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Algebraic equivalence of cycles and algebraic models

of smooth manifolds

W. Kucharz

Abstract

On a real algebraic variety there may exist an algebraic cycle that is algebraically equiv-
alent to zero and whose cohomology class is non-zero. The group of such cohomology
classes can be highly non-trivial. It is interesting since it allows one to detect cohomol-
ogy classes, in complementary dimension, which cannot be represented by algebraic cycles.

1. Introduction and results

Throughout this paper the term real algebraic variety designates a locally ringed space isomorphic
to an algebraic subset of R

n, for some n, endowed with the Zariski topology and the sheaf of
R-valued regular functions. Morphisms between real algebraic varieties will be called regular maps.
Basic facts on real algebraic varieties and regular maps can be found in [BCR98]. Every real algebraic
variety carries also the Euclidean topology, which is determined by the usual metric topology on R.
Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer
to the Euclidean topology.

Let X be a reduced quasiprojective scheme over R. The set X (R) of R-rational points of X
is contained in an affine open subset of X . Thus if X (R) is dense in X , we can regard X (R) as
a real algebraic variety whose structure sheaf is the restriction of the structure sheaf of X ; up to
isomorphism, each real algebraic variety is of this form.

Given a compact non-singular real algebraic variety X (as in [AK92, BCR98], non-singular
means that the irreducible components of X are pairwise disjoint, non-singular and of the same
dimension), we can find a non-singular quasiprojective scheme X over R with X (R) = X dense
in X . Then we have the cycle homomorphism

c�R : Zk(X ) → Hk(X,Z/2)

defined on the group Zk(X ) of algebraic cycles on X of codimension k: for any integral subscheme
V of X of codimension k, the cohomology class c�R(V) is Poincaré dual to the homology class
represented by the subvariety V(R) of X assuming V(R) has codimension k in X, and otherwise
c�R(V) = 0 [BH61]. The subgroup

Hk
alg(X,Z/2) = c�R(Zk(X ))

of Hk(X,Z/2) plays a fundamental role in real algebraic geometry (cf. [BK98] for a short survey of
its properties and applications). We define

Algk(X),
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the main object of our investigation here, to be the image under c�R of the subgroup of Zk(X )
consisting of the cycles algebraically equivalent to 0 (we refer to [Ful84, Chapter 10] for the theory
of algebraic equivalence). Thus, by definition, Algk(X) is a subgroup of Hk

alg(X,Z/2). It readily
follows that Hk

alg(X,Z/2) and Algk(X) do not depend on the choice of X . Note that Algk(X) can
also be described as follows. An element u of Hk

alg(X,Z/2) belongs to Algk(X) if and only if there
exist a compact non-singular irreducible real algebraic variety T , two points t0 and t1 in T , and a
cohomology class z in Hk

alg(X × T,Z/2) such that u = i∗t1(z) − i∗t0(z), where given t in T , we let
it : X → X × T denote the map defined by it(x) = (x, t) for all x in X, while

i∗t : H∗(X × T,Z/2) → H∗(X,Z/2)

is the induced homomorphism (this does not force u = 0, the parameter space T being possibly
disconnected).

Why is the group Algk(X) of interest? It was R. Silhol who first demonstrated that Alg1(X) is
important for understanding of H1

alg(X,Z/2) [Sil82]. In [Kuc01] it is proved, among other things,
that Alg1(−) is a birational invariant. The group Algk(X) strongly influences the behavior of
Hn−k

alg (X,Z/2), where n = dimX [Kuc96, Kuc01]. Substantial constructions of [Kuc02], at the
borderline between real algebraic geometry and differential topology, depend on Algk(−). For some
remarkable properties of Algk(X) contained in [AK99, Kuc96] see also Theorem 2.1 in § 2. It is in
general very difficult to compute Algk(X), except for the cases k = 0 or k = dimX (cf. for example
[AK99] to see how these trivial cases are settled). In this paper we investigate the groups Algk(X)
as X runs through the class of varieties diffeomorphic to a fixed variety. Below we make this precise.

