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Abstract We prove the following two new optimal immersion results for complex projective space.
First, if n ≡ 3 mod 8 but n �≡ 3 mod 64, and α(n) = 7, then CP n can be immersed in R4n−14. Second, if
n is even and α(n) = 3, then CP n can be immersed in R4n−4. Here α(n) denotes the number of 1s in the
binary expansion of n. The first contradicts a result of Crabb, which said that such an immersion does
not exist, apparently due to an arithmetical mistake. We combine Crabb’s method with that developed
by the author and Mahowald.
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1. Main theorems

We prove the following two new optimal immersion results for 2n-dimensional complex
projective space CPn.

Theorem 1.1. If n ≡ 3 mod 8 and n �≡ 3 mod 64, and α(n) = 7, then CPn can be
immersed in R

4n−14.

Theorem 1.2. If n is even and α(n) = 3, then CPn can be immersed in R
4n−4.

Here and throughout, α(n) denotes the number of 1s in the binary expansion of n.
Theorem 1.1 contradicts a result of Crabb [3]. In § 2, we prove Theorem 1.1 by an adap-
tation of Crabb’s argument, and point out what we believe to be his mistake, apparently
in the arithmetic. We prove Theorem 1.2 in § 3.

We now summarize what we feel to be the status of the immersion question for CPn.
In addition to incorporating the two new immersion results above, we list as unresolved
one immersion result claimed by Crabb. We will discuss our reason for doing so in § 4.
Despite our feeling that two of Crabb’s many results are flawed, we feel that his overall
approach, combining K-theory with obstruction theory, is sound; we have checked the
details of his immersion results cited in Theorem 1.7. Now we begin our summary.

There are three families of results that apply to all values of α(n). All known non-
immersion results follow from the first two.
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Table 1. Immersions and non-immersions when n is even (see Theorem 1.6)

α(n) d e

2 2 3
3 4 5
4 n �≡ 10 (mod 16) 7 8
4 n ≡ 10 (mod 16) 7 9
5 9 10
6 10 11
7 11 13
8 n �≡ 22(32) and �≡ 132(256) 14 16
8 n ≡ 22(32) or ≡ 132(256) 14 17

> 8 14

Theorem 1.3 (Sanderson and Schwarzenberger [13]). CPn cannot be immersed
in R

4n−2α(n)+ε, where

ε =

⎧⎪⎨⎪⎩
0 if n is even and α(n) ≡ 1 (mod 4),

1 if n is even and α(n) ≡ 2, 3 (mod 4),

−1 otherwise.

Theorem 1.4 (Sigrist and Suter [14]). If CPn immerses in R
4n−2α(n), then

ν(cα(n)−1) = ν(cα(n)) < ν(ci) for all i < α(n) − 1,

where
∑

cit
i = ((log(1 + t))/t)2n+1−α(n).

Here and throughout, ν(−) denotes the exponent of 2 dividing an integer. The specific
results obtainable from Theorem 1.4 were determined for α(n) � 5 in [14] and for
α(n) = 6 and 7 (with a mistake when α(n) = 7) in [3]. In § 5, we derive these for
α(n) = 8; the results have been incorporated into Tables 1 and 2.

For large values of α(n), the best immersion results are obtained in the following
embedding theorem, which relied on earlier results of Milgram.

Theorem 1.5 (Mukherjee [11]). CPn can be embedded in R
4n−α(n), and, if n > 1

is odd, CPn can be embedded in R
4n−α(n)−1.

For small α(n), better immersion results are obtained by Davis and Mahowald [7]
and Crabb [3]. Crabb did not consider even values of n, and so, when n is even, the
immersions are from [7] and Theorem 1.2, and the non-immersions are from [13] (stated
here as Theorem 1.3) and from [14] (stated here as Theorem 1.4).

