Similar arguments (Question 5.2.3) show that when V1 = 0, V2 is a commutative non-
associative algebra with product u × v := u(1)v ∈ V2 and identity element 1

2ω. Moreover,
an ‘associative’ bilinear form can be defined on V2 (Question 5.2.3). For example, the
Moonshine module V � satisfies V �

1 = 0 (Section 7.2.1), and V �

2 is none other than the
Griess algebra [263] extended by an identity element.

The operators u(0), u ∈ V , are derivations (i.e. infinitesimal automorphisms) of V ,
that is

[u(0), Y (v, z)] = Y (u(0)(v), z), (5.2.4)

and so exp(u(0)) is an automorphism of V if it is defined. This is important to the BRST
cohomology construction (Question 5.2.4), borrowed from string theory.

5.2.2 Examples

Unlike more classical algebraic structures, VOAs are notorious for having no easy exam-
ples. In this section we construct families of them, in the most direct way possible. This
explicitness has the drawback of making the constructions seem ad hoc. The reader inter-
ested in seeing the naturality of these constructions should consult the more sophisticated
treatments in, for example, [330], [376].

Recall from (3.2.12a) the oscillator algebra g = u1
(1), with basis consisting of an ,

n ∈ Z, together with the central term C . For any nonzero level k ∈ C, we get a ‘vacuum
module’ V(g, k) defined to have basis consisting of the formal combinations

a−m1 · · · a−mr 1 (5.2.5a)
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for r ≥ 0, where m1 ≥ m2 ≥ · · · ≥ mr ≥ 1. Using the actions C1 = k1, an1 = 0 for
n ≥ 0, we see V(g, k) has a u1

(1)-module structure. Of course u1 embeds into V(g, k) by
x ∈ u1 goes to xa−11.

We claim that V(u1
(1), k) has a VOA structure, for k �= 0. For the assignment of vertex

operators, it suffices by (5.1.9) to define Y (x, z) for x ∈ u1: we get the ‘current’

Y (xa−11, z) := x
∑
n∈Z

anz−n−1. (5.2.5b)

All other vertex operators follow from (5.1.9). For example, for m ≥ 1,

Y (a−m1, z) = 1

(m − 1)!
∂m−1

z

∑
n

anz−n−1.

The unique singular term in the OPE (5.1.6) of the basic current with itself is

Y (a−11, z1) Y (a−11, z2) = C

(z1 − z2)2
+ · · · (5.2.5c)

The Sugawara construction (3.2.14a) says here that the conformal vector is

ω = 1

2k
a−1 a−1 1, (5.2.5d)

which makes V(g, k) into a (highly reducible) Vir-module with central charge c = 1.
We also get the commutation relations

[Lm, an] = −nam+n. (5.2.5e)

In particular, the grading, given as we know by L0, assigns the basis vector (5.2.5a)
conformal weight m1 + · · · + mr , so the current (5.2.5b) has conformal weight 1.

There is an obvious generalisation to any abelian Lie algebra h = Cd with a choice
of nondegenerate inner product on the space h (this defines the central term of the affine
bracket (3.2.12a)). Namely, replace a with an orthonormal basis a1, . . . , ad of Cd ; the
basis of the VOA is built up from all the operators ai

−n as in (5.2.5a). These VOAs

V(h(1), k) are often called Heisenberg VOAs, because h
(1)

is a Heisenberg algebra (i.e.
a Lie algebra h with [h, h] equal to the centre of h). It turns out (Question 5.2.6) that

the VOA V(h
(1)
, k) is independent of the choice of level k, provided k �= 0, and also

the choice of inner product, provided it is nondegenerate. We will let V(Cn) denote the
Heisenberg VOA with level k = 1 and standard inner product on the abelian Lie algebra
h = Cn .

The generalisation to any affine algebra g = g(1) [68], [201], [202], [384] is also
straightforward. To any level k ∈ C, k �= −h∨ (h∨ the dual Coxeter number of g), we get
a natural VOA structure V(g, k) on the Verma module M(kω0) associated with highest
weight kω0, with central charge (3.2.9c). For example, from the Sugawara construction
(3.2.15), the conformal vector is

ω = 1

2(k + h∨)

∑
i

ai
(−1)b

i
(−1)1, (5.2.6)
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where ai , b j ∈ g are bases for g, dual with respect to the Killing form on g: (ai |b j ) = δi j .
Any pair of dual bases give the sameω – the element 1

2

∑
i ai bi in the universal enveloping

algebra U (g) is simply the Casimir operator, and lies in the centre of U (g). The only
important difference here from the Heisenberg VOA is that sometimes there are ‘null
vectors’, that is the Verma module M(λ) may not be irreducible. In fact, maximal numbers
of null vectors is the signature of the most interesting levels, namely k ∈ N. We should
quotient out all null vectors: by V(g, k) we mean the VOA structure (5.2.6) on the
irreducible g-module L(kω0) defined in Section 3.2.3. Most interesting (because of its
representation theory – Section 5.3) is V(g, k) when k ∈ N, what we will call integrable
affine VOAs.

The Lie algebra V1 associated with these affine algebra VOAs V = V(g, k) is isomor-
phic to the reductive Lie algebra g. Its affinisation, defined last subsection, equals g.

The forbidden level k = −h∨ is called the critical level and is very interesting in its
own way. The conformal structure is lost (the conformal vector (5.2.6) won’t exist), but
the Möbius symmetry remains. The affine algebra vertex algebras at critical level have a
highly nontrivial centre, and through it are related to geometric Langlands (see e.g. the
discussion in section 17.4 of [197]). For this reason, it should be interesting to study it
from the context of CFT.

Another relatively simple class of VOAs are associated with lattices [68], [201].
The simplest possibility is an n-dimensional positive-definite lattice L (Section 1.2.1),
all of whose inner products a · b are even integers. By C{L} we mean the (infinite-
dimensional) group algebra of the additive group L , written using formal exponentials:
for each vector v ∈ L , we have a basis vector ev of C{L}, which multiply by euev = eu+v .
Let h = C⊗ L ∼= Cn be the underlying complex vector space of L , interpreted as an
abelian Lie algebra. It inherits the inner product of L . The underlying vector space of the
VOA V(L) is V(h)⊗ C{L}, where V(h) is the Heisenberg VOA constructed earlier. The
vertex operator Y (h ⊗ 1, z), for h ∈ V(h), equals the vertex operator Y (h, z) in V(h).
Less clear is how to define the vertex operators Y (1⊗ eα, z), but once we know how
the affine algebra h(1) acts on the group algebra C{L}, they will be heavily constrained
by the OPEs (5.1.6a). Define htm .eα = (h|α) δm,0eα , for any h ∈ h and α ∈ L , where
we identify α ∈ L with the corresponding vector in h = C⊗ L . Then the OPE (5.1.6a)
tells us (as usual displaying only the singular terms)

h(z1) Y (1⊗ eα, z2) = (h|α)

z1 − z2
Y (1⊗ eα, z2)+ · · ·

From this, and the pairwise locality of these vertex operators, we derive the formula

Y (1⊗ eα, z) = eα exp

(
−
∑
j<0

z− j

j
α j

)
exp

(
−
∑
j>0

z− j

j
α j

)
zα0 .

In the usual way, this determines all vertex operators Y (h ⊗ eα, z). The vacuum is 1× 1
and conformal vectorω isω ⊗ 1; the central charge c though now equals the dimension n
of L . The vectors h ⊗ 1 for h ∈ h have conformal weight 1, while 1⊗ eα have conformal
weight (α|α)/2.
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The construction is the same for any even positive-definite lattice L (i.e. all norm-
squareds are even), except that the group algebra C{L} should be ‘twisted’ so that
eαeβ = (−1)(α|β)eβeα . If instead L is an odd positive-definite lattice (i.e. an integral lattice
with some vectors of odd norm-square), the same construction yields vertex operator
superalgebras (i.e. VOAs except the locality axiom va4 can involve anti-commutators).
For example, L = Z describes two fermions.

Repeating this construction for an indefinite even lattice L will yield a near-VOA. To
see this, note that the conformal weight of 1⊗ eα is (α|α)/2. If we regard V(L) as graded
by L rather than by Z, we obtain a grading into finite-dimensional subspaces.

There are several ways to construct new VOAs from old ones. For example, one
can take the direct sum of VOAs with equal central charge (this doesn’t change the
central charge), or tensor products of arbitrary VOAs (the central charge adds) – see
section 3.12 of [376]. The orbifold construction mods out by discrete symmetries: for a
finite group G of symmetries of a VOA V , let VG denote the subspace of V fixed by G;
then VG is a vertex operator subalgebra of V – see Sections 4.3.4 and 5.3.6.

Finally, Goddard–Kent–Olive (GKO) coset construction [250] mods out by continuous
symmetries. In particular, let (V, Y, 1, ω) and (V ′, Y, 1, ω′) be VOAs with V ′ ⊂ V . So
V ′ would be a vertex operator subalgebra of V except the conformal vectors need not
be equal. Assume, however, that ω′ ∈ V2 and L1ω

′ = 0. The coset construction finds a
VOA structure on the centraliser

CV (V ′) := {v ∈ V | [Y (v, z1), Y (u, z2)] = 0 ∀u ∈ V ′}
= {v ∈ V | vnu = 0 ∀u ∈ V ′, n ∈ Z}. (5.2.7)

The equality in (5.2.7) follows from Question 5.2.5. Then (CV (V ′), Y, 1, ω − ω′) is a
VOA with central charge c − c′. In the VOA language, this was developed in [202]; see
also the lucid treatment in section 3.11 of [376].

A conjecture of Moore and Seiberg [436], [437] states that every RCFT arises from
orbifold and coset constructions applied to lattice and affine algebra theories (generously
enough interpreted). They speculate that this would be the analogue here of Tannaka–
Krein duality (Section 1.6.2). We seem a long way from proving this optimistic guess,
even in a more limited context of sufficiently nice VOAs.

The most famous VOA is the Moonshine module V �, constructed in 1984 in a tour
de force by Frenkel–Lepowsky–Meurman [200]. It has central charge c = 24, with
V � = V �

0 ⊕ V �

1 ⊕ V �

2 ⊕ · · · , where V �

0 = C1 is one-dimensional, V �

1 = {0} is trivial and
V �

2 = (Cω)⊕ (Griess algebra) is (1+ 196883)-dimensional. Its automorphism group is
precisely the Monster M. Thus each graded piece V �

n is a finite-dimensional M-module.
It has graded dimension J , and is the space (0.3.1) lying in the heart of Conway and
Norton’s Monstrous Moonshine (see Sections 4.3.4 and 7.2.1).