All smooth (of class C∞) manifolds that appear here are paracompact and without boundary.
By Tognoli’s theorem [Tog73, BCR98], any compact smooth manifold M has an algebraic model,
that is, there exists a non-singular real algebraic variety X diffeomorphic to M . We study how
the groups Algk(X) vary as X runs through the class of algebraic models of M . The kth Stiefel–
Whitney class of M will be denoted by wk(M), while [M ] will stand for the fundamental class of
M in Hm(M,Z/2), m = dimM . As usual, we use ∪ and 〈 , 〉 to denote the cup product and scalar
(Kronecker) product.

Theorem 1.1. Let M be a compact smooth manifold of dimension m with m � 2. Given a subgroup
G of H1(M,Z/2), the following conditions are equivalent:

a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : M → X such that
ϕ∗(Alg1(X)) = G.

b) G is contained in the image of the reduction modulo 2 homomorphismH1(M,Z) → H1(M,Z/2)
and for each integer �, 1 � � � m, and all u1, . . . , u� in G, one has 〈u1 ∪ · · · ∪ u� ∪ wi1(M) ∪
· · · ∪ wir(M), [M ]〉 = 0 for all non-negative integers i1, . . . , ir with i1 + · · · + ir = m− �.

Furthermore, if condition b holds, then X in condition a can be chosen irreducible.

Our second result is the following.

Theorem 1.2. Let M be a compact connected smooth manifold of dimension m with m � 3.
Given a subgroup G of Hm−1(M,Z/2), the following conditions are equivalent:

a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : M → X such that
ϕ∗(Algm−1(X)) = G.

b) 〈u ∪w1(M), [M ]〉 = 0 for all u in G.

Theorems 1.1 and 1.2 are proved in § 2. We also have another result of the same type, Theorem 2.5
in § 2, dealing with certain subgroups G of Hk(M,Z/2) for other values of k. Example 2.7 at the
end of the paper shows how Theorems 1.1, 1.2 and 2.5 work in a special case.

502

https://doi.org/10.1112/S0010437X03000162 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000162


Algebraic equivalence of cycles

2. Proofs

The groups Hk
alg(−,Z/2) and Algk(−) have the expected functorial properties. If f : X → Y is a

regular map between compact non-singular real algebraic varieties, then the induced homomorphism

f∗ : H∗(Y,Z/2) → H∗(X,Z/2)

satisfies

f∗(H∗
alg(Y,Z/2)) ⊆ H∗

alg(X,Z/2) and f∗(Alg∗(Y )) ⊆ Algk(X).

Furthermore,

H∗
alg(X,Z/2) =

⊕

q�0

Hq
alg(X,Z/2)

is a subring of the cohomology ring H∗(X,Z/2), whereas

Alg∗(X) =
⊕

q�0

Algq(X)

is an ideal of H∗
alg(X,Z/2). These assertions concerning Hk

alg(−,Z/2) are proved in [BH61, BT82]
and they immediately imply the corresponding assertions about Algk(−).

Recall that if M is a smooth manifold, then a cohomology class u in Hk(M,Z/2), k � 1, is said
to be spherical, provided that u = f∗(c), where f : M → Sk is a continuous (or equivalently smooth)
map fromM into the unit k-sphere Sk and c is the unique generator of the groupHk(Sk,Z/2) � Z/2.

We shall make use of the following result.

Theorem 2.1. Let X be a compact non-singular real algebraic variety. Then:

i) 〈u ∪ v, [X]〉 = 0 for all u in Algk(X) and v in H�
alg(X,Z/2), where k + � = dimX;

ii) 〈u∪wi1(X)∪ · · · ∪wir(X), [X]〉 = 0 for all u in Algk(X) and all non-negative integers i1, . . . , ir
with i1 + · · · + ir = dimX − k;

iii) if k = 1 or if k = dimX − 1 and X is connected, then every cohomology class in Algk(X) is
spherical.

For the proof, the reader is referred to [Kuc96, Theorem 2.1] and [AK99, Theorem 1.1].
The next fact will also be very useful. Let Bk be a non-singular irreducible real algebraic variety

with precisely two connected components Bk
0 and Bk

1 , each diffeomorphic to Sk, k � 1. For example,
one can take

Bk = {(x0, . . . , xk) ∈ R
k+1 | x4

0 − 4x2
0 + 1 + x2

1 + · · · + x2
k = 0}.