Theorem 1.6. If n is even, then CPn immerses in R
4n−d and does not immerse in

R
4n−e, where d and e are given in Table 1.
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Table 2. Immersions and non-immersions when n is odd (see Theorem 1.7)

α(n) condition d reference e reference

2 3 [9] 4 [14]

3 n ≡ 1 (mod 4) 5 [12] 6 [14]
3 n ≡ 3 (mod 4) 6 [16] 7 [13]

4 n �≡ 7 (mod 8) 7 [7] 8 [14]
4 n ≡ 7 (mod 8) 8 [3] 9 [13]

5 n ≡ 1 (mod 4) 9 [7] 11 [13]
5 n ≡ 3 (mod 8) 9 [7] 10 [14]
5 n ≡ 7 (mod 8) 10 [3] 11 [13]

6 n ≡ 1 (mod 4) 11 [7] 12 [14]
6 n ≡ 3 (mod 16) 11 [7] 12 [14]
6 n ≡ 11 (mod 16) 12 [3] 13 [13]
6 n ≡ 7 (mod 8) 12 [3] 13 [13]

7 n ≡ 1 (mod 4) 13 [7] 14 [14]
7 n ≡ 3 (mod 64) 13 [7] 14 [14]
7 n ≡ 3(8), �≡ 3(64) 14 Theorem 1.1 15 [13]
7 n ≡ 7 (mod 8) 14 [3] 15 [13]

8 n �≡ 15(16) and �≡ 37(64) 15 [7] 16 [14]
8 n ≡ 15(16) or ≡ 37(64) 15 [7] 17 [13]

> 8 15 [7]

Thus, when n is even, the only unresolved case for α(n) � 6 occurs when α(n) = 4
and n ≡ 10 mod 16.

We believe that the tabulation of results and earliest proofs given in Table 2 is accurate
when n is odd. Note that the case discussed in Proposition 4.1 is the only unresolved
case when n is odd and α(n) � 7.

Theorem 1.7. If n is odd, then CPn immerses in R
4n−d and does not immerse in

R
4n−e, where d and e are given in Table 2.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1 and describe what we believe was Crabb’s mistake
when he asserted a non-immersion in this situation.

Let HC
n denote the Hopf bundle over CPn. It is standard that the immersion in The-

orem 1.1 is equivalent to showing that the stable normal bundle −(n + 1)HC
n is sta-

bly equivalent to a bundle of dimension 2n − 14. We let n = 8p + 3 with α(p) = 5.
In [3, § 3, especially (3.2)], Crabb showed that a necessary condition for the immersion
is that, if λ(T ) = (sinh−1(

√
T )/

√
T )2, and (λ8p)i denotes the coefficient of T i in λ(T )8p,

then there exists an integer e such that e(λ8p)3 ≡ 64 mod 128, e(λ8p)2 ≡ 0 mod 32,
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e(λ8p)1 ≡ 0 mod 8 and e(λ8p)0 ≡ 0 mod 2. (For the reader wishing to compare with
Crabb’s notation, his l = 14, j = 3, and k = 4p + 1.)

Working mod(T 4), we have

λ(T ) = 1 − 1
3T + 8

45T 2 − 4
35T 3,

and

λ(T )8 = 1 − 8
3T + 68

15T 2 − 1192
189 T 3.

We then have
λ(T )8p = 1 + u18pT + u24pT 2 + u38pT 3,

where each ui is an odd fraction. The first and last of Crabb’s necessary conditions stated
above require ep ≡ 8 mod 16 and e ≡ 0 mod 2. These (and the other conditions) can be
satisfied if and only if p �≡ 0 mod 8. Crabb’s Lemma 3.4 makes it clear that he believed
that his conditions could not be satisfied in the cases which we address here.

Now we prove that the immersion exists when p �≡ 0 mod 8. We use modified Postnikov
towers (MPTs), as introduced in [8] and employed in many papers, such as [6,7] and,
more recently, [15]. We consider the lifting question

B̃Sp(16p − 8)

q

��
CP 8p+3 h �� HP 4p+1

f �� BSp,

(2.1)

where f classifies the stable bundle −(4p + 2)HSp
4p+1 over the quaternionic projective

space. The space B̃Sp(m) is the classifying space for symplectic vector bundles of real
geometric dimension m. It is the pull-back of BO(m) and BSp over BO. We let

B̃Sp(16p − 8) = E8 → E7 → · · · → E1 → BSp

denote the MPT through dimension 16p + 6. In this range, the fibre of q is the sta-
ble stunted real projective space P16p−8 = RP∞/RP 16p−9, whose homotopy groups in
this range are displayed in [10, Table 8.9]. We reproduce them in Figure 1, indexed as
π∗(ΣP16p−8), which are their dimensions as k-invariants in the MPT.

The obstructions for lifting from Ei to Ei+1 are k-invariants in Hj(Ei) corresponding
to dots in position (j, i) of the diagram. All cohomology groups have coefficients in Z/2.
The bulk of our work will be in proving the following result, which states that f lifts to
the fifth stage of the MPT.