A formal parallel exists between integral lattices L and VOAs V [201], [248]. The
dimension n of L corresponds to the central charge c of V . An even lattice corresponds
to a VOA while an odd lattice corresponds to a vertex operator superalgebra. As we
see in the next section, the determinant |L| relates to a measure of how many irre-
ducible modules the VOA has. The norm-

√
2 vectors in L correspond to the vectors in
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V1 – indeed, the norm-
√

2 vectors in a lattice L are special because they generate a Cox-
eter subgroup in Aut(L); the vectors in V1 are special because they generate a continuous
subgroup (a Lie group) of Aut(V). In particular, the Leech lattice � and the Moonshine
module V � play analogous roles (Section 7.2.1). Analogies of these kinds are always
useful in their easy role as squirrels. The battle-cry ‘Why invent when one can profitably
copy?’ is heard not only in Hollywood.

Question 5.2.1. Let V be a VOA, and let a finite group G act as automorphisms on
V , so each space Vn is a (finite-dimensional) G-module. Prove that for each n, Vn is a
G-submodule of Vn+1. (Hint: Consider the map L−1.)

Question 5.2.2. In any VOA, define a map eo(v) : V → V for each v ∈ V1, and show that
for v �= 0 it defines a nontrivial automorphism of V . Verify that eV1 generates a normal
subgroup of Aut(V), and hence that Aut(V) will be uncountable if V1 �= 0.

Question 5.2.3. Suppose a VOAV hasV1 = 0. For u, v ∈ V2, define u × v = u1v. Verify
that V2 is commutative with this product, with identity ω/2. Define a C-valued bilinear
form on V2 and discover how it is compatible with ×.

Question 5.2.4. Let V be a vertex algebra, and suppose u ∈ Vk satisfies (u(0))2 = 0. Prove
that V (u) = ker u(0)/im u(0) is itself a vertex algebra.

Question 5.2.5. Prove that [Y (u, z1), Y (v, z2)] = 0 iff unv = 0 for all n ≥ 0.

Question 5.2.6. (a) Suppose both V, V ′ are complex n-dimensional vector spaces
together with choices of nondegenerate inner-products. Verify that the Heisenberg VOAs
V(V (1), k) and V(V ′(1), k ′) are isomorphic as VOAs, provided only that k, k ′ are both
nonzero.
(b) Let g = g(1) be the nontwisted affine algebra associated with a simple finite-
dimensional Lie algebra g, and let k �= k ′ be two complex numbers, both distinct from
the critical level−h∨. When are the affine algebra VOAsV(g, k) andV(g, k ′) isomorphic
as VOAs?
(c) Let L , L ′ be two positive-definite lattices, all of whose inner-products u · v are even
integers. When are the lattice VOAs V(L) and V(L ′) isomorphic as VOAs?

Question 5.2.7. Find an even indefinite lattice L such that the near-VOA V(L) has finite-
dimensional homogeneous spaces V(L)n for all n ∈ Z.

5.3 Representation theory: the algebraic meaning of Moonshine

We know affine algebras have modules (namely the integrable ones) with interesting
characters. However they have many other modules that are far less interesting, even
if we restrict to highest weight ones with positive integer level. What general principle
distinguishes the interesting ones from the generic? Of the uncountably many level k ∈ N
highest-weight Xr

(1)-modules, the integrable ones are precisely those that are unitary.
It is tempting then to guess that unitarity is the key principle. However, the reason to
doubt its fundamental role is that there are RCFTs (e.g. the Yang–Lee model with central
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charge c = −22/5, see section 7.4.1 of [131]) whose graded dimensions obey all of the
properties the affine characters do, but whose modules are not unitary.

The key feature possessed by the integrable affine modules is that they are unexpectedly
small – that is, the null vectors in the associated Verma module, all of which are quotiented
away, are maximally numerous. In other words, they are also modules of a sufficiently
nice (‘rational’) VOA. The appearance of an affine algebra here is not directly significant,
rather it is the appearance of that rational VOA. Modules of those VOAs may or may
not be unitary. VOAs serve as the unifying mathematics underlying the modules singled
out by Moonshine.2

The raison d’être of VOAs are their modules, and in Moonshine we are primarily
interested in their graded dimensions and characters. It is to this important topic – the
algebraic meaning of Moonshine – that we finally turn. See also [199], [376].

5.3.1 Fundamentals

A module of a VOA V is a vector space on which V acts, in such a way that this action
preserves all possible structure. More precisely:

Definition 5.3.1 [199] Let V be a VOA. A weak V-module (M, YM ) is an N-graded
vector space M = ⊕n∈N M[n], and a linear map YM : V → End M[[z±1]], written
YM (u, z) =∑

n∈Z u(n)z−n−1, such that for any u ∈ Vk , the mode u(n) is a linear map
from M[�] into M[k+�−n−1],

YM (1, z) = idM , (5.3.1a)

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1) YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2) YM (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2), (5.3.1b)

where each mode u(n) operates on M. The YM (u, z) are also called vertex operators. A
weak V-module (M, YM ) is called a V-module if in addition it comes with a grading
M = ⊕α∈C Mα , with Mα = 0 for Re(α) sufficiently negative, obeying

Mα = {x ∈ M | L0x = αx} (5.3.1c)

(the eigenvalue α is again called the conformal weight of y ∈ Mα), and all homogeneous
spaces Mα are finite-dimensional.

We are interested in V-modules. For the VOAs of interest to us (see Definition 5.3.2),
the conformal weights are always rational (hence the name). Definition 5.3.1 uses the
Jacobi identity (5.1.7a) rather than the simpler locality va4 because, although locality and
the Jacobi identity are equivalent for VOAs, for modules the Jacobi identity is stronger
(see chapter 4 of [376]).

2 Victor Kac expresses a related position by isolating locality as the key principle [329].
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As before, the modes Ln = ω(n+1) of the conformal vector ω ∈ V yield on M a rep-
resentation of the Virasoro algebra Vir, with the same central charge c as V . In analogy
with (5.1.10b), the graded dimension of a V-module M is defined to be

χM (τ ) := trM e2π iτ (L0−c/24) = q−c/24
∑
α∈C

dim Mα qα. (5.3.2)

It is fundamental to the whole theory that these χM are modular, at least for ‘nice’ V and
M (see Theorem 5.3.8 below). The automorphism group of V acts on each homogeneous
space Mα – that is, each Mα carries a representation of Aut(V), and so the q-coefficients
of χM (τ ) are dimensions of Aut(V)-representations (famous examples being (0.2.1)).

It is straightforward [199], [376] to write down the definitions of V-module homomor-
phism, direct sum of V-modules, submodule, irreducible module (no nontrivial submod-
ule), completely reducible module (i.e. M can be written as a direct sum of irreducible
V-modules), etc. Invariant bilinear forms can be defined for modules as in (5.1.11a), and
have analogous properties [199], [380].

The easiest example of a V-module, of course, is V itself, called the adjoint module.
If V is irreducible as a V-module, it is called simple (see Definition 6.2.3). All VOAs of
interest in this book are simple. An example of a nonsimple vertex algebra is the affine
algebra vertex algebra at critical level k = −h∨.

The notion of tensor product – called fusion M × N – for VOA modules is unexpect-
edly subtle. For example, the infinite-dimensional adjoint module V should have trivial
fusions, just like the one-dimensional Lie algebra module C has trivial tensor products.
See, for example, [298], [222], [382] for various approaches. Fusion products in a weakly
rational VOA can be decomposed into irreducible modules as usual:

M × N ∼= ⊕P∈�(V) N P
M N P, (5.3.3)

where the multiplicities N P
M N are called fusion coefficients. These numbers are most

easily defined (via Schur’s Lemma) as the dimension of the space of intertwiners [199]
(Definition 6.1.9). For semi-simple Lie algebras, the tensor product of modules defines
a symmetric monoidal category (Section 1.6.2); for nice VOAs, the fusion of modules
defines a braided monoidal category and the structure constants N P

M N a fusion ring
(Section 6.2.2).

Definition 5.3.2 [574] A VOA V is called weakly rational if every V-module is com-
pletely reducible,V has only a finite number of irreducible modules, and every irreducible
weak V-module is a V-module.

Let �(V) denote the set of irreducible V-modules. Most of our VOAs will be weakly
rational. The term ‘weakly rational’ is not standard; rational is sometimes used. However,
a rational VOA should enjoy all properties of the chiral algebra of a RCFT, which is why
we reserve the term ‘rational’ for the stronger notion presented in Definition 6.2.3.

Lemma 5.3.3 [574] Let V be a weakly rational VOA, and let M be any irreducible
V-module. Then there is a number h ∈ Q such that the homogeneous subspace Mh is
nonzero, and such that if Mα �= 0 for some α ∈ C, then α − h ∈ N.
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The proof isn’t difficult – see page 244 of [574] for a more general argument. We call
h = h(M) the conformal weight of M , and the space Mh = M[0] the lowest-weight space
of M . For example, the conformal weight h(V) of the adjoint module is 0. The lowest-
weight space Mh generates the whole module, in the sense (5.1.9a) that M is spanned
by vectors of the form (u1)(n1) · · · (uk)(nk ) y for ui ∈ V and y ∈ Mh . The lemma implies
that for such a module M , we have χM (τ + 1) = e2π i h(M)χM (τ ) as formal power series.

In both finite group theory and Lie theory, given any module M , a module structure
can also be found on the vector space dual M∗ of M in a straightforward way. This
module is called the dual or contragredient of M . Something similar happens for VOAs.
However, the naive dual of an infinite-dimensional space tends to be too large (recall
that in infinite dimensions, the double-dual (V ∗)∗ properly contains V ), so here we take
instead the restricted dual M� of M , defined by

M� = ⊕α(Mα)∗. (5.3.4a)

The explicit V-module structure on M� (see section 5.2 of [199]) is quite complicated
and closely related to the definition of invariant bilinear form in (5.1.11a). Note that

χM� (τ ) = χM (τ ) (5.3.4b)

even though M� and M are usually non-isomorphic as V-modules. Thus our graded
dimensions (5.3.2) won’t always distinguish modules, something that was independently
observed in the context of Monstrous Moonshine, as we’ll see. We return to this bother-
some but not unexpected fact in Section 5.3.3. The more obscure term ‘contragredient’
is usually used for M�, as ‘dual’ has too many unfortunately independent meanings.
The notion of contragredient module plays a large role in RCFT: roughly, M� is the
anti-particle of M , and they are related by charge-conjugation C .