Let B = Bk × · · · ×Bk and B0 = Bk
0 × · · · ×Bk

0 be the d-fold products, and let δ : B0 ↪→ B be the
inclusion map. It is known [Kuc02, Example 4.5] that

Hq(B0,Z/2) = δ∗(Hq(B,Z/2)) = δ∗(Algq(B)) for all q � 0. (2.2)

We now recall an important result from differential topology.

Theorem 2.3. Let P be a smooth manifold. Two smooth maps f : M → P and g : N → P ,
where M and N are compact smooth manifolds of dimension d, represent the same bordism class
in the unoriented bordism group N∗(P ) if and only if for every non-negative integer q and every
cohomology class v in Hq(P,Z/2), one has

〈f∗(v) ∪ wi1(M) ∪ · · · ∪ wir(M), [M ]〉 = 〈g∗(v) ∪ wi1(N) ∪ · · · ∪ wir(N), [N ]〉
for all non-negative integers i1, . . . , ir with i1 + · · · + ir = d− q.
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For the proof, the reader is referred to [Con79, (17.3)].
If Y is a non-singular real algebraic variety, then a bordism class in N∗(Y ) is said to be algebraic

provided that it can be represented by a regular map f : X → Y of a compact non-singular real
algebraic variety X into Y , cf. [AK81, AK92, BT80a, BT80b, BT82].

A topological real vector bundle on a real algebraic variety Y is said to admit an algebraic
structure if it is topologically isomorphic to an algebraic subbundle of the trivial vector bundle with
total space Y ×R

p for some p (cf. [BCR98] for various characterizations of such vector bundles and
for their basic properties).

Given smooth manifolds N and P , we endow the set C∞(N,P ) of all smooth maps from N into
P with the C∞ topology [Hir76] (in our applications N is always compact so it does not matter
whether we take the weak C∞ topology or the strong one).

Our basic tools include the following approximation theorem.

Theorem 2.4. Let M be a compact smooth submanifold of R
n and let W be a non-singular real

algebraic variety. Let f : M → W be a smooth map whose bordism class in N∗(W ) is algebraic.
Suppose that M contains a (possibly empty) Zariski closed non-singular subvariety L of R

n, the
restriction f |L : L → W is a regular map, and the restriction to L of the tangent bundle of M
admits an algebraic structure. If 2 dimM+1 � n, then there exist a smooth embedding e : M → R

n,
a Zariski closed non-singular subvariety X of R

n, and a regular map g : X → W such that L ⊆ X
= e(M), e|L : L → R

n is the inclusion map, g|L = f |L, and g ◦ ē (where ē : M → e(M) is the
smooth diffeomorphism defined by ē(x) = e(x) for all x in M) is homotopic to f . Furthermore,
given a neighborhood U in C∞(M,Rn) of the inclusion map M ↪→ R

n and a neighborhood V of f
in C∞(M,W ), the objects e, X, and g can be chosen in such a way that e is in U and g ◦ ē is in V.

Proof. Precisely this formulation is in [Kuc02, Theorem 4.2]. It is based on very similar results of
[AK81, AK92, BT80a, BT80b].

After these preparations we return to the main topic of our paper.

Theorem 2.5. Let M be a compact smooth manifold of dimension m. Let G be a subgroup of
Hk(M,Z/2), where k � 1. Assume that G is generated by spherical cohomology classes. If 2k+1 �
m, then the following conditions are equivalent:

a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : M → X such that
ϕ∗(Algk(X)) = G.

b) For every integer � satisfying � � 1 and �k � m, one has

〈u1 ∪ · · · ∪ u� ∪ wi1(M) ∪ · · · ∪ wir(M), [M ]〉 = 0

for all u1, . . . , u� in G and all non-negative integers i1, . . . , ir with i1 + · · · + ir = m− �k.

Furthermore, if condition b holds, then X in condition a can be chosen irreducible.