Proposition 2.1. In (2.1), f factors through a map HP 4p+1 f5−→ E5.

Before giving the proof of Proposition 2.1, we use it to complete the proof of Theo-
rem 1.1. Let � = f5 ◦ h : CP 8p+3 → E5. To get CP 8p+1 to lift to B̃Sp(16p − 8), we need
only show that �∗(k2) = 0, where k2 ∈ H16p+2(E5) corresponds to the dot in position
(16p + 2, 5). The diagonal line emanating from this dot suggests, and the computation
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Figure 1. The Adams spectral sequence of ΣP16p−8.

16p − 8 

16p − 8 16p − 8 

16p − 8 −4

−4 0 4 −4 0 4

−4 0 40 4

(a) (b)

(c) (d)

Figure 2. Possible obstructions for liftings in (2.2): (a) ΣP16p−11;
(b) ΣP16p−9; (c) ΣP16p−11 ∧ bo; (d) ΣP16p−9 ∧ bo.

of the MPT proves, that there is a relation in H∗(E5) of the form Sq2 k2 + ak−7 = 0,
where k−7 ∈ H16p−7(E5) corresponds to the dot at height 5 in the initial tower, and a is
a combination of Steenrod operations and Stiefel–Whitney classes acting on k−7. There-
fore, since H16p−7(CP 8p+3) = 0, we must have Sq2(�∗(k2)) = 0 in H∗(CP 8p+3). Since
Sq2 acts injectively on H16p+2(CP 8p+3), this implies �∗(k2) = 0, and hence CP 8p+1 lifts
to B̃Sp(16p − 8).

By [3, Proposition 3.2], the KO-theoretic obstruction to extending this lifting over
CP 8p+2 is given by the conditions on λ8p described above, which are satisfied under our
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hypotheses, and hence this KO-theoretic obstruction is 0. The total obstruction to this
extension lies in π16p+4(ΣP16p−8) ≈ Z/8 ⊕ Z/8, depicted in Table 1, but in this case the
total obstruction is entirely KO-theoretic, as described in [2, Proposition 4.6]. See also
row 3 of [2, Table 4.1], which states explicitly that the kernel of reduction from total
obstruction to KO-theoretic obstruction is 0. From our viewpoint, the non-KO-theoretic
obstructions are irregular classes such as the one in position (16p, 2) in Figure 1, which
must be dealt with in the proof of Proposition 2.1.

Thus, CP 8p+2 lifts to B̃Sp(16p − 8). Since, by Figure 1, π16p+6(ΣP16p−8) = 0, this
lifting extends over CP 8p+3, as required for Theorem 1.1.

We complete the proof of Theorem 1.1 by proving Proposition 2.1. We will use the
bo-primary classifying spaces Bo(m) constructed in [6]. There is a map of fibrations
through dimension 2m − 2:

Pm

��

�� Pm ∧ bo

��
B̃Sp(m)

��

�� Bo(m)

��
BSp = �� BSp

and there are natural maps of MPTs for these fibrations. We will consider the maps of
MPTs for the following spaces over BSp:

B̃Sp(16p − 11) ��

��

B̃Sp(16p − 9)

��
Bo(16p − 11) �� Bo(16p − 9).

(2.2)

We depict in Figure 2 the portion of the Adams spectral sequences in dimensions ≡
0 mod 4 (which is all that is relevant for maps from HP 4p+1) for ΣP16p−11, ΣP16p−9,
ΣP16p−11 ∧bo, and ΣP16p−9 ∧bo, which correspond to the k-invariants for liftings to each
of the spaces in (2.2).

By [6, 1.8], nHSp
t lifts to Bo(m) if and only if for all i � t, ν(

(
n
i

)
) � ν(π4i(ΣPm ∧ bo)).

By standard methods, one finds that

ν

((
−(4p + 2)

4p + ε

))
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α(p) − 1, ε = −2,

2 + α(p) + ν(p), ε = −1,

α(p), ε = 0,

α(p) + 1, ε = 1.