All VOAs V of interest to us have an anti-linear involution u �→ u∗ such that the
invariant bilinear form (u|v) of (5.1.11a) satisfies

(u|v∗) = (v|u∗), ∀u, v ∈ V. (5.3.5a)

The notion of unitary module M is important in physics: it is a V-module in which the
bilinear form on M satisfies

(ux |y)M = (x |u∗y)M , ∀u ∈ V, x, y ∈ M. (5.3.5b)

Consider first the lattice VOAV(L) constructed in Section 5.2.2, where L is a positive-
definite even lattice (recall the definitions in Section 1.2.1). It is weakly rational, and its
irreducible modules are parametrised naturally by the cosets L∗/L , where L∗ ⊇ L is the
dual lattice to L [144]. The explicit construction of these modules M[t], for [t] ∈ L∗/L ,
is very similar to that of the VOA VL itself – see section 6.5 of [376]. Thus the number
‖�(V(L))‖ of its irreducible modules is given by the determinant |L| of the lattice.
The adjoint module is M[0]. The module M[t] has contragredient M[−t] and graded
dimension

χM[t](τ ) = 
t+L (τ )

η(τ )n
, (5.3.6)
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where n is the dimension of L , η is the Dedekind eta function (2.2.6b) and 
t+L is the
theta series of (2.2.11a). The fusion product here is M[t] × M[t ′] = M[t + t ′].

The Heisenberg VOAs are not weakly rational. For example, V(C) has a distinct
irreducible module M(λ) (namely the Verma module V (λ) of (3.2.12b)) for every λ ∈ C.
The adjoint module is M(0), and the contragredient of M(λ) is M(−λ). Only the modules
with λ ∈ R are unitary. The graded dimension of M(λ) is given in (3.2.12c).

However, if g is a simple Lie algebra and g = g(1) is the associated nontwisted affine
algebra, then the VOA V(g, k) will be weakly rational iff the level k lies in N. Just as the
VOA V(g, k) is the g-module L(kω0) with additional structure, the irreducible V(g, k)-
modules can be identified with the g-modules L(λ), for level-k integrable highest weights
λ ∈ Pk

+(g) [202]. In particular, the VOA graded dimension will equal the corresponding
specialised affine algebra characters χλ(2π iτ�0) = χλ(τ, 0, 0) of (3.2.11c). The usual
tensor product L(λ)⊗ L(μ) of affine algebra modules is less interesting than the fusion
product L(λ) × L(μ) – in the former, levels add and the tensor product coefficients T ν

λμ

can be infinite, while the latter is studied in Section 6.2.1.
A weakly rational VOA is called holomorphic if it has a unique irreducible module.

As usual this terminology comes from RCFT: a holomorphic VOA can be the left-
moving chiral algebra of a CFT with trivial right-moving chiral algebra, so the physical
correlation functions (4.3.1a) of such a CFT would be holomorphic (at least locally,
when all insertion points zi are distinct). Thus the lattice VOA V(L) is holomorphic iff
the lattice L is self-dual. The most famous example of a holomorphic VOA though is the
Moonshine module V � [145]. In fact, its holomorphicity is one of the keys to Monstrous
Moonshine (see Question 5.3.4).

5.3.2 Zhu’s algebra

In many ways a VOA resembles a Lie algebra, and this analogy has often been exploited
to flesh out the theory of VOAs. However, the representation theory of the weakly rational
VOAs resembles that of a finite group.

Consider for concreteness the symmetric group G = S3. Its representation theory is
captured by its group algebra CG (Section 1.1.3), that is the formal span of the ele-
ments σ ∈ G = {(1), (12), (23), (13), (123), (132)}, where G acts by left multiplication.
The associative algebra CG is semi-simple, and so is a direct sum of matrix algebras:
here,

CG ∼= M1×1 ⊕ M1×1 ⊕ M2×2, (5.3.7a)

where the first summand M1×1 contains one copy of the trivial one-dimensional irre-
ducible representation ρ1(σ ) = 1, the second summand M1×1 contains one copy of
the ‘sign’ one-dimensional irreducible representation ρs(σ ) = (−1)σ , and the four-
dimensional algebra M2×2 contains a continuum of copies of the two-dimensional irre-
ducible representation ρ2. More precisely, the three subspaces of the group algebra CG
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specified by (5.3.7a) are

V1 = C{(1)+ (12)+ (23)+ (13)+ (123)+ (132)} ∼= ρ1, (5.3.7b)

Vs = C{(1)− (12)− (23)− (13)+ (123)+ (132)} ∼= ρs, (5.3.7c)

V2 = C{(1)− (123), (1)− (132), (12)− (23), (12)− (13)} ∼= ρ2 ⊕ ρ2. (5.3.7d)

Incidentally, the different copies of the irreducible module ρ2 in the subspace V2 are
parametrised by the projective line P1(R) ∼= S1: choosing a nonzero point x in

C{(1)− (12)+ (23)− (132), (23)− (13)+ (123)− (132)}, (5.3.7e)

and hitting with arbitrary σ ∈ G, spans a copy V2(x) of the two-dimensional module ρ2,
and V2(x) ∩ V2(x ′) = {0} unless x and x ′ are complex multiples of each other, in which
case V2(x) and V2(x ′) are equal as sets. On the other hand, choosing a generic element
of V2 (respectively CG) will span all of V2 (respectively CG).

The representation theory of a finite group G is equivalent to that of the associative
algebra CG. Likewise, for semi-simple Lie algebras g there is also an associative algebra,
generated by g, which classifies all irreducible g-modules: the universal enveloping
algebra U (g) (Section 1.5.3). However, it is infinite-dimensional, reflecting the fact that
g has infinitely many inequivalent irreducible modules.

Remarkably, weakly rational VOAs V have (like finite G), a finite-dimensional asso-
ciative semi-simple algebra, denoted A(V), which classifies the finitely many irreducible
V-modules. As we know, the full module M can be generated from its lowest-weight
space Mh , by repeatedly acting by modes of V , and so it suffices to study Mh . Now, the
zero-modes o(u), defined at the beginning of Section 5.2.1, act on each homogeneous
space Mα; Zhu’s algebra A(V) is the algebra of zero-modes, as seen by the lowest-weight
spaces Mh . A more formal construction, which will begin next paragraph, is due to Zhu
[574], although it was anticipated in physics [429], [87]. Similar to the above, each
irreducible V-module M corresponds to a linear functional fM on V (Section 4.4.4); a
certain large subspace O(V) of V lies in the kernel of all functionals fM ◦ o(v) ∀v ∈ V ,
so each of these defines a well-defined functional on the quotient A(V) := V/O(V). The
quotient A(V) has a product u ∗ v making it into an associative algebra; the space of
functionals fM ◦ o(v) carries a module action of A(V), and as such can be identified with
the dual M∗

h of the lowest-weight space of M . Conversely, any (irreducible) right-module
for A(V) is the lowest-weight space of an (irreducible) V-module M . This physically
motivated treatment of Zhu’s algebra is fleshed out in [227].

Zhu’s treatment is similar. For u, v ∈ V , where u ∈ Vk , define a product

u ∗ v = Resz

(
Y (u, z) v

(z + 1)k

z

)
, (5.3.8a)

or equivalently, in terms of the modes,

(u ∗ v)(n) =
∑
m≥k

u(−1−m) ◦ v(m+n) +
∑

m≤k−1

v(m+n) ◦ u(−1−m). (5.3.8b)
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Extend ∗ linearly to all u ∈ V . Let O(V) be the subspace of V spanned by elements

(L−1u + L0u) ∗ v, ∀u, v ∈ V. (5.3.8c)

By Zhu’s algebra A(V) we mean the quotient V/O(V).
The point of these definitions is that, on the lowest-weight space Mh of any irreducible

V-module M , a straightforward calculation (see page 250 of [574]) verifies that

o(u ∗ v) = o(u) ◦ o(v). (5.3.9a)

Using (5.1.8b), (5.1.7d) and va2, we see that

o(L−1u + L0u) = 0 (5.3.9b)

identically on V . Together, (5.3.9) tell us o(u) = 0 on each lowest-weight space Mh ,
for any u ∈ O(V). Thus for any class [u] ∈ A(V), the zero-mode o(u) is a well-defined
operator on each Mh .

Theorem 5.3.4 [574] Let V be a weakly rational VOA (recall Definition 5.3.2) and let
A(V) = V/O(V) be Zhu’s algebra. Then A(V) is a finite-dimensional, associative and
semi-simple algebra, isomorphic as an algebra to the matrix algebra

A(V) ∼= ⊕M∈�(V) Mn(M)×n(M),

where �(V) is the set of all irreducible V-modules, and n(M) is the dimension of the
lowest-weight space Mh.

In other words, there is a one-to-one correspondence between the irreducible modules
of A(V) and V; the irreducible A(V)-modules can in fact be naturally identified with
the lowest-weight spaces Mh of the irreducible V-modules. It is almost identical to
what happens with the group algebra of a finite group. Note that the dimension n(M) is
the coefficient of the first nontrivial term n(M) qh−c/24 of the graded dimension χM .
The hard part of the proof of Theorem 5.3.4 is establishing that an irreducible A(V)-
module lifts to an irreducible V-module (the basic idea is sketched above). Incidentally,
there are non-weakly rational VOAs (coming from ‘logarithmic’ CFTs) with Zhu’s
algebra A(V) finite-dimensional but not semi-simple.

For example, Zhu’s algebra A(V �) for the Moonshine module V � is one-dimensional,
while the integrable affine VOA V(g, k) at level k ∈ N has Zhu’s algebra

A(V(g, k)) ∼= ⊕λ∈Pk+(g) MdimL(λ)×dimL(λ),

where L(λ) is a highest-weight g-module (to get λ, drop λ0 from λ). In general though,
it is hard to compute A(V) (unless the V-modules are already known!) because we lose
the grading – expressions like L−1u + L0u are not homogeneous.