Proof. It follows from Theorem 2.1, part ii that condition a implies condition b. Suppose then that
condition b holds. We prove below that condition a, with X irreducible, is satisfied. We assume
that M is a smooth submanifold of R

2m+1.
Let us set

Γ = {v ∈ Hm−k(M,Z/2) | 〈u ∪ v, [M ]〉 = 0 for every u in G},
Γ = {v1, . . . , vs}.

Since 2k + 1 � m, the homology class in Hk(M,Z/2) Poincaré dual to vi can be represented by a
compact smooth submanifold Ni of M [Tho54, Théorème II.26]. Thus we have

ei∗([Ni]) = vi ∩ [M ],
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where ei : Ni ↪→ M is the inclusion map and ∩ stands for the cap product. We may assume that
N1, . . . , Ns are pairwise disjoint. Note that

〈e∗i (u), [Ni]〉 = 〈u ∪ vi, [M ]〉 for all u in Hk(M,Z/2). (1)

Indeed standard properties of ∪,∩, 〈 , 〉 (cf. for example [Dol72]) yield

〈e∗i (u), [Ni]〉 = 〈u, ei∗([Ni])〉
= 〈u, vi ∩ [M ]〉
= 〈u ∪ vi, [M ]〉.

The bilinear map

Hk(M,Z/2) ×Hm−k(M,Z/2) → Z/2, (u, v) → 〈u ∪ v, [M ]〉
is a dual pairing [Dol72, p. 300, Proposition 8.13] and hence

G = {u ∈ Hk(M,Z/2) | 〈u ∪ v, [M ]〉 = 0 for every v in Γ}.
By applying Equation (1), we obtain

G = {u ∈ Hk(M,Z/2) | 〈e∗i (u), [Ni]〉 = 0 for 1 � i � s}. (2)

We shall now successively modify M and N1, . . . , Ns to ensure that they satisfy some additional
desirable conditions.

Let γn,m denote the universal vector bundle on the Grassmannian Gn,m of m-dimensional vector
subspaces of R

n. Assuming that n is large enough, we can find a smooth classifying map hi : Ni →
Gn,m for the restriction τ(M)|Ni of the tangent bundle τ(M) of M (this means that the vector
bundles τ(M)|Ni and h∗i γn,m are isomorphic). Recall that Gn,m is endowed with a canonical structure
sheaf which makes it into a real algebraic variety in the sense of this paper [BCR98, Theorem 3.4.4]
(Gn,m is an affine real algebraic variety according to the terminology used in [BCR98]). Moreover,
Gn,m is non-singular [BCR98, Proposition 3.4.3] and every bordism class in N∗(Gn,m) is algebraic
[BCR98, Proposition 11.3.3; AK92, Lemma 2.7.1]. It follows that Theorem 2.4 can be applied to
hi : Ni → Gn,m (with L empty) and hence modifying M , we may assume that Ni is a Zariski closed
non-singular subvariety of R

2m+1 and hi : Ni → Gn,m is a regular map for 1 � i � s.
Let u1, . . . , ud be spherical cohomology classes generating G. Using the same notation as in (2.2),

choose a smooth map fj : M → Bk such that fj(M) ⊆ Bk
0 and f∗j (H1(Bk,Z/2)) is the subgroup of

G generated by uj . By (2.2), we have

G = f∗(Hk(B,Z/2)) = f∗(Algk(B)), (3)

where f = (f1, . . . , fd) : M → B = Bk × · · · ×Bk.
We assert that the maps (f |Ni, hi) : Ni → B × Gn,m and (ci, hi) : Ni → B × Gn,m, where

ci : Ni → B is a constant map sending Ni to a point in B0, represent the same class in the bordism
group N∗(B×Gn,m). By Theorem 2.3 and Künneth’s theorem in cohomology, in order to prove the
assertion it suffices to show that given cohomology classes ξ in Hp(B,Z/2) and η in Hq(Gn,m,Z/2),
we have