We have α(p) = 5. Thus, −(4p+2)HSp
4p−1 lifts to Bo(16p−11), and −(4p+2)HSp

4p lifts to
Bo(16p−9). By considering the induced map of MPTs for Bo(16p − 11) → Bo(16p − 9),
we deduce that −(4p + 2)H4p lifts to E5 in the MPT for Bo(16p − 11). Then, since all
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Figure 3. Some homotopy groups: (a) π4�+x(ΣP4�−5 ∧ bo); (b) π4�+x(ΣP4�−3 ∧ bo);
(c) π4�+x(ΣP4�−5 ∧ bu); (d) π4�+x(ΣP4�−3 ∧ bu).

k-invariants for B̃Sp(16p − 11) which are relevant for HP 4p map injectively to those of
Bo(16p − 11), we may infer that HP 4p lifts to E5 of the MPT for B̃Sp(16p − 11). We
follow this into E5 of the MPT for B̃Sp(16p − 9). Since this MPT has no k-invariants in
dimension 16p + 4 in filtration less than 5, the map HP 4p → E5(16p − 9) extends over
HP 4p+1, establishing Proposition 2.1.

3. Proof of Theorem 1.2

Let n = 2� with α(�) = 3. We must show that the map CP 2� f−→ BU → BSO which
classifies the stable normal bundle −(2�+1)HC

2� factors through BSO(4�−4). The fibre in
P4�−4 → BSO(4�−4) → BSO has an ASS chart that looks like the first four dimensions
of Figure 1 except that, if � is even, twice the bottom class in what appears in that chart
as dimension 16p − 4 equals the sum of the two dots in the box above it. We will show
that the map lifts to level 3 in the MPT for this fibration, and that the level-3 k-invariant
is in primary indeterminacy, which implies that the lifting exists. The reason that we did
not notice this result in [7] is apparently that we were hesitant to consider liftings to
BSO(m) when m is divisible by 4 and the bundle is an odd multiple of the complex Hopf
bundle. (See [7, Tables 1.8 and 1.9].)

We let B̃U(m) denote the classifying space for stably almost complex vector bundles
of real geometric dimension m; i.e. it is the pull-back of BU and BO(m) over BO. As
in [7], we use spaces B̃U(m) → Bo

m → Bu
m over BU with fibres through dimension 2m−2

given by Pm → Pm ∧ bo → Pm ∧ bu. We need the charts of homotopy groups given in
Figure 3.

We also need the easily obtained fact that, for ε = 0, 1, 2, ν
((−(2�+1)

2�−ε

))
= 3, 2, 2,

respectively. We use [7, Theorem 1.7b], which states that if p is odd, then pHC
n lifts to

Bo
m if and only if, for all i � n, ν

((
p
i

))
� ν(π2i(ΣPm ∧ bu)), and, for all even i � n,

ν
((

p
i

))
� ν(π2i(ΣPm∧bo)). This implies that our map f : CP 2� → BU lifts to Bo

4�−3, and
f |CP 2�−1 lifts to Bo

4�−5. Thus, f lifts to level 3 in the MPT for Bo
4�−5. By [10, Tables 8.4,

8.12], for ∗ � 4�, π∗(ΣP4�−5) → π∗(ΣP4�−5 ∧ bo) is surjective with kernel consisting of
a single class in ∗ = 4� − 1. Since H4�−1(CP 2�) = 0, we conclude that f lifts to level 3
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in the MPT for B̃U(4� − 5), and hence also in those for B̃U(4� − 4) and BSO(4� − 4),
using the maps of MPTs induced by B̃U(4� − 5) → B̃U(4� − 4) → BSO(4� − 4).

We now employ a standard indeterminacy argument, as explained clearly in [15], to
show that the final obstruction in H4�(E3) can be varied, if necessary. Let Ei denote
the spaces in the MPT of BSO(4� − 4) → BSO. The fibre F of E3 → E2 is K4�−4 ×
K4�−2 × K4�−1 × K4�−1, corresponding to elements at height 2 in Figure 1, desuspended
once. Here Ki = K(Z/2, i). If f3 : CP 2� → E3 sends the k-invariant k3 ∈ H4�(E3)
trivially, then the lifting to BSO(4�−4) exists, since there are no more even-dimensional
k-invariants. If f∗

3 (k3) �= 0, then we will show that the composite

CP 2� ι4�−4×f3−−−−−−→ F × E3
µ−→ E3, (3.1)

which is also a lifting of f , sends k3 to 0, and hence the lifting to BSO(4� − 4) exists.
Here µ denotes the action of the fibre on the total space in the principal fibration, and
ι4�−4 : CP 2� → F is the map which is non-trivial into the first factor of F . This will
follow because a computation of the relations in the MPT, performed below, shows that

µ∗(k3) = 1 × k3 + Sq1 ι′4�−1 × 1 + Sq2 ι4�−2 × 1 + ι4�−2 × w2

+ Sq4 ι4�−4 × 1 + ι4�−4 × (w4 + w2
2). (3.2)

Thus, the composite (3.1) sends k3 to

f∗
3 (k3) + Sq4(x2�−2) + x2�−2 · (w4 + w2

2)(−(2� + 1)H).