The definition (5.3.8a) of the product ‘∗’ in Zhu’s algebra can be modified to give the
more familiar ‘normal-ordered product’ (recall (5.1.6))

u · v = Resz(Y (u, z) vzk−1) = u(−1)v (5.3.10a)
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for u ∈ Vk , or equivalently in terms of modes

(u · v)(n) =
∑
m≥0

u(−1−m) ◦ v(m+n) +
∑

m≤−1

v(m+n) ◦ u(−1−m). (5.3.10b)

Let O2(V) be the span of all elements of the form u(−2)v, and A2(V) the quotientV/O2(V).
Then A2(V) is a graded commutative associative algebra with product ‘·’. It also has a Lie
algebra structure, with bracket given by [uv] = u(0)v; together, the Lie and associative
products define a commutative Poisson algebra. Its main role in VOA theory is in a
finiteness condition:

Definition 5.3.5 [574] A VOA V is said to be C2-cofinite if the A2(V) = V/O2(V) is
finite-dimensional.

Most of the important weakly rational VOAs (e.g. the Moonshine module, the lattice
VOAs, the affine algebra VOAs at positive integer level) satisfy this condition. The term
‘C2-cofinite’ comes from Zhu’s name for what we call O2(V). It has several conse-
quences. Most importantly, the graded dimensions χM (τ ) of a C2-cofinite VOA con-
verge to functions holomorphic in the upper half-plane H (theorem 4.4.2 of [574]). A
C2-cofinite VOA will have well-defined finite fusion coefficients (5.3.3) (see theorem 13
in [229]).

It is conjectured that a VOA is weakly rational if and only if it is C2-cofinite, but
although this would significantly simplify the definition of weakly rational, it seems
difficult to prove. Weakly rational VOAs satisfy dim A2(V) ≥ dim A(V) (generalised
in lemma 3 of [229]), but inequality can occur – for example, the integrable affine
algebra VOA V(E8

(1), 1) has a one-dimensional Zhu’s algebra but A2(V) is at least
249-dimensional [224].

A C2-cofinite VOA is finitely generated in the sense that there will be finitely many
vectors u1, . . . , un ∈ V (namely, choose ui to be the lifts to V of a basis of A2(V)) such
that V is spanned by all vectors of the form

ui1
(−m1) · · · uik

(−mk )1, (5.3.11a)

where m1 > · · · > mk > 0 [229]. Something similar (but weaker) holds for V-modules.
Using this we quickly obtain a growth estimate: given any C2-cofinite VOA V , there
is a constant C > 0 such that, for any irreducible V-module M , the dimension of the
homogeneous space Mα is bounded above by

dim Mα < CM eC
√
α−h, (5.3.11b)

for some constant CM , where as always h = h(M) is the conformal weight of M . The
constant C depends only on dim A2(V), while CM is essentially dim Mh , adjusted slightly
to ensure (5.3.11b) also holds for small α.

Various interesting generalisations of Zhu’s algebras have appeared in the literature
[149], [150], [229], [410]. From our point of view, these algebras play a crucial technical
role in the statement and proof of the modularity of VOA characters.
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5.3.3 The characters of VOAs

The next four subsections mark a climax for the book, as we discuss the modularity of
the graded dimensions (5.1.10b), (5.3.2). We also explain why this was anticipated by
physicists. But first let’s reflect on the notion of character.

Calling the quantities χV (τ ) and χM (τ ) ‘characters’, as is common in the literature, is
a misnomer – they are merely graded dimensions. Defining characters for an algebraic
object is as much art as science. The beautiful success of the character theory of semi-
simple and Borcherds–Kac–Moody Lie algebras hides the nontrivial intuition that went
into the original definitions. Presumably the starting point was that the characters of
finite groups are given by the trace. Also, exponentiation associates a Lie group with
a Lie algebra. Putting this together leads to the character of (1.5.9a). The characters of
(Borcherds–)Kac–Moody algebras then follow by analogy. Unfortunately, the situation
for VOAs isn’t nearly as clear.

The main properties we may hope a character χM to obey are: it specialises to
dimension (or graded dimension); it distinguishes inequivalent modules; and it respects
direct sum and tensor product (fusion for us), in the sense that χM⊕N = χM + χN and
χM × N = χMχN . We would also expect the VOA characters in the special case of the
integrable affine VOA V(g, k) to equal the corresponding affine algebra characters χλ in
(3.2.9a) (recall that theV(g, k)-modules can be identified with the integrable g-modules).

This wish-list is hopelessly optimistic for even the nicest VOAs. The graded dimen-
sions χM(λ)(τ ) for the integrable affine VOA V(g, k) will not respect the fusion product:

χM(λ) × M(μ)(τ ) �= χL(λ)⊗L(μ)(τ ) = χL(λ)(τ )χL(μ)(τ ) = χM(λ)(τ )χM(μ)(τ ),

where L(λ)⊗ L(μ) denotes the tensor product of g-modules. On the other hand, fusion
respects the asymptotic dimensions: for all sufficiently nice VOAs V , the limit

D(M) = limτ→0
χM (τ )

χV (τ )
, (5.3.12)

called the quantum dimension of M ∈ �(V), satisfies D(M × N ) = D(M)D(N ).
‘Sufficiently nice’ here means any C2-cofinite weakly rational VOA V obeying the addi-
tional very common property that of all irreducible V-modules M ∈ �(V), a unique one
realises the smallest conformal weight minM∈�(V)h(M) (in the most familiar examples
the unique minimal conformal weight belongs to the adjoint module M = V).

Recall from (5.3.4b) that the graded dimensions χM (τ ) of inequivalent V-modules can
be equal. A further example occurs whenever an even positive-definite lattice L has an
automorphism α; then any pair M[t], M[αt] of V(L)-modules will have identical graded
dimension. However, such equalities need not always have an easy algebraic explanation:
for example, in Monstrous Moonshine two McKay–Thompson series (namely, T27A(τ ) =
T27B(τ ), corresponding to unrelated elements of order 27) accidentally coincide for no
obvious reason. None of this is surprising, since dimensions certainly don’t uniquely
specify Lie algebra or finite group modules.

We certainly would like VOA characters to distinguish inequivalent V-modules, and
in fact be linearly independent. How to do this is clear from the study of lattice theta
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functions or affine algebra characters: in order to retain more information of the homo-
geneous spaces Mα than merely their dimensions, we must include more variables in
χM .

Definition 5.3.6 The character of a V-module M is the one-point function χM (τ, v)

χM (τ, v) := trM o(v) q L0−c/24 = q−c/24
∞∑

n=0

trMh+n o(v)qh+n. (5.3.13)

h = h(M) is the conformal weight of M , and o(v) is the zero-mode (Section 5.2.1) of
v ∈ V , which is an endomorphism on each homogeneous space Mh+n (so its trace can
be computed by choosing bases and writing o(v) as a matrix for each n). This function
χM arises naturally in CFT, as the one-point chiral block (Section 4.3.2) on the torus.
We explain shortly why it is associated with a torus – this is the source of its modularity.

Note that χM (τ, 1) equals the graded dimension χM (τ ). By definition, the dependence
of χM (τ, v) on v ∈ V is linear. Provided V is C2-cofinite, theorem 4.4.1 of [574] tells us
that, for each v ∈ V , χM (τ, v) is holomorphic for τ ∈ H. This is proved by finding and
studying a differential equation satisfied by χM (τ, v). Their modularity is established in
Section 5.3.5.

When V is weakly rational and C2-cofinite, the one-point functions are linearly inde-
pendent and thus distinguish inequivalent V-modules. In fact, we see from the proof of
theorem 5.3.1 in [574] that if VA is any lift from Zhu’s algebra A(V) to V , then the one-
point functions χM (τ, v) will remain linearly independent even if v is restricted to the
finite-dimensional subspace VA. For example, the graded dimensions χM (τ ) and χM� (τ )
are equal, but for v ∈ Vn the one-point functions obey

χM� (τ, v) = (−1)nχM (τ, v).

Although one-point functions (5.3.13) don’t directly respect the fusion product (but
recall (5.3.12)), they deserve the title ‘character’ as they are the simplest linearly inde-
pendent extension of graded dimension. However, since they depend linearly and not
exponentially on v, how can we reconcile them with the Jacobi theta functions (2.3.7)
and the affine algebra characters (3.2.9a)? Mindlessly defining a function

exp[2π iw] trM exp[2π i o(v)] q L0−c/24 (5.3.14)

for v ∈ V and w ∈ C will lose modularity.
The key is to realise that, although the exponential q = e2π iτ is topological in origin,

the exponential e2π iz in (2.3.7) and (3.2.9a) is Lie theoretic in origin. In particular:

Definition 5.3.7 Let V be a weakly rational C2-cofinite VOA. For any V-module M ∈
�(V), define the Jacobi character to be the quantity χ J

M (τ, v,w) given by (5.3.14), except
we restrict v to the Lie algebra V1.

Of course v = 0 and w = 0 recovers the graded dimensions. As we know, eo(v) is an
automorphism of M for v ∈ V1, and as we recall from the McKay–Thompson series
the graded trace of automorphisms is worthy of study. Question 5.3.5 asks the reader to
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verify that χ J
M recovers affine algebra characters. Of course the complex variable ‘w’ is

merely included for book-keeping. We return to Jacobi characters in Theorem 5.3.9.
If we hadn’t restricted v in Definition 5.3.7 to V1, then linear independence would

have been assured by that of the one-point functions χM (τ, v) (why?). In the familiar
examples (e.g. lattice or affine algebra VOAs) we still have linear independence of the
Jacobi characters, but it won’t hold for all other VOAs.

5.3.4 Braided #5: the physics of modularity

Let’s turn next to one of the central questions in the book: why should the VOA characters
χM have anything to do with modularity? In short, it is because they are toroidal chiral
blocks of RCFT, and the mapping class group �1,1 (which must act on those chiral
blocks) is SL2(Z). While filling in this explanation we’ll finally explain the shift ‘c/24’
appearing in the definition of the affine algebra characters and more generally the VOA
characters χM .

Lurking in the background of the following argument is the closed string, with period-1
arc-parameter σ and time-parameter t (recall Section 4.3.2). For the left-moving (holo-
morphic) sector it is convenient to introduce complex parameters σ − it and e2π i (σ−it),
which we now call z and w, respectively.