〈(f |Ni, hi)∗(ξ × η) ∪wj1(Ni) ∪ · · · ∪wjr(Ni), [Ni]〉 = 〈(ci, hi)∗(ξ × η) ∪wj1(Ni) ∪ · · · ∪wjr(Ni), [Ni]〉
for all non-negative integers j1, . . . , jr satisfying j1 + · · ·+ jr = k− (p+ q). Since (f |Ni, hi)∗(ξ×η) =
(f |Ni)∗(ξ) ∪ h∗i (η) and (ci, hi)∗(ξ × η) = c∗i (ξ) ∪ h∗i (η), the last displayed equality is equivalent to

〈(f |Ni)∗(ξ)∪h∗i (η)∪wj1(Ni)∪· · ·∪wjr(Ni), [Ni]〉 = 〈c∗i (ξ)∪h∗i (η)∪wj1(Ni)∪· · ·∪wjr(Ni), [Ni]〉. (4)

We now justify Equation (4). If p is not a multiple of k, then ξ = 0 and hence (4) holds. It remains
to consider two cases: (p, q) = (0, k) and (p, q) = (k, 0). If (p, q) = (0, k), then (f |Ni)∗(ξ) = c∗i (ξ),
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which implies (4). If (p, q) = (k, 0), then c∗i (ξ) = 0 and (4) is reduced to

〈(f |Ni)∗(ξ) ∪ h∗i (η), [Ni]〉 = 0. (5)

Since f |Ni = f ◦ ei, we have

(f |Ni)∗(ξ) ∪ h∗i (η) = e∗i (f
∗(ξ)) ∪ h∗i (η) = λe∗i (f

∗(ξ)),

where λ = 0 or λ = 1. Hence Equation (5) follows from Equations (2) and (3). This means that
Equation (4) always holds and therefore the proof of the assertion is complete.

Since (ci, hi) : Ni → B × Gn,m is a regular map, the assertion implies that the bordism class
of (f |Ni, hi) : Ni → B × Gn,m in N∗(B × Gn,m) is algebraic. Theorem 2.4 can be applied to
(f |Ni, hi) : Ni → B × Gn,m (with L empty) and therefore modifying M and f , we may assume
that Ni is still a Zariski closed non-singular subvariety of R

2m+1 and (f |Ni, hi) : Ni → B × Gn,m

is a regular map for 1 � i � s. By construction, τ(M)|Ni admits an algebraic structure (being
isomorphic to h∗i γn,m). Note that N = N1 ∪ · · · ∪ Ns is a Zariski closed non-singular subvariety of
R

2m+1 and

f |N : N → B is a regular map, (6)
τ(M)|N admits an algebraic structure. (7)

We can further modify f so that it is constant on some open subset U of M which is disjoint
from N and has a non-empty intersection with each connected component of M . Let P be a
compact k-dimensional smooth submanifold of U such that each connected component ofM contains
a connected component of P , each connected component of P is diffeomorphic to Sk, and the
restriction τ(M)|P is a trivial vector bundle. There is a smooth diffeomorphism σ of R

2m+1 such
that σ(x) = x for x in N and σ(P ) is a Zariski closed non-singular irreducible subvariety of R

2m+1.
Replacing M by σ(M), we may assume that P itself is a Zariski closed non-singular irreducible
subvariety of R

2m+1.
Note that N ∪P is a Zariski closed non-singular subvariety of R

2m+1. Since f is constant on P ,
it follows from (6) that

f |(N ∪ P ) : N ∪ P → B is a regular map. (8)

Furthermore, in view of (7), we get

τ(M)|(N ∪ P ) admits an algebraic structure. (9)

We claim that f : M → B and a constant map M → B sending M to a point in B0 represent
the same class in the bordism group N∗(B). We verify the claim via Theorem 2.3. It suffices to show
that given a positive integer q and a cohomology class ξ in Hq(B,Z/2), we have

〈f∗(ξ) ∪wi1(M) ∪ · · · ∪ wir(M), [M ]〉 = 0 (10)

for all non-negative integers i1, . . . , ir with i1 + · · · + ir = m − q. If q is not a multiple of k, then
ξ = 0 and Equation (10) holds. If q = �k � m, then ξ is a linear combination of cohomology
classes of the form ξ1 ∪ · · · ∪ ξ�, where ξ1, . . . , ξ� are in Hk(B,Z/2). By (3), the cohomology classes
f∗(ξ1), . . . , f∗(ξ�) are in G and hence (10) follows from condition b. Thus the claim is proved.