Here x denotes the generator of H2(CP 2�). Since w2(−(2� + 1)H) = x, and Sq4(x2�−2)
and w4(−(2� + 1)H) are either both non-zero (� even) or both zero (� odd), we deduce
that f∗

3 (k3) can be varied, if necessary, establishing the lifting.
We conclude the proof by listing in Table 3 the relations in the MPT of BSO(4�−4) →

BSO, the last of which yields the crucial fact (3.2). These relations are computed by the
method initiated in [8] and used in [7, 12, 15]. It is a matter of building a minimal
resolution using Massey–Peterson algebras. In Table 3, ε = 1 if � is even, and ε = 0 if �

is odd.

4. Discussion of one of Crabb’s proofs

In [3, Theorem 0.2], Crabb presented many new immersions of complex projective spaces.
About his proof, he wrote ‘Details will be omitted’, although sketched arguments for
each case were presented. We have checked the details of his arguments and found what
appears to be a flaw in one case. This case was of particular interest to us, because, if
true, it would have implied a new immersion result for real projective space which would
be an addition to [5]. We present here our analysis of this case.

Proposition 4.1. The argument for the portion of [3, Theorem 0.2] which states that
if k is even and α(k) = 4, then CP 2k+1 immerses in R

8k−6 is invalid. The question of
whether this immersion exists is unresolved.
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Table 3. Relations in MPT for BSO(4� − 4)

w4�−3

w4�−2

w4�

k1
4�−3: Sq1 w4�−3

k1
4�−2: (Sq2 +w2)w4�−3

k1
4�−1: (Sq2 +w2)w4�−2

k1
4�: Sq1 w4� + (Sq2 +w2) Sq1 w4�−2

k̃1
4�: ε Sq1 w4� + (Sq4 +w4)w4�−3 + (w2 Sq1 +w3)w4�−2

k2
4�−3: Sq1 k1

4�−3

k2
4�−1: (Sq2 +w2)k1

4�−2 + (Sq3 +w3)k1
4�−3

k2
4�: Sq1 k1

4� + (Sq2 +w2)k1
4�−1

k̃2
4�: Sq1 k̃1

4� + (Sq2 Sq1 +w3)k1
4�−2 + (Sq4 +w4 + w2

2 + w2 Sq2)k1
4�−3

k3
4�−3: Sq1 k2

4�−3

k3
4�: Sq1 k̃2

4� + (Sq2 +w2)k2
4�−1 + (Sq4 +w4 + w2

2)k2
4�−3

Proof. Let k = 2K. To obtain the immersion, one must prove that −(4K + 2)HC

4K+1
lifts to B̃Sp(8K − 8). The KO-theoretic obstruction for lifting this bundle, calculated
similarly to that in § 1, is 0. However, there are several elements in the kernel of the
reduction from the total obstruction to the KO-theoretic obstruction which cannot be
ruled out. In [2, Table 4.1], these are the three Z/2 summands in row 1, column 9. In
our Figure 1, which, after a slight re-indexing, presents the obstructions for this lifting
question as well as the lifting question considered in § 1, these correspond to three of the
many dots in column 16p + 2.

Crabb realized that these could cause a problem, and so he hoped to use the factoriza-
tion through HP 2K , in a similar method to that in § 1. In fact, he wrote in his proof (on
p. 166) that in several cases, including this one, it can be shown that the bundle over the
quaternionic projective space is stably equivalent to a bundle of the desired dimension.
In this case, he would be saying that −(2K + 1)HSp

2K lifts to B̃Sp(8K − 8). However, this
lifting does not exist; its KO-theoretic obstruction is non-zero.