From the perspective of VOAs and CFT, the easiest way to realise the torus C/(Z+ Zτ )
for τ ∈ H, starting with the space C, is by first considering the map z �→ e2π iz (the ‘2π i’ is
merely a convenient normalisation). This is a holomorphic map sending neighbourhoods
of 0 to neighbourhoods of 1. It changes the global topology, however, sending the plane
C to the annulus C\{0}. Now it is simple to obtain our torus: we simply identify z and qz,
where as always q = e2π iτ . This is equivalent to taking the finite annulus {z ∈ C | |q| <
|z| < 1} and sewing together its two boundary circles by identifying z on the outer
circle with qz on the inner. The resulting torus is conformally equivalent to C/(Z+ Zτ )
(why?). The point is that the chiral blocks on the torus can be obtained from those of the
plane, through this construction of the torus from C. Let us now give the details.

Let V be any VOA. For any coordinate transformation z �→ w = f (z) sending 0 to
0, and holomorphic in a neighbourhood of 0, the Virasoro algebra lets us calculate its
effect on any vertex operator: we can write

Y (v, z) �→ T f ◦ Y (v, z) ◦ T−1
f (5.3.15a)

for some invertible linear map T f : V → V (see [223], [295] for the explicit and general
calculation). More precisely, there are ai ∈ C such that (see proposition 2.1.1 in [295])

f (z) = exp

[ ∞∑
n=0

anzn+1 d

dz

]
z (5.3.15b)

as formal power series, where ‘exp’ is defined by its Taylor series. Then we obtain

T f v = exp

[ ∞∑
n=0

an Ln

]
v (5.3.15c)
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(regularity va5 implies this map T f : V → V is always defined). When v is a conformal
primary of conformal weight k (recall (5.2.3)), the transformation is particularly nice:

T f ◦ Y (v, z) ◦ T−1
f = Y (v,w) ( f ′(z))k . (5.3.15d)

The other important special case is the stress–energy tensor T (z) = Y (ω, z):

T f ◦ Y (ω, z) ◦ T−1
f = Y (ω,w) ( f ′(z))2 + c

12
{ f (z), z}, (5.3.15e)

where { f, z} is the Schwarzian derivative

{ f, z} := f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (5.3.15f)

The factor ‘c/12’ in (5.3.15e) is the same as in (3.1.5a). The Schwarzian derivative
vanishes if and only if f is a Möbius transformation (i.e. if and only if f conformally
maps the Riemann sphere to itself), and so is a measure of how f changes the global
topology.

Provided f (z) is holomorphic near 0 and obeys f (0) = 0, a second VOA structure
can be defined on the vector space V as follows. The vertex operators are Y f (v, z) =
Y (T f v, f (z)), the vacuum is 1 f = T f (1) = 1, and conformal vector is ω f = T f (ω).
Let V f denote this second VOA. Then V and V f are isomorphic. (See [293] for a
generalisation dropping the f (0) = 0 condition.)

We are interested in the transformation w = f (z) = e2π iz − 1. Then everything sim-
plifies and we get

ω f = 4π2 (ω − c/24), (5.3.16a)

Y f (v, z) = Y (v,w) e2π izk, ∀v ∈ Vk . (5.3.16b)

Although V f is a VOA isomorphic to V sharing the same underlying space, modes and
conformal weights are quite different. We will use square brackets to indicate the modes
of V f , and denote its Virasoro generators by L[n] = (ω f )[n+1]. We find for instance that

L[−1] = 2π i (L−1 + L0), (5.3.16c)

L[0] = L0 +
∑
i≥1

(−1)n−1

n(n + 1)
Ln. (5.3.16d)

Although by the isomorphism of V and V f the homogeneous spaces Vn and V[n] must be
equal dimension, and in fact carry isomorphic representations of AutV , we only have
Vn = V[n] for n = 0 or if dimVn = 0. On the other hand, if v ∈ V is a conformal primary
of conformal weight k with respect to the operators Ln , then it will be one with respect
to the operators L[n] as well (see Question 5.3.2).

For a technical reason, we are also interested in the simple relation between the usual
power series modes L[n] of V f , and the Fourier modes L ′n of V , defined by

T (z) = Y (ω, z) = −
∞∑

m=−∞
L ′me2π imw.
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We get (recall Question 3.1.8)

L ′n = L[n]− δn,0
c

24
.

The occurrences of ‘−c/24’ in, for example, the characters of affine algebras and
VOAs can be traced back to its occurrence in (5.3.16a). Mathematically, it is a symptom
of the change of global topology, from the plane to an annulus. Physically this is inter-
preted as the Casimir energy of the cylinder [3]; see also the discussion in section 5.4
of [131].

Our map f mapped the plane to the annulus C\{−1}. To get the torus, we need to
identify z on the outer circle eiθ − 1, with the point q (z + 1)− 1 = qeiθ − 1 on the inner
circle. By the axioms of CFT (e.g. Section 4.4.1), this identification (‘sewing’) corre-
sponds to taking a trace. For simplicity consider first the vacuum-to-vacuum amplitude
(‘partition function’) on this torus, and write τ = s + it . The desired trace will be over
the full space of states H, and will be of the ‘propagator’ for the cylinder, which takes
the string and evolves it 2π t ahead in time and twists it 2πs arcwise. The infinitesimal
generator of twists is the corresponding momentum operator, call it P , and the infinites-
imal generator for time evolution is the Hamiltonian H , both in the z-coordinate frame.
Thus the partition function will be

Z(τ ) = trH exp[2π is P − 2π t H ].

To find, for example, the Hamiltonian, note that changing time by δt changes the w-
coordinate by the factor e−2πδt , so the Hamiltonian generates dilations in w (recall the
calculation in Section 4.3.2); similarly, the momentum operator generates rotations in
w. We obtain

P = L ′0 − L0
′ = L[0]− L[0]− c

24
+ c

24
,

H = L ′0 + L
′
0 = L[0]+ L[0]− c

24
− c

24
,

where we use bars to denote the anti-holomorphic quantities. Thus we obtain the familiar
expression for the partition function:

Z(τ ) = trHq L[0]−c/24 q L[0]−c/24 = trHq L0−c/24 q L0−c/24,

where the final equality follows from the isomorphism of VOAs V and V f . CFT or
string theory requires that Z(τ ) be a function only of the conformal equivalence class of
the torus C/(Z+ Zτ ) – in other words, Z(τ ) must be invariant under the action of the
modular group SL2(Z).

We are more interested here in the associated chiral quantities, since a VOA is the chiral
algebra of the theory. From the previous paragraph, together with the decomposition
(4.3.6) of H into modules of V ⊗ V ′, we can now read off the decomposition of Z(τ )
into chiral blocks (see (4.3.8b)) in a RCFT. Hence the chiral blocks for the torus are

trMq L0−c/24
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– that is, they are simply the graded dimensions of the irreducible V-modules, includ-
ing the strange shift by c/24. RCFT requires that this space must carry a projective
representation of the mapping class group of the torus SL2(Z).

By the same reasoning, we can calculate the n-point chiral blocks on the torus. For
L[0]-homogeneous vectors ui ∈ V[ki ], they are simply

e2π iz1k1 · · · e2π iznkn trM YM (u1, e2π iz1 ) · · · YM (un, e2π izn ) q L0−c/24, (5.3.17a)

where ui ∈ V are the inserted states and zi ∈ C are the points of insertion. As usual,
the definition for nonhomogeneous vectors follows by linearity. By construction these
functions automatically have period 1 in each zi , and it is an easy calculation to verify
that they also have period τ in each zi , and thus the insertion points zi lie on the torus
C/(Z+ Zτ ), as they should. In particular, the reader can verify that the one-point chiral
blocks are indeed what we call the one-point functions: for u ∈ V[k],

e2π izk trM YM (u, e2π iz)q L0−c/24 = χM (τ, u), (5.3.17b)

hence the name of the latter. By the general principles of RCFT, the space of say one-point
chiral blocks should carry a projective representation of the mapping class group of the
once-punctured torus, i.e. SL2(Z) (recall (4.3.9)), called modular data (Section 6.1.2).
In Section 7.2.4 we find that a much larger group acts naturally on these one-point
functions.

In (5.3.17) we inserted states ui from only the vacuum sector. More generally, however,
the states ui can come from any sector, that is be vectors in any module M ∈ �(V). In
that case the vertex operators YM should be replaced by intertwinersY (Definition 6.1.9).
Although this generalisation is fundamental to VOAs and RCFT, it is less so for Mon-
strous Moonshine (since V � is holomorphic).

The point of this subsection is to see in some detail how physics (RCFT) anticipates
the statement and proof of Zhu’s Theorem, to which we now turn.

5.3.5 The modularity of VOA characters

The most important property of the one-point functions is their modularity:

Theorem 5.3.8 (Zhu [574]) Suppose V is a C2-cofinite weakly rational VOA (see
Definitions 5.3.2 and 5.3.5), and let �(V) be the finite set of irreducible V-modules.
Then there is a representation ρ of SL2(Z) by complex matrices ρ(A) indexed by V-
modules M, N ∈ �(V), such that the one-point functions (5.3.13) obey

χM

(
aτ + b

cτ + d
, v

)
= (cτ + d)n

∑
N∈�(V)

ρ

(
a b
c d

)
M N

χN (τ, v) (5.3.18a)

for any v ∈ V obeying L[0] v = nv for some n ∈ N (see (5.3.16d)).

In particular, the graded dimensions (5.3.2) obey

χM

(
aτ + b

cτ + d

)
=

∑
N∈�(V)

ρ

(
a b
c d

)
M N

χN (τ ), ∀
(

a b
c d

)
∈ SL2(Z). (5.3.18b)
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In (5.3.18), the quantity ‘c’ is an entry of a matrix in SL2(Z) and should not be confused
with the central charge. As we saw last subsection, L[0] plays the role of L0 in a Virasoro
representation obtained from Ln by a change-of-variables z: V = ⊕nV[n], where n ∈ N
and V[n] is the eigenspace of L[0] with eigenvalue n. We can summarise (5.3.18a) by
saying that χM (τ, v) is a vector-valued modular form of weight n and multiplier ρ (recall
Definition 2.2.2). We will summarise the proof of Theorem 5.3.8 shortly; see [442] for
an independent argument.

One-point functions for the Moonshine moduleV = V� are studied in [155], where we
find that all meromorphic modular forms for SL2(Z) appear as some χV � (τ, v), provided
the obvious constraints (namely that they be holomorphic in H, have zero constant term
in their q-expansion and have at worst a simple pole at q = 0) are satisfied – clearly,
if the coefficient of qα in χM (τ ) is zero then it must vanish in all other χM (τ, v). Thus
although we see the Monster in the graded dimension of V �, we won’t see it in most
one-point functions of V �.