The claim implies that the class of f : M → B in the bordism group N∗(B) is algebraic. In view
of (8) and (9) we can apply Theorem 2.4 to f : M → B (with L = N ∪ P ). Hence there exist a
Zariski closed non-singular subvariety X of R

2m+1, a smooth diffeomorphism ϕ : M → X, and a
regular map g : X → B such that X = ϕ(M), ϕ(x) = x for all x in N ∪ P , and f is homotopic
to g ◦ ϕ. Clearly, X is irreducible, the variety P being irreducible. In order to complete the proof
it remains to show that ϕ∗(Algk(X)) = G. We argue as follows. Since g : X → B is a regular map,
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we have g∗(Algk(B)) ⊆ Algk(X). Hence using (3) and f∗ = (g ◦ ϕ)∗ = ϕ∗ ◦ g∗, we obtain

G = f∗(Algk(B)) = ϕ∗(g∗(Algk(B))) ⊆ ϕ∗(Algk(X)).

Suppose there is an element w in Algk(X) such that ϕ∗(w) is not in G. By (2), one can find i,
1 � i � s, for which

〈e∗i (ϕ∗(w)), [Ni]〉 
= 0.
If εi : Ni ↪→ X is the inclusion map, then εi = ϕ ◦ ei and hence ε∗i (w) = e∗i (ϕ

∗(w)). It follows that

〈ε∗i (w), [Ni]〉 
= 0.

This contradicts Theorem 2.1, part i since ε∗i (w) is in Algk(Ni), the map εi being regular.
Thus ϕ∗(Algk(X)) = G and the proof is complete.

Proposition 2.6. Let M be a compact smooth manifold of dimension m with m � 2. Let G be a
subgroup of Hm−1(M,Z/2). Assume that G is generated by spherical cohomology classes. Then the
following conditions are equivalent:

a) There exist an algebraic model X of M and a smooth diffeomorphism ϕ : M → X such that
ϕ∗(Algm−1(X)) = G.

b) 〈u ∪ w1(M), [M ]〉 = 0 for all u in G, and when m = 2, then in addition 〈u1 ∪ u2, [M ]〉 = 0 for
all u1 and u2 in G.

Furthermore, if condition b holds, then X in condition a can be chosen irreducible.

Proof. It follows from Theorem 2.1, part ii that condition a implies condition b. Suppose then that
condition b holds. We prove below that condition a, with X irreducible, is satisfied. In the proof we
assume that M is a smooth submanifold of R

2m+1.
Let us set

Γ = {v ∈ H1(M,Z/2) | 〈u ∪ v, [M ]〉 = 0 for all u in G}, Γ = {u1, . . . , us}.
If n is sufficiently large and A = P

n(R) × · · · × P
n(R) is the product of s copies of real projective

n-space P
n(R), then there exists a smooth map f : M → A for which

Γ = f∗(H1(A,Z/2)). (11)

Let u1, . . . , ud be spherical cohomology classes generating G. Using the same notation as in
(2.2), with k = m − 1, choose a smooth map gj : M → Bm−1 such that gj(M) ⊂ Bm−1

0 and
g∗j (H

m−1(Bm−1,Z/2)) is the subgroup of G generated by uj . Note that (2.2) implies

G = g∗(Hm−1(B,Z/2)) = g∗(Algm−1(B)), (12)

where g = (g1, . . . , gd) : M → B = Bm−1 × · · · ×Bm−1.
We can choose f and g so that the map (f, g) : M → A×B is constant on some open subset U of

M which has a non-empty intersection with each connected component of M . Let C be a compact
smooth curve in U such that each connected component of M contains a connected component of
C and the restriction τ(M)|C is trivial. There is a smooth diffeomorphism σ of R