This can be seen by a calculation similar to that in § 1. We use [3, Proposition 2.5].
With λ(T ) as in § 1, the necessary condition is that there exists an integer e such that
e(λ4K−1)2 ≡ 16 mod 32, e(λ4K−1)1 ≡ 8 mod 16, and e(λ4K−1)0 ≡ 0 mod 2. Since

(1 − 1
3T + 8

45T 2)4K−1 = 1 + od ·T + od ·T 2

mod(T 3), where ‘od’ denotes an odd fraction, we require e to satisfy both e ≡ 16 mod 32
and e ≡ 8 mod 16, which is clearly impossible. �

We close by commenting on the relationship between Crabb’s necessary conditions for
immersion involving powers of λ(T ) = (sinh−1(

√
T )/

√
T )2, which we have used above,

and the Sigrist–Suter necessary condition involving powers of log(1+t)/t in Theorem 1.4.

https://doi.org/10.1017/S0013091506000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000277


54 D. M. Davis

These conditions involving power series can be directly related to one another by a slight
extension of [1, Theorem 1.5], which was proved using a proof suggested to the authors
by Crabb, and based on his earlier topological work described in [4, § 4].

5. Evaluation of a Sigrist–Suter condition

In Theorem 1.4, a general statement of a necessary condition for CPn to immerse in
R

4n−2α(n) is presented. We evaluate this explicitly when α(n) = 8 in the following result,
which we have incorporated into Tables 1 and 2.

Proposition 5.1. If α(n) = 8 and CPn immerses in R
4n−2α(n), then ν(n − 7) = 3 or

ν(n − 6) = 4 or ν(n − 5) = 5 or ν(n − 4) = 7.

This follows readily from Theorem 1.4 and the following lemma.

Lemma 5.2. Let (log(1 + t)/t)m =
∑

cm,it
i. Then

ν(cm,7) = ν(cm,8) < ν(cm,i) for all i < 7

if and only if ν(m − 7) = 4 or ν(m − 5) = 5 or ν(m − 3) = 6 or ν(m − 1) = 8.

Proof. Let

v(m) = (v0(m), . . . , v8(m)) = (ν(cm,0), . . . , ν(cm,8)).

Additionally, define a function, for which some values are only specified to satisfy an
inequality, by

ν(k, e)

{
= ν(k) if ν(k) < e,

� e if ν(k) � e.

The lemma follows immediately from the following, which we will prove for v(m) by
induction on m (note that some components are only asserted to satisfy an inequality):

if e � 3, then v(2e(2a + 1)) = (0, e − 1, e − 3, e − 3, e − 6, e − 5, e − 7, e − 7, e − 11);

v(7 + 8k) = (0,−1,−2,−3,−4,−5,−6,−7,−8 + ν(k, 2));

v(5 + 8k) = (0,−1,−1,� −1,−4,−5,� −4,−6,−8 + ν(k, 3));

v(3 + 32k) = (0,−1, −2,−3,� −1,−4,−4,−5,−6 + ν(k, 2));

v(19 + 32k) = (0,−1,−2,−3,−2,−4,� −3,� −4,−7);

v(11 + 16k) = (0,−1,−2,−3,−3,� −3,−5,−6,−8);

v(9 + 16k) = (0,−1,� −1,−2,−3,−4,−4,� −3,−8);

v(17 + 32k) = (0,−1, 0,−2,−2,−3,−3,� −2,−7);

v(1 + 32k) = (0,−1, 0,−2,� −1,� −2,� −2,−3,−6 + ν(4, k)).

We begin by using Maple to verify v(m) for m = 8, 7, 5, 3, 19, 11, 9, 17, 1. The induction
proof for v(2e) is obtained by using∑

c2e+1,it
i =

( ∑
c2e,it

i
)2

.
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We have
vi(2e+1) = 1 + vi(2e) (5.1)

for 1 � i � 8, since, as is easily verified, the right-hand side of (5.1) is strictly less than
1 + vj(2e) + vi−j(2e) for 1 � j � 1

2 i.
Next we obtain the claim for v(2e(2a + 1)) from (

∑
c2e,it

i)(
∑

c2e+1a,it
i). From this,

we obtain vi(2e(2a + 1)) = vi(2e), since the strict minimum of vj(2e) + vi−j(2e+1a) is
obtained when j = i, which is essentially the same verification as the previous one.