However, if v ∈ V is fixed by some subgroup Gv of the automorphism group ofV , then
the qα coefficient of χM (τ, v) relates to the representations of Gv and the eigenvalues of
o(v)|Mα

(see Question 5.3.3). Note that in each homogeneous space Vn �= 0 there will be
nonzero vectors invariant under the full automorphism group of V (why?). For example,
we read off from Table 7.3 that in the homogeneous spaces (V �)n of the Moonshine
module for 0 ≤ n ≤ 7, the M-invariant subspace has dimension 1, 0, 1, 1, 2, 2, 4, 4, 7,
respectively.

The representation ρ in Zhu’s Theorem is called modular data (Section 6.1.2). The

diagonal matrix ρ

(
1 1
0 1

)
is given in (4.3.10). The matrix S = ρ

(
0 −1
1 0

)
relates to

the fusion multiplicities N P
M N via Verlinde’s formula (6.1.1b) (at least for nice VOAs –

see Section 6.2.2). It is conjectured that, for sufficiently nice VOAs, the representation ρ
should be trivial on a congruence subgroup �(N ) (see the Congruence Property 6.1.7).
When this is true, each graded dimension χM (τ ) will be a modular function for that
�(N ).

If we weaken the hypothesis of weak rationality or C2-cofiniteness (recall that these
are conjectured to be equivalent) in Zhu’s Theorem, then we can still recover some kind
of modularity. In particular, physicists speak of quasi-rational CFTs, which are CFTs
with finite fusions; in examples it seems that they still obey some weakened form of
Zhu’s Theorem (see Section 6.2.2).

Note that Zhu’s Theorem is already strong enough to imply that the Moonshine module
V � must have graded dimension J (τ ). To see this, note that holomorphicity implies that

ρ(A) is a one-dimensional representation of SL2(Z). However, ρ

(
1 1
0 1

)
must be trivial

and thus

χV � (A.τ ) = χV � (τ ), ∀A ∈ SL2(Z).

We know χV � (τ ) must be holomorphic in H (all graded dimensions are), has constant
term 0 and a simple pole at the cusp. Therefore it equals J (τ ). See also Question 5.3.4.
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The proof of the Hauptmodul property for the other McKay–Thompson series Tg is much
more subtle, unfortunately.

Zhu’s Theorem rigorously generalises RCFT modularity to that of any sufficiently
nice VOA. Its proof is long and complicated, but follows closely the intuition of CFT.

Zhu first defines abstractly a space of sequences (S1, S2, . . .) of functions, where
each Sn maps n-tuples (a1, . . . , an) ∈ V⊗n to meromorphic functions of (z1, . . . , zn, τ ) ∈
Cn ×H. They obey several conditions, for example they are doubly-periodic in each
variable zi , with periods 1 and τ . Each function Sn is what we would call a chiral block
on the torus C/(Z+ Zτ ) with n marked points at zi ; it lies in the space B

(1,n)
V,...,V . Zhu’s

definition abstracts out the manifest properties of this space. It is immediate from his
definition that SL2(Z) acts on this space, in exactly the way we would expect from
CFT. Verlinde’s formula (6.1.2) tells us that the dimensions of these spaces should be
independent of the number n of punctures, and in fact CFT tells us that a canonical basis
for B

(1,n)
V,...,V should be

(a1, . . . , an) �→ trM
(
YM (a1, e2π iz1 ) · · · YM (an, e2π izn ) q L0

)
(5.3.19)

(appropriately normalised), for each irreducible V-module M . However, showing rigor-
ously that these functions (5.3.19) in fact satisfy his definition, and that they do indeed
span his space, are both more difficult. But we see that the modularity in Zhu’s Theorem
arises through that SL2(Z) action on the space of chiral blocks.

The modularity of the Jacobi characters χ J
M (τ, v,w) of Definition 5.3.7 is now easy.

Theorem 5.3.9 Let V be a weakly rational C2-cofinite VOA. Then the Jacobi charac-
ters χ J

M (τ, v,w) are holomorphic in H for any fixed v,w, and obey

χ J
M

(
aτ + b

cτ + d
,

v

cτ + d
, w − c

(v|v)

2(cτ + d)

)
=

∑
N∈�(V)

ρ

(
a b
c d

)
M N

χ J
N (τ, v,w),

(5.3.20)

for all

(
a b
c d

)
∈ SL2(Z), v ∈ V1, and w ∈ C, where ρ is as in Theorem 5.3.8 and

where the inner-product (v|v) is given by v(1)v = −(v|v)1.

Again, ‘c’ in (5.3.20) refers to a matrix entry and not the central charge. The transfor-
mation on the left side of (5.3.20) is exactly that of, for example, Jacobi theta functions.
Theorem 5.3.9 is an easy corollary of the main theorem of [426] (which in turn is a
corollary of the proof of Theorem 5.3.8 as given in [574]). In particular, define

Z M (τ, u, v) = trM e2π i (o(v)−(v|u)/2)q L0+o(u)−(c+12(u|u))/24, (5.3.21a)

for any u, v ∈ V1, so χ J
M (τ, v,w) = exp[2π iw] Z M (τ, 0, v). Then provided o(v)u = 0

(i.e. u and v commute in the Lie algebra V1), [426] obtained the transformation law

Z M

(
aτ + b

cτ + d
, u, v

)
=

∑
N∈�(V)

ρ

(
a b
c d

)
M N

Z N (τ, cv + du, av + bu), (5.3.21b)
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for any

(
a b
c d

)
∈ SL2(Z). To prove (5.3.20), it suffices to prove it for the two generators(

1 1
0 1

)
and

(
0 −1
1 0

)
, and this follows directly from (5.3.21b). Holomorphicity of

Z M follows from Proposition 1.8 of [151].

5.3.6 Twisted #5: twisted modules and orbifolds

Last subsection we saw how the modularity of VOA modules permits a one-paragraph
proof that the graded dimension of the Moonshine module V � must equal J (τ ). How
about the other McKay–Thompson series? In this subsection we find that the notion of
V-module must be generalised to the equally fundamental notion of twisted V-modules.
Twisted modules are vaguely reminiscent of projective representations of groups, but
while a projective representation of G is a true representation of some central extension
of G, a twisted V-module is a true module of a vertex operator subalgebra of V . Most
groups don’t have twisted modules, and VOAs don’t seem to have a natural notion of a
projective module, but Lie algebras have a foot in each camp and as we see in Chapter 3
have both kinds of modules.

Far from being an esoteric development, twisted modules are crucial to Monstrous
Moonshine and absolutely central to the whole theory. In CFT and string theory, they
arise in the important orbifold construction (Section 4.3.4). Twisted modules of Lie alge-
bras – a baby example of twisted modules of VOAs – are discussed in Sections 1.5.4
and 3.4.1. Moonshine is the relation of VOAs to modular functions; the modular func-
tion analogue of this twisting has long been understood and also plays a central role
(Section 2.3.3).

Fix a VOA V and any automorphism g ∈ Aut(V) of order N . We can define g-
twisted modules [185], by blending together the definitions in Sections 3.4.1 and 5.3.1.
In particular, decompose V into eigenspaces of g: V = ⊕N−1

j=0 V j where V j = {v ∈
V | g.v = ξ

− j
N v}. A g-twisted V-module (M, YM ) has a C-grading M = ⊕α∈C Mα , with

dim Mα <∞, as in Definition 5.3.1, as well as a linear map V → End[[z±1/N ]], written
YM (u, z) =∑

r∈Z/N u(r )z−r−1, such that (5.3.1a), (5.3.1c) hold,

Y (u, z) =
∑

r∈− j/N+Z

u(r )z
−r−1, ∀u ∈ V j , (5.3.22a)

and (5.3.1b) becomes

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1) YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2) YM (u, z1)

= z−1
2

(
z1 − z0

z2

)− j/N

δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2), (5.3.22b)

where u ∈ V j . We say two g-twisted V-modules M, N are isomorphic if there is an
isomorphism ϕ : M → N satisfying YM (ϕv, z) = YN (v, z)ϕ for all v ∈ N . Note that an
e-twisted V-module (e being the identity of G) is an ordinary V-module.
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Any h ∈ Aut(V) permutes the twisted V-modules as follows. Let M be g-twisted, and
for each v ∈ V define

hYM (v, z) := YM (h.v, z).

Then (M, hYM ) is an h−1gh-twisted V-module. When h and g commute, we say the
module (M, YM ) is h-stable if (M, YM ) and (M, hYM ) are isomorphic. We call h ∈ Aut(V)
an inner automorphism of V , and write h ∈ Inn(V), if every untwisted V-module is
h-stable.

Now let M be an irreducible g-twisted V-module, and G any group of automorphisms
h ∈ Aut(V) commuting with g such that M is h-stable for all h ∈ G. Then for each h ∈
G, we get an automorphism ϕ(h) : M → M of M , satisfying ϕ(h) YM (v, z)ϕ(h)−1 =
YM (h.v, z). Hence we can perform Thompson’s trick (0.3.3) and write

Z(M, h; τ ) := q−c/24 trMϕ(h) q L0 . (5.3.23)

TheseZ(M, h)’s are the building blocks of the graded dimensions of various eigenspaces
of h in M : for example, if h has order m, then the subspace of M fixed by the automor-
phism ϕ(h) will have graded dimension m−1 ∑m

i=1 Z(M, hi ).
This assignment ϕ does not necessarily define a representation of G in End(M).

However, ϕ(h2)−1ϕ(h1)−1ϕ(h1h2) clearly commutes with all vertex operators YM (v, z)
and so by irreducibility of M is a scalar multiple cg(h1, h2)I of the identity. Equivalently,
ϕ is a projective representation of G:

ϕ(h1h2) = cg(h1, h2)ϕ(h1)ϕ(h2). (5.3.24)

For any h, k ∈ CG(g) (i.e. commuting with g), ϕ(khk−1) = αk,hϕ(k)ϕ(h)ϕ(k)−1 for
some scalar αk,h , and thus Z(M, khk−1; τ ) = αk,hZ(M, h; τ ) by the cyclic property
of trace. This means that, for fixed g, it suffices to restrict to one h from each CG(g)-
conjugacy class. By a similar argument (Question 5.3.6), we get thatZ(M, h; τ ) vanishes
identically, unless for all k ∈ CG(g) commuting with h, the 2-cocycle of (5.3.24) satisfies
cg(h, k) = cg(k, h). Thus we can further restrict to those h.