2m+1 such that
σ(C) is a Zariski closed non-singular irreducible curve in R

2m+1. Replacing M by σ(M), we may
assume that C itself is a Zariski closed non-singular irreducible curve in R

2m+1.
We assert that the maps (f, g) : M → A × B and (f, c) : M → A × B, where c : M → B is a

constant map sending M to a point in B0, represent the same class in the bordism group N∗(A×B).
By Theorem 2.3 and Künneth’s theorem in cohomology, in order to prove the assertion it suffices
to show that given cohomology classes ξ in Hp(A,Z/2) and η in Hq(B,Z/2), we have

〈(f, g)∗(ξ × η) ∪ wi1(M) ∪ · · · ∪wir(M), [M ]〉 = 〈(f, c)∗(ξ × η) ∪wi1(M) ∪ · · · ∪ wir(M), [M ]〉
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for all non-negative integers i1, . . . , ir satisfying i1 + · · · + ir = m − (p + q). Since (f, g)∗(ξ × η) =
f∗(ξ) ∪ g∗(η) and (f, c)∗(ξ × η) = f∗(ξ) ∪ c∗(η), the last displayed equality is equivalent to

〈f∗(ξ) ∪ g∗(η) ∪wi1(M) ∪ · · · ∪wir(M), [M ]〉 = 〈f∗(ξ) ∪ c∗(η) ∪wi1(M) ∪ · · · ∪wir(M), [M ]〉. (13)

If q is not a multiple of m−1, then η = 0 and hence Equation (13) holds. If q = 0, then g∗(η) = c∗(η)
and (13) is also satisfied. It remains to consider the following three cases: (p, q) = (1,m−1), (p, q) =
(0,m − 1), and (p, q) = (0, 2) with m = 2. In each of these cases c∗(η) = 0. If (p, q) = (1,m − 1),
then (13) is reduced to

〈f∗(ξ) ∪ g∗(η), [M ]〉 = 0,
which holds in view of (11), (12), and the definition of Γ. If (p, q) = (0,m−1), then (13) is equivalent
to

〈f∗(ξ) ∪ g∗(η) ∪ w1(M), [M ]〉 = 0,
which follows from (12) and condition b (note that f∗(ξ) ∪ g∗(η) = λg∗(η), where λ = 0 or λ = 1).
If (p, q) = (0, 2), m = 2, then f∗(ξ) ∪ g∗(η) = λg∗(η), where λ = 0 or λ = 1, and (13) is equivalent
to

〈λg∗(η), [M ]〉 = 0.
The last equality follows from condition b since η is a linear combination of cohomology classes of
the form η1 ∪ η2, where η1, η2 are in H1(B,Z/2), and in view of (12), g∗(η1), g∗(η2) are in G. This
completes the proof of (13) and hence the assertion holds.

We shall now prove that

the bordism class of (f, g) : M → A×B in N∗(A×B) is algebraic. (14)

Since every bordism class in N∗(A) is algebraic [AK92, Lemma 2.7.1], in view of Theorem 2.4, there
exist a Zariski closed non-singular subvariety Y of R

2m+1, a smooth diffeomorphism ψ : M → Y ,
and a regular map f̄ : Y → A such that f is homotopic to f̄ ◦ ψ. Clearly, (f, c) : M → A× B and
(f̄ , c ◦ ψ−1) : Y → A× B represent the same bordism class in N∗(A × B). Note that (f̄ , c ◦ ψ−1) :
Y → A×B is a regular map, c◦ψ−1 : Y → B being constant. Hence (14) follows from the assertion
proved above.

By construction, (f, g) : M → A × B is constant on C and τ(M)|C is a trivial vector bundle.
Thus (14) allows us to apply Theorem 2.4 to (f, g) : M → A × B (with L = C). Therefore there
exist a Zariski closed non-singular subvariety X of R

2m+1, a smooth diffeomorphism ϕ : M → X,
and a regular map (α, β) : X → A×B such that X = ϕ(M), ϕ(x) = x for all x in C, and (f, g) is
homotopic to (α, β) ◦ ϕ = (α ◦ ϕ, β ◦ ϕ). Obviously, X is irreducible, the curve C being irreducible.