The cases in which the asserted vi(u + 2ek) is not of the form ‘� t’ or ν(k, t) are,
except for v7(1+32k) with k odd, obtained from vi(u)+v0(2ek), which, in these cases, is
strictly less than other values of vj(u) + vi−j(2ek). Quite a few verifications are required
for this. For example, since v4(2ek) = e + ν(k) − 6, for e � 3, it is relevant that

vi(u) < vi−4(u) −

⎧⎪⎨⎪⎩
3, u = 7, 5,

2, u = 11, 9,

1, u = 3, 19, 17, 1

in the cases in which the asserted value of vi(u) is a single integer. These cases are
differentiated according to whether the argument of v is u + 8k, u + 16k or u + 32k. If k

is odd, then v7(1+32k) = −3 comes from having each of v7(1)+v0(32k), v3(1)+v4(32k)
and v1(1) + v6(32k) equal to −3.

In the cases in which the asserted vi(u + 2ek) is of the form ‘� t’, one verifies, unless
i = 7 and u = 9 or 17, that vj(u)+vi−j(2ek) � t for all j, with the possibility of equality
for several values of j. For example, v6(5 + 8k) � −4 comes from v6(5) + v0(8k) � −4,
v4(5)+v2(8k) � −4 and v2(5)+v4(8k) � −4, while vj(5)+v6−j(8k) > −4 for j = 0, 1, 3, 5.
If k is odd, the exceptional case v7(9 + 16k) � −3 comes from v1(9) + v6(16k) = −4 and
v3(9)+v4(16k) = −4, with other values greater than or equal to −3. The case v7(17+32k)
is similar.

Finally, for ν(k) = 0 or 1, v8(7 + 8k) = −8 + ν(k) comes from v0(7) + v8(8k), which is
strictly less than all other vj(7) + v8−j(8k) while, if ν(k) � 2, we have v0(7) + v8(8k) =
ν(k) − 8 and v8(7) + v0(8k) � −6, with other terms larger. The same argument works
for v8(5 + 8k), v8(3 + 32k) and v8(1 + 32k). �

References

1. M. Bendersky and D. M. Davis, The unstable Novikov spectral sequence for Sp(n),
and the power series sinh−1(x), London Mathematical Society Lecture Notes Series, Vol-
ume 176, pp. 73–86 (Cambridge University Press, 1992).

2. M. C. Crabb, On the KOZ/2-Euler class, I, Proc. R. Soc. Edinb. A117 (1991), 115–137.
3. M. C. Crabb, Immersing projective spaces in Euclidean space, Proc. R. Soc. Edinb.

A117 (1991), 155–170.
4. M. C. Crabb and K. Knapp, James numbers, Math. Annln 282 (1988), 395–422.
5. D. M. Davis, Table of immersions and embeddings of real projective spaces (available at

www.lehigh.edu/˜dmd1/immtable).
6. D. M. Davis and M. Mahowald, The geometric dimension of some vector bundles over

projective spaces, Trans. Am. Math. Soc. 205 (1975), 295–315.

https://doi.org/10.1017/S0013091506000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000277


56 D. M. Davis

7. D. M. Davis and M. Mahowald, Immersions of complex projective spaces and the
generalized vector field problem, Proc. Lond. Math. Soc. 35 (1977), 333–348.

8. S. Gitler and M. Mahowald, The geometric dimension of real stable vector bundles,
Bol. Soc. Mat. Mex. 11 (1966), 85–107.

9. I. M. James, Some embeddings of projective spaces, Proc. Camb. Phil. Soc. 55 (1959),
294–298.

10. M. Mahowald, The metastable homotopy of Sn, Memoirs of the American Mathematical
Society, Volume 72 (American Mathematical Society, Providence, RI, 1967).

11. A. Mukherjee, Embedding complex projective spaces in Euclidean space, Bull. Lond.
Math. Soc. 13 (1981), 323–324.

12. A. D. Randall, Some immersion theorems for projective spaces, Trans. Am. Math. Soc.
147 (1970), 135–151.

13. B. J. Sanderson and R. Schwarzenberger, Nonimmersion theorems for differential
manifolds, Proc. Camb. Phil. Soc. 59 (1963), 312–322.

14. F. Sigrist and U. Suter, On immersions of CP n in R
4n−2α(n), Lecture Notes in Math-

ematics, Volume 673, pp. 106–115 (Springer, 1978).
15. N. Singh, On nonimmersion of real projective spaces, Topol. Applic. 136 (2004), 233–238.
16. B. Steer, On immersing complex projective (4k + 3)-space in Euclidean space, Q. J.

Math. 22 (1971), 339–345.

https://doi.org/10.1017/S0013091506000277 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000277