Conjecture 5.3.10 [136], [138], [152] Suppose V is a weakly rational VOA, with
exactly n irreducible V-modules M1, . . . , Mn. Fix any finite subgroup G of Inn(V).
Then:
(a) For any g ∈ Inn(V), there will be exactly n irreducible g-twisted V-modules

Mg
1 , . . . , Mg

n . Moreover, each Mg
i has a conformal weight hg

i ∈ Q as in Lemma 5.3.3,
and any g-twisted V-module is completely reducible into a direct sum of the Mg

i .

Labelling the modules appropriately, we get (Mg
i , hYMg

i
) ∼= (Mh−1gh

i , Y
Mh−1gh

i
). This

defines a projective representation ϕ(h) of the centraliser CG(g) as in (5.3.24).
(b) For each commuting pair g, h ∈ G, define Z i

(g,h)(τ ) := Z(Mg
i , h; τ ). Then each

Z i
(g,h)(τ ) is holomorphic in H, and is a modular function for (i.e. is fixed by) some con-

gruence subgroup. For any A =
(

a b
c d

)
∈ SL2(Z), there exist scalars a(A, g, h)i j
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such that

Z i
(g,h)

(
aτ + b

cτ + d

)
=

n∑
j=1

a(A, g, h)i j Z j
(ga hc,gbhd )(τ ). (5.3.25)

(c) LetVG be the vertex operator subalgebra consisting of all v ∈ V fixed by all elements
of G. Then the C-span of the graded dimensions of all nontwisted VG-modules will
equal that of allZ i

(g,h)(τ ) for commuting g, h ∈ G, and the total number of irreducible
VG-modules will equal n times the sum, over representatives g of all conjugacy
classes in G, of the number of inequivalent irreducible projective representations of
CG(g) with 2-cocycle cg as in (5.3.24).

(d) In the special case that V is holomorphic (i.e. n = 1), Inn(V) = Aut(V) and the
coefficients ai j in (5.3.25) are roots of unity. There is a 3-cocycle α ∈ H 3(G,U1(C))
such that the 2-cocycle cg of (5.3.24) is given by

cg(h1, h2) = α(g, h1, h2)α(h1, h2, g)α(h1, g, h2)∗.

Some progress towards this important conjecture is provided by, for example, [150].
Monstrous Moonshine is interested in the holomorphic case (i.e. n = 1), which is by far
the best understood; we return to it in Section 6.2.4. The number of irreducible projective
representations in (c) is described in Section 3.1.1. We find in (d) that the cohomology
group H 3(G,U1(C)) ∼= H 4(G,Z) (trivial action of G on the coefficients) classifies all
the possibilities for the orbifold; the analogous result for nonholomorphic VOAs is much
more subtle, being more sensitive to the structure of V , and is still poorly understood.

Part (c) leads us to a Galois theory for VG . But considering the depth of Jones’ Galois
theory for subfactors, and the ‘Galois theory’ for lattices sketched in Section 2.3.5, it
is clear that a far more interesting theory is possible for VOAs. It would certainly be
interesting to develop this.

The easiest examples of the orbifold construction are of a self-dual lattice VOAV(L) by
a subgroup G of the automorphism group of L (see e.g. [150]). We learn in Section 5.2.2
that there is a deep analogy between lattices and VOAs. This orbifold construction of
VOAs corresponds directly to the shift construction of lattices outlined in Section 2.3.3.

The most famous VOA, the Moonshine module V �, was the original orbifold. Frenkel–
Lepowsky–Meurman [201] obtained it as the orbifold of the Leech lattice VOA V(�)
by the ±1-symmetry of �. Since � is self-dual, V(�) is holomorphic. As predicted by
Conjecture 5.3.10, there is a unique −1-twisted V(�)-module. We discuss this orbifold
more in Sections 4.3.4 and 7.2.1; see also [201] for details.

Question 5.3.1. Let V be any VOA, and let W be a vector space and T : V →W be any
isomorphism of vector spaces. Use this linear map T to carry the VOA structure on V
to one on W .

Question 5.3.2. LetV be any VOA and letV[n] be the grading induced by L[0] in (5.3.16d).
Prove for any N ≥ 0, that

⊕N
n=0Vn = ⊕N

n=0V[n].
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Question 5.3.3. Find an expression for the coefficient of the qα term in the one-point
function χM (τ, v), using the representation theory of the stabiliser Gv < AutV and the
eigenvalues of the zero-mode o(v) restricted to the homogeneous space Mα .

Question 5.3.4. Let V be any holomorphic weakly rational C2-cofinite VOA with central
charge c = 24. Prove that its graded dimension χV (τ ) must equal J (τ )+ c, where the
constant c is dimV1.

Question 5.3.5. (a) Relate the Jacobi character χ J
V(L) of a lattice VOA V(L), for L

positive-definite and with even integer inner-products, and the theta series
L of (2.3.7).
(b) Relate the Jacobi character χ J

M(λ) of an irreducible module of an integrable affine
VOA V(g, k), for g simple, with the affine algebra character χλ of (3.2.9a).

Question 5.3.6. Let M be g-twisted. Show that the seriesZ(M, h) of (5.3.23) is identically
0, unless h ∈ CG(g) has the property that, for all k ∈ CG(g) commuting with h, cg(h, k) =
cg(k, h). (Hint: first show that Z(M, hk) is identically 0 if cg(h, k) �= cg(k, h); then use
the 2-cocycle condition (3.1.1b).)

5.4 Geometric incarnations

Vertex (operator) algebras are a deep construct and, in spite of their complexity, are
here to stay. In this section we describe some connections with geometry. Section 5.4.1
describes the programme to rigorously construct CFTs in Segal’s sense (Section 4.4.1),
from VOAs. Section 5.4.2 reviews the geometric side of vertex operator superalgebras.

5.4.1 Vertex operator algebras and Riemann surfaces

The introductory chapter stated that the physics of Moonshine exploits the duality
between Hamilton’s and Feynman’s pictures of CFT. Manin put it this way back in
1985:

The quantum theory of (super)strings exists at present in two entirely different
mathematical fields. Under canonical quantization it appears to a mathematician as
the representation theory of algebras of Heisenberg, Virasoro, and Kac–Moody and
their superextensions. Quantization with the help of the Polyakov path integration
leads to the analytic theory of algebraic (super)curves and their moduli spaces,
to invariants of the type of the analytic curvature, etc. Establishment of direct
mathematical connections between these two forms of a single theory is a big and
important problem. [402]

Our best answer to Manin is the theory of geometric vertex operator algebras.
Note that any time we have an algebraic structure with a binary operation (e.g.

‘product’) ab, we can express multiple products using binary trees, which keep track of
the brackets. For example, the binary trees in Figure 5.1 correspond to the products XY
and A((BC)D), respectively. The external (i.e. valance 1) vertices are assigned vectors,
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X Y

A

B C

D

Fig. 5.1 Some binary trees.

A B C D
Fig. 5.2 Associativity.

while each internal vertex corresponds to a single product. Different algebraic structures
can be axiomatised from this ‘geometric’ point of view. For instance, if the product is
associative (e.g. we have a group), then it doesn’t matter where we place the brackets –
for example, the above ABCD-binary tree can be replaced with the tree in Figure 5.2.

More interesting for us are the geometrical axioms for Lie algebras [294]. Let V be any
Lie algebra. Then to any binary tree with n legs corresponds a linear map ϕ from n copies
V ⊗ · · · ⊗ V of the vector space V , to V . The map corresponding to the ABCD-binary
tree of Figure 5.1 takes the Lie algebra vectors A, B,C, D to the nested Lie bracket
[A[[BC]D]]. It is then fairly straightforward to encode all properties of the Lie algebra
in the language of trees. For example, anti-commutativity says that if we flip the two
descendents of an inner vertex of the tree – for example, in Figure 5.1 flipping D with
the 3-vertex tree containing B and C – then the corresponding maps ϕ differ by a factor
of −1. Gluing the root (uppermost vertex) of one tree to an external vertex of another
corresponds in the Lie algebra to inserting one nested bracket into the middle of another.
The only nontrivial property is anti-associativity (see Question 5.4.2). The result is a
formulation of Lie algebra that is completely equivalent to the usual algebraic one [294].

Now, if we ‘two-dimensionalise’ that definition of ‘geometric Lie algebra’, we get
something called a geometric VOA [295] that is equivalent to the ‘algebraic’ VOA of
Definition 5.1.3. In place of binary trees (Figure 5.1), we have spheres with tubes (Fig-
ure 5.3). Equivalently, a sphere with n tubes is the Riemann sphere with n marked points
and a choice of local coordinate at each point – an enhanced surface of type (0,n) (Sec-
tion 2.1.4). The moduli space of binary trees with n legs is a finite set, but the moduli
space of spheres with n tubes is an infinite-dimensional complex space. To each such
sphere with tubes we get a linear map ϕ from n copies of our vector space V (which
is our VOA) to V (or rather a certain completion of V – a complication caused by the
infinite-dimensionality of V). A geometric VOA satisfies meromorphicity requirements,
and most importantly the sewing axiom. In fact this map ϕ is Segal’s functor S described
in Section 4.4.1.
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X Y

A

B C

D

Fig. 5.3 The surfaces corresponding to Figure 5.1.

The point is that the resulting notion of geometric VOA is equivalent to that of algebraic
VOA [295], though it takes considerable effort to show this. Thus a VOA is an ‘algebra’
with a two-dimensional analogue of a binary operation. In particular, let Pw be the
simplest pair-of-pants, namely the Riemann sphere PC1 with marked points 0,∞ and w
and local coordinates given by z, 1/z and z − w (z being the global coordinate on C). Then
the formal series Y (u, w)v corresponds to S(Pw)(u ⊗ v). On the other hand, consider the
annulus, that is the Riemann sphere with marked points 0 and∞, with local coordinates
z and exp[−εz−1d/dz z−1]. Recalling the realisation −z−1d/dz = �−2 ∈Witt and the
formulaω = L−21, we can recover the conformal vectorω by differentiating with respect
to ε the map obtained from S. The Virasoro algebra is fundamental here, capturing
the effect of changing local coordinates (recall (5.3.15c)), and is responsible for the
meromorphicity in the geometric VOA. The Jacobi identity (5.1.7a) is obtained from
the sewing axiom. This equivalence relates formal power series (algebra) to distribution
theory (analysis). It proves that the chiral blocks 〈v, Y (u1, z1) · · · Y (un, zn)v′〉 will be
meromorphic, except for poles at zi = z j .

