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Abstract
In a paper from 1980, Shelah constructed an uncountable group all of whose proper subgroups are countable.
Assuming the continuum hypothesis, he constructed an uncountable group G that moreover admits an integer n
satisfying that for every uncountable 𝑋 ⊆ 𝐺, every element of G may be written as a group word of length n in the
elements of X. The former is called a Jónsson group, and the latter is called a Shelah group.

In this paper, we construct a Shelah group on the grounds of ZFC alone – that is, without assuming the
continuum hypothesis. More generally, we identify a combinatorial condition (coming from the theories of negative
square-bracket partition relations and strongly unbounded subadditive maps) sufficient for the construction of a
Shelah group of size 𝜅, and we prove that the condition holds true for all successors of regular cardinals (such as
𝜅 = ℵ1,ℵ2,ℵ3, . . .). This also yields the first consistent example of a Shelah group of size a limit cardinal.
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1. Introduction

For a prime number p, the Prüfer p-group

{𝑥 ∈ C | ∃𝑛 ∈ N (𝑥𝑝𝑛
= 1)}

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

https://doi.org/10.1017/fmp.2025.5 Published online by Cambridge University Press

doi:10.1017/fmp.2025.5
https://orcid.org/0000-0002-2177-0800
https://orcid.org/0000-0001-9309-5798
http://www.assafrinot.com
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fmp.2025.5&domain=pdf
https://doi.org/10.1017/fmp.2025.5


2 M. Poór and A. Rinot

is an example of an infinite subgroup of (C, ·) all of whose proper subgroups are finite. In [33], Ol’šanskiı̆
constructed finitely generated non-cyclic infinite groups in which every nontrivial proper subgroup is a
finite cyclic group (the Tarski monsters). In [40], answering a question of Kurosh, Shelah constructed
an uncountable group in which every nontrivial proper subgroup is countable. All of those are examples
of so-called Jónsson groups (i.e., an infinite group G having no proper subgroups of full size). An even
more striking concept is that of a boundedly-Jónsson group – that is, a group G admitting a positive
integer n such that for every 𝑋 ⊆ 𝐺 of full size, it is the case that 𝑋𝑛 = 𝐺 (i.e., every element of G
may be written as a group word of length exactly n in the elements of X). In [40], Shelah constructed
a boundedly-Jónsson group of size ℵ1 with the aid of Continuum Hypothesis (CH). More generally,
Shelah proved that 2𝜆 = 𝜆+ yields a boundedly-Jónsson group of size 𝜆+. By now, the concept of
boundedly-Jónsson groups is named after him:

Definition 1.1. A group G is n-Shelah if 𝑋𝑛 = 𝐺 for every 𝑋 ⊆ 𝐺 of full size.
A group is Shelah if it is n-Shelah for some positive integer n.

Along the years, variations of this concept were studied quite intensively, and from various angles. A
group G is said to be Cayley bounded with respect to a subset 𝑆 ⊆ 𝐺 if there exists a positive integer 𝑛𝑆
such that 𝐺 =

⋃𝑛𝑆
𝑖=1(𝑆∪ 𝑆−1)𝑖 (i.e., every element of G may be written as a group word of length at most

𝑛𝑆 in the elements of S and inverses of elements of S). Extending the work of Macpherson and Neumann
[30], Bergman proved [4] that the permutation group Sym(Ω) of an infinite setΩ is Cayley bounded with
respect to all of its generating sets. Soon after, the notion Bergman property was coined as the assertion
of being Cayley bounded with respect to all generating sets. Since then, it has received a lot of attention;
see [3, 10, 11, 12, 13, 31, 35, 44, 46, 47]. More recent examples include the work of Dowerk [9] on von
Neumann algebras with unitary groups possessing the property of n-strong uncountable cofinality (i.e.,
having a common Cayley bound n for all generating sets, and the group is not the union of an infinite
countable strictly increasing sequence of subgroups), and Shelah’s work on locally finite groups [42]. It
is worth mentioning that the notion of strong uncountable cofinality has also geometric reformulations
(e.g., by Cornulier [8], Pestov (see [38, Theorem 1.2]) and Rosendal [38, Proposition 3.3]).

Shelah’s 1980 construction from CH was of a 6640-Shelah group. It left open two independent
questions:1

1. Can CH be used to construct an n-Shelah group for a small number of n?
2. Is CH necessary for the construction of an n-Shelah group?

Recently, in [2], Banakh addressed the first question, using CH to construct a 36-Shelah group. Even
more recently, Corson, Ol’šanskiı̆ and Varghese [7] addressed the second question, constructing the
first ZFC example of a Jónsson group of size ℵ1 to have the Bergman property. Unfortunately, the new
example stops short from being Shelah, as every generating set S of this group has its own 𝑛𝑆 . In this
paper, an affirmative answer to the second question is finally given, where a Shelah group of size ℵ1 is
constructed within ZFC.

Theorem A. For every infinite regular cardinal 𝜆, there exists a 10120-Shelah group of size 𝜆+. In
particular, there exist Shelah groups of size ℵ1,ℵ2,ℵ3, . . ..