It remains to prove ϕ∗(Algm−1(X)) = G. Since β : X → B is a regular map, we have
β∗(Algm−1(B)) ⊆ Algm−1(X). Making use of g∗ = (β ◦ ϕ)∗ = ϕ∗ ◦ β∗ and (12), we get

G = g∗(Algm−1(B)) = ϕ∗(β∗(Algm−1(B))) ⊆ ϕ∗(Algm−1(X)).

Suppose there exists w in Algm−1(X) such that ϕ∗(w) is not in G. We obtain a contradiction as
follows. The bilinear map

Hm−1(M,Z/2) ×H1(M,Z/2) → Z/2, (u, v) → 〈u ∪ v, [M ]〉
is a dual pairing [Dol72, p. 300, Proposition 8.13] and hence one can find an element v in Γ with
〈ϕ∗(w) ∪ v, [M ]〉 
= 0. By (11), we have v = f∗(z) for some z in H1(A,Z/2). Since f∗ = (α ◦ ϕ)∗ =
ϕ∗ ◦ α∗, we get v = ϕ∗(α∗(z)). Thus 〈ϕ∗(w) ∪ ϕ∗(α∗(z)), [M ]〉 
= 0, which yields

〈w ∪ α∗(z), [X]〉 
= 0. (15)

Note that α∗(z) is in H1
alg(X,Z/2), the map α : X→A being regular andH1(A,Z/2)=H1

alg(A,Z/2).
Hence (15) contradicts Theorem 2.1, part i. The proof is complete.
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Proof of Theorem 1.1. Obviously, every spherical cohomology class with coefficients in Z/2 is the
reduction modulo 2 of a cohomology class with coefficients in Z. Therefore it follows from Theo-
rem 2.1, parts ii and iii that condition a implies condition b. Suppose condition b holds. The first
part of condition b guarantees that every cohomology class in G is spherical [Hu59, p. 49, Theo-
rem 7.1]. Thus condition a, with X irreducible, holds by virtue of Theorem 2.5 and Proposition 2.6
(Proposition 2.6 is required only when m = 2).

Proof of Theorem 1.2. We already know that, by Theorem 2.1, part ii, condition a implies con-
dition b. Suppose condition b is satisfied. Since M is connected, given u in Hm−1(M,Z/2) with
〈u ∪ w1(M), [M ]〉 = 0, we get u ∪ w1(M) = 0. The last equality implies that the homology class
in H1(M,Z/2) Poincaré dual to u can be represented by a compact smooth curve in M with triv-
ial normal vector bundle, cf. for example [BK89, p. 599]. This in turn implies that u is spherical
[Tho54, Théorème II.1]. Hence every cohomology class in G is spherical. In view of Proposition 2.6,
condition a, with X irreducible, holds.

We conclude the paper with an example.

Example 2.7. Let Tm = S1 × · · · ×S1 be the m-fold product with m � 2. Clearly, H�
alg(T

m,Z/2) =
H�(Tm,Z/2) for all � � 0 and hence, by Theorem 2.1, part i,

Algk(Tm) = 0 for all k � 0.

On the other hand, let G be a subgroup of Hk(Tm,Z/2) and suppose that one of the following
conditions is satisfied:

i) k = 1 and G 
= H1(Tm,Z/2);

ii) k = m− 1 and m � 3;

iii) k � 1, 2k+1 � m, m is not divisible by k, and G is generated by spherical cohomology classes;

iv) m = k�, where � is an integer satisfying � � max{2m/(m−1),dimZ/2G+1}, and G is generated
by spherical cohomology classes.

Then there exist an algebraic model X of Tm and a smooth diffeomorphism ϕ : Tm → X such that

ϕ∗(Algk(X)) = G.

Indeed, since the tangent bundle to Tm is trivial, we have wi(Tm) = 0 for all i � 1. Furthermore,
if either of conditions i or iv is satisfied, m = k�, and u1, . . . , u� are in G, then u1,∪ · · · ∪ u� = 0.
Thus X and ϕ with the required property exist in view of Theorems 1.1, 1.2 and 2.5.
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