As mentioned before, a group corresponds to trees such as Figure 5.2. We can also
two-dimensionalise that, and obtain what Huang calls a vertex group [293]. The easiest
examples are C× and the enhanced moduli space M̂0,1. Vertex groups should be to VOAs
what Lie groups are to Lie algebras.

The motivation for this deep work is to construct examples satisfying Segal’s defini-
tions of CFT and modular functor. We know at present no nontrivial examples, although
the general belief is that any sufficiently nice VOA will provide one. Huang’s work [295]
establishes this for genus 0, and more recently he has pushed it to genus 1 [297].

We end this subsection on a more speculative note [560], [295]. According to Wit-
ten, to understand string theory conceptually, we need a new analogue of Riemannian
geometry. In contrast to the more classical ‘particle-math’, there is a more modern
‘string-math’. We have the real numbers (particle physics) versus the complex numbers
(string theory); binary trees versus spheres with tubes; Lie algebras versus VOAs; the
representation theory of Lie algebras versus RCFT, etc. What are the stringy analogues
of calculus, ordinary differential equations, Riemannian manifolds, the Atiyah–Singer
Index theorem, . . . ? Huang suggests that just as we could imagine Moonshine as a mys-
tery that is explained in some way by RCFT, perhaps the stringy version of calculus would
similarly explain the mystery of two-dimensional gravity, stringy ODEs would explain

https://doi.org/10.1017/9781009401548.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.006


Geometric incarnations 351

the mystery of infinite-dimensional integrable systems, stringy Riemannian manifolds
would help explain the mystery of mirror symmetry, and the stringy index theorem would
help explain the elliptic genus (for this latter possibility, consider the work of Tamanoi
reviewed next subsection).

What makes this more subtle is that complexification is not unique. To give a simple
example, S1 can be thought of as the real projective space P1(R) and as the Lie group
SO2(R). The obvious complexification of Pn(R) is Pn(C). An obvious complexification
of SOn(R) is SOn(C). But if we think of On(R) more geometrically as the real matrices
that preserve the quadratic form x2

1 + · · · + x2
n , then its complexification should be those

complex matrices that preserve the Hermitian form |x1|2 + · · · + |xn|2, i.e. Un(C). Thus
the complexifications of S1 in these cases would be the 2-sphere P1(C), the cylinder
SO2(C) (i.e. the multiplicative group C/{0}) and the 3-sphere SU2(C) (as a real Lie
group). So the specific complexification obtained depends on the context. In all cases,
the way to proceed is to convert the defining relations of the given object into symbols
that make sense over C.

What sense can we make of the statement that the complexification of a binary tree is a
sphere with punctures? Consider the simplest case: the segment 0 ≤ x ≤ 1. This can be
thought of geometrically as the locus (a, b, c) ∈ R3 satisfying a + b2 − 1 = a − c2 = 0.
Over the complex numbers the parameter ‘a’ is redundant, and this locus has the obvious
complexification w2 + z2 = 1. We know this is a sphere with two punctures, that is, a
cylinder as we would like it to be.

Incidentally, Arnol’d speculates that there is in fact a triality: the reals, the complex
numbers and the quaternions. He discusses several examples in [18], as well as some
applications of this thought. This suggests that there is a third structure, generalising
vertex algebras much as vertex algebras generalise Lie algebras.

5.4.2 Vertex operator superalgebras and manifolds

Through the work of Witten and others, we have discovered that much can be learned
about a space X, by studying a string theory living in X . Much of this is reviewed in [291].
For example, to a Calabi–Yau manifold X [299], [571] and an element of its complexified
Kähler cone, string theory associates two N = 2 superconformal field theories, called the
A and B models (which focus on respectively the Kähler and complex structures of X ).
To clarify (and rigorise) these ideas, Malikov–Schechtman–Vaintrob [401] suggested
how one may construct, given X , the vertex algebra of the N = 2 superconformal field
theory (the A model) associated with X . This work is clearly fundamental. We can only
sketch it here.

To any smooth complex variety X, reference [401] associates a sheaf of (N = 1) vertex
operator superalgebras, called the chiral de Rham complex MSV X . In other words, to
every open set U ⊂ X , there is a near-vertex operator superalgebra MSV X (U ) (the
‘space of sections of MSV X over U ’). Whenever sets U ⊂ V are open, there is a
surjective restriction map r V

U : MSV X (V ) →MSV X (U ), which is a homomorphism
of near-vertex operator superalgebras. We briefly discuss vertex operator superalgebras
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in Section 5.1.3. These near-vertex operator superalgebras are bi-graded, by commuting
operators L0 (the Hamiltonian) and J0 (the fermionic charge) with eigenvalues N and Z,
respectively. They form a complex in the sense that there is a differential Q B RST obeying
Q2

B RST = 0 and increasing fermionic charge by 1. When the open set U is homeomorphic
to an open ball in Cn , then MSV X (U ) is essentially the tensor product of n copies of
what string theory calls a bosonic (βγ ) ghost system (similar to the Heisenberg VOA),
with n copies of a (bc) fermionic ghost system. The physics of these ghost systems is
described in [463].

The prototypical example of ‘sheaf’ is the structure sheaf OX , which associates
with each open set U the space of functions f : U → C. The prototypical example of
‘complex’ is the de Rham complex, given by the space of differential forms on X , with
a differential d obeying d2 = 0 and taking p-forms to p + 1-forms. Of course the point
of a complex is to take the cohomology H∗ = ker d/im d. The books [537] are a read-
able introduction to algebraic geometry; in particular section 2.2 provides elementary
examples of sheaves, and section 6.1 treats sheaf cohomology. For a sheaf F over X ,
H 0(X,F) is always the global section F(X ), and it is common for the other Hi (X,F) to
all vanish. The name ‘chiral de Rham complex’ was chosen because the L0 = 0 subspace
can be identified with the familiar space of differential forms (‘chiral’ refers to the chiral
algebra of Section 4.3.2 or the chiral ring discussed in [291]).

In the case ofMSV X , the sheaf cohomology H∗(X,MSV X ) yields the global section
MSV X (X ), which is a near-vertex operator superalgebra. The case where X is Calabi–
Yau is the most interesting, as MSV X (X ) has N = 2 (rather than merely N = 1) super-
symmetry, which makes it much richer.MSV X (X ) is a fundamental invariant associated
with X , and much information of X can be recovered from it. For example, the usual de
Rham cohomology H ∗

DR(X ) of X is H∗(MSV X (X ); Q B RST ). For another example, the
elliptic genus (discussed shortly) of X equals trMSV X (X )q L0 y J0 [81].

Elliptic genus appeared in the mid-1980s in both string theory and topology. For
details see, for example, [287], [499], [523]. In Thom’s cobordism ring �, elements are
equivalence classes of cobordant manifolds, addition is connected sum and multiplication
is Cartesian product. The universal elliptic genus φ(M) is a ring homomorphism from
Q⊗� to the ring of power series in q , which sends n-dimensional manifolds with spin
connections (see [369] for the relevant geometry) to a weight n/2 modular form of �0(2)
with integer coefficients. Several variations and generalisations have been introduced, for
example, the Witten genus assigns spin manifolds with vanishing first Pontrjagin class
a weight n/2 modular form of SL2(Z) with integer coefficients. On a finite-dimensional
manifold M , the index of the Dirac operator (in the heat kernel interpretation) is a path
integral in supersymmetric quantum mechanics, that is an integral over the loop space
LM = {γ : S1 → M}; the string theory version of this is that the index of the Dirac
operator on LM should be an integral over L(LM), that is over smooth maps of tori
into M , and this (heuristically) is just the elliptic genus, and explains why it should be
modular.

The important rigidity property of the Witten genus with respect to any compact Lie
group action on the manifold is a consequence of the modularity of the characters of affine
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algebras (our Theorem 3.2.3) [388]. In physics, elliptic genera arise as partition functions
of N = 2 superconformal field theories [561]. The Witten genus (normalised by η8) of
the Milnor–Kervaire manifold M8

0 , an eight-dimensional manifold built from the E8

diagram, equals j
1
3 [287]. Also, the elliptic genus of even-dimensional projective spaces

P2n(C) unexpectedly has only nonnegative coefficients and in fact equals the graded
dimension of a certain vertex algebra [400]; this suggests interesting representation-
theoretic questions in the spirit of Monstrous Moonshine. Exciting developments are
described in [517], including relations with von Neumann (sub)factors.

Related to MSV X must be the work of Tamanoi [521]. The index of an operator d
is ker d − coker d; we can interpret this geometrically as the superdimension associated
with the ‘superpair’ (ker d; coker d) of vector spaces. This is what Tamanoi does with the
elliptic genus. In particular, to each closed Riemannian manifold X he associates a vertex
operator superalgebra T (X ), determined from its geometry. It has a nonnegative half-
integer grading and central charge N = dim X/2. The Riemannian metric of X yields
the conformal vector ω. In the special case of a Kähler manifold, the Kähler forms (i.e.
the closed real differential forms of type (1,1)) form a level 1 representation of the affine
algebra DN

(1). Again, the elliptic genus is recovered as the graded dimension of T (X ).
It is obviously desirable to relate these invariants T (X ) and MSV X (X ). We return to
elliptic genus in Section 7.3.7.

Question 5.4.1. Find a complexification for the Möbius band.

Question 5.4.2. In a non-associative algebra, the ambiguous product v1 · · · vn can only
be evaluated when the n − 1 pairs of brackets are placed. Let L be any Lie algebra. Prove
that for any n ≥ 3, L has an identity of the form

v1 · · · vn = v1vnv2v3 · · · vn−1 + · · · + v1 · · · vivnvi+1 · · · vn−1 + · · · + v1v2 · · · vn−1vn.

More precisely, for any choice of bracketing on the left, prove that there is a choice of
bracketing for each of the n − 1 terms on the right such that the resulting formula holds
for any vi ∈ L . For example, [[v1v2]v3] equals [[v1v3]v2]+ [v1[v2v3]] and [[v1[v2v3]]v4]
equals [[v1v4][v2v3]]+ [v1[[v2v4]v3]]+ [v1[v2[v3v4]]].

https://doi.org/10.1017/9781009401548.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.006



