SETS WITH NO EMPTY CONVEX 7-GONS

ΒY

J. D. HORTON*

ABSTRACT. Erdös has defined g(n) as the smallest integer such that any set of g(n) points in the plane, no three collinear, contains the vertex set of a convex *n*-gon whose interior contains no point of this set. Arbitrarily large sets containing no empty convex 7-gon are constructed, showing that g(n) does not exist for $n \ge 7$. Whether g(6) exists is unknown.

Esther Klein raised the following combinatorial geometry problem [5]. For $n \ge 3$, let f(n) be the smallest integer such that for any set of f(n) points in the plane, no three collinear, contains the vertex set of a convex *n*-gon. Determine f(n). It is easy to show that f(3) = 3 and f(4) = 5. That f(5) = 9 was proved in [4]. Erdös and Szekeres [1], [2] determined that $2^{n-2} + 1 \le f(n) \le {\binom{2n-4}{n-2}} + 1$.

Erdös has raised a similar question. For $n \ge 3$, define g(n) to be the smallest integer such that any set of g(n) points in the plane, no three collinear, contains the vertex set of a convex *n*-gon whose interior contains no point of the set. We call a *n*-gon, with no points of the set in its interior, *empty*. Again, g(3) = 3 and g(4) = 5. Harborth [3] has proved that g(5) = 10. However, it is not known whether g(6) exists. The main result of this note is that g(7), and hence g(n) for all $n \ge 7$, does not exist.

We construct, for any k, a set of 2^k points with no empty convex 7-gon. Let $a_1a_2 \cdots a_k$ be the binary expansion of the integer i, $0 \le i < 2^k$. Note that leading 0's are not omitted. Let $c = 2^k + 1$, and define $d(i) = \sum a_j c^{i-1}$, summing from j = 1 to j = k. Let p_i be the point (i, d(i)), and define S_k to be the set of points $\{p_i \mid i = 0, 1, \ldots, 2^k - 1\}$. Observations:

- (a) $\{p_i \mid i < 2^{k-1}\} =$ the left half of $S_k = L$.
- (b) $\{p_i \mid i \ge 2^{k-1}\}$ = the right half of $S_k = R$, which is a translate of *L*.
- (c) $\{p_i \mid i \text{ is even}\} = \text{the bottom half of } S_k = B.$
- (d) $\{p_i \mid i \text{ is odd}\} = \text{the top half of } S_k = T$, which is a translate of *B*.
- (e) *L*, *R*, *B*, and *T* are all scaled translates of each other. For example, halving the first coordinate while multiplying the second coordinate by *c*, takes *B* onto *L*.
- (f) The 180° rotation of the plane about $((2^k 1)/2, \sum c^i/2)$ takes T onto B.

© Canadian Mathematical Society 1983.

Received by the editors August 31, 1982 and, in revised form, December 3, 1982.

^{*} Research financially supported by NSERC grant no. A5376.

¹⁹⁸⁰ Mathematics Subject Classification: 52A40.

Keywords: Combinatorial geometry, convex polygon.

- (g) All points of T are above any line joining two points of B. The value of c was chosen large enough to make this true. Similarly, all points of B are below any line joining two points of T.
- (h) If *i* and *j* both have the same last *x* digits in their binary expansions, and *h* has a different sequence of *x* rightmost digits, then whether p_h is above or below the line joining p_i and p_j is determined by the sequences of the last *x* digits.

Consider any empty convex *n*-gon A in S_k . We may assume A is contained entirely in neither T nor B. Otherwise if A is contained in B, apply the linear transformation that takes B onto L. A will be transformed into an empty convex *n*-gon in L. Similarly, if A is contained in T, apply the linear transformation that takes T onto L. Repeat this procedure until a transformed image of A meets both T and B.

Next, consider how many points of A can be in B. Assume p_i and p_i are in $A \cap B$. By (g) above, no point p_h of B with i < h < j, can be above the line segment joining p_i and p_j , since otherwise no point of T could be in A. As well, I claim that d(h) < d(i) and d(h) < d(j). Since p_h is below the line joining p_i and p_i , clearly one of these statements is true. Assume d(h) < d(i), but d(h) > d(i). Let x be the position of the right-most digit at which h and i differ in their binary expansions; let y be the position of the right-most digit at which h and j differ. In both cases, the number with the larger functional value must have a 1 in the position, and the other number a 0. If x < y then p_i must be below the line joining p_i and p_h , by observation (h). But then p_h is above the line joining p_i and p_i , a contradiction. Hence we can assume that y < x. In this case, consider $l = i - 2^{k-x}$. The right-most position in which the binary expansions of l and j differ is x, where l has a 1 and j has a 0. On the other hand, land *i* must agree in the last k - x positions. By observation (h), p_i is below the line joining p_i and p_l . But since $j-i>j-h \ge 2^{k-y} > 2^{k-x} = j-l$, i < l < j. Then p_i must be both above and below the line joining p_i and p_i , a contradiction. Similarly, d(j) < d(h) < d(i) leads to a contradiction. Therefore d(h) < d(i) and d(h) < d(i).

If $A \cap B$ contained four points i < h < l < j, then d(h) < d(l) and d(l) < d(h). Hence $A \cap B$ cannot contain more than three points. By observation (f) above, $A \cap T$ cannot contain more than three points either. Hence A has no more than 6 points.

Whether g(6) exists is still unknown, although the author believes that g(6) does exist.

I wish to acknowledge D. Avis of McGill University who first mentioned this problem to me, and with whom I had some interesting discussions.

REFERENCES

1. P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463–470.

J. D. HORTON

2. P. Erdös and G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest 3-4 (1960-1) 53-62.

3. H. Harborth, Konvexe Fünfecke in ebenen Punktmenger, Elem. Math. 33 (1978) 116-118.

4. J. D. Kalbfleisch, J. G. Kalbfleisch, and R. G. Stanton, A combinatorial problem on convex n-gons, Proc. Louisiana Conf. on Combinatorics Graph Theory, and Computing, Baton Rouge (1970), 180-188.

5. Wm. Moser, Research Problems in Geometry, McGill University, (1981) #29.

SCHOOL OF COMPUTER SCIENCE UNIVERSITY OF NEW BRUNSWICK

FREDERICTON, NEW BRUNSWICK, E3B 5A3

484