The proof of Theorem A reflects advances both in small cancellation theory and in the study of
infinite Ramsey theory. Towards it, we prove a far-reaching extension of Hesse’s amalgamation lemma,
and we obtain two maps, one coming from the theory of negative square-bracket partition relations and
the other coming from the theory of strongly subadditive functions, and the two maps have the property
that they may be triggered simultaneously, making them ‘active’ over each other.

The connection to infinite Ramsey theory should not come as a surprise. First, note that an n-Shelah
group of size ℵ0 does not exist, since such a group would have induced a coloring 𝑐 : [N]𝑛 → 𝑘 for

1See https://mathoverflow.net/questions/313516/ for a MathOverflow discussion initiated by Taras Banakh in October 2018.
However, the second question was brought to the second author’s attention in an email exchange with Ol’ga Sipacheva back in
May 2006.
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a large enough integer k admitting no infinite homogeneous set,2 in particular contradicting Ramsey’s
theorem ℵ0 → (ℵ0)

𝑛
𝑘 .3

A deeper connection to (additive) Ramsey theory is in the fact that the existence of a Jónsson group
of size 𝜅 is equivalent to a very strong failure of the higher analog of Hindman’s finite sums theorem
[21]. Indeed, by [16, Corollary 2.8], if there exists a Jónsson group of size 𝜅, then for every Abelian
group G of size 𝜅, there exists a map 𝑐 : 𝐺 → 𝐺 such that for every 𝑋 ⊆ 𝐺 of full size, 𝑐 � FS(𝑋) is
surjective; that is,

{𝑐(𝑥1 + · · · + 𝑥𝑛) | 𝑛 ∈ N, {𝑥1, . . . , 𝑥𝑛} ∈ [𝑋]𝑛} = 𝐺.

Conversely, if G is an Abelian group of size 𝜅 admitting a map 𝑐 : 𝐺 → 𝐺 as above, then the structure
(𝐺, +, 𝑐) is easily an example of a so-called Jónsson algebra [24] of size 𝜅, which by Corson’s work [6]
implies the existence of a Jónsson group of size 𝜅.

The fact that the elimination of CH goes through advances in the theory of partition calculus of
uncountable cardinals should not come as a surprise, either. To give just one example, we mention
that three decades after Juhász and Hajnal [19] constructed an L-space with the aid of CH, Moore [32]
gave a ZFC construction of an L-space by establishing a new unbalanced partition relation for the first
uncountable cardinal.

Having discussed Shelah groups of size ℵ0 and of size a successor cardinal, the next question is
whether it is possible to construct a Shelah group of size an uncountable limit cardinal. To compare,
a natural ingredient available for transfinite constructions of length a successor cardinal 𝜅 = 𝜆+ is the
existence of 𝜆-filtrations of all ordinals less than 𝜅. We overcome this obstruction at the level of a limit
cardinal 𝜅 by employing subadditive strongly unbounded maps 𝑑 : [𝜅]2 → 𝜆 having arbitrarily large
gaps between 𝜆 and 𝜅. This way, we obtain the first consistent example of a Shelah group of size a limit
cardinal. More generally:
Theorem B. For every regular uncountable cardinal 𝜅 satisfying the combinatorial principle �(𝜅),
there exists a Shelah group of size 𝜅.

By a seminal work of Jensen [23], in Gödel’s model of set theory known as the constructible universe
[18], the combinatorial principle �(𝜅) holds for every regular uncountable cardinal 𝜅 that is not weakly
compact. As the reader may anticipate, a cardinal 𝜅 is weakly compact if it is a regular uncountable
cardinal satisfying the higher analog of Ramsey’s theorem 𝜅 → (𝜅)2

2 . Altogether, we arrive at the
following optimal result:
Theorem C. In Gödel’s constructible universe, for every regular uncountable cardinal 𝜅, the following
are equivalent:
• There exists a Shelah group of size 𝜅;
• Ramsey’s partition relation 𝜅 → (𝜅)2

2 fails.
We conclude the introduction by discussing additional features that the groups constructed here

possess. A group is said to be topologizable if it admits a non-discrete Hausdorff group topology;
otherwise, it is non-topologizable. The first consistent instance of a non-topologizable group was the
group constructed by Shelah in [40] using CH. Shortly after, an uncountable ZFC example was given
by Hesse [20]. Then a countable such group was given by Ol’šanskiı̆ [34, Theorem 31.5] (an account of
his construction may be found in [1, §13.4]). Ol’šanskiı̆’s group is periodic; a torsion-free example was
given by Klyachko and Trofimov in [25].

The Shelah group we construct in this paper is torsion-free and non-topologizable. The latter fol-
lows combining the property of Shelah-ness together with the fact that there will be a filtration of the

2An upper bound is 𝑘 = (𝑛𝑛 + 1)𝑛𝑛 , as shown in the proof of Corollary 5.24 below.
3For a (finite or infinite) cardinal 𝜆, the Hungarian arrow notation 𝜆 → (𝜆)𝑛

𝑘
stands for the assertion that for every set X of

size 𝜆, whenever the family [𝑋 ]𝑛 of all n-sized subsets of X is partitioned into k-many cells [𝑋 ]𝑛 =
⊎𝑘

𝑖=1 𝑃𝑖 , then there exists a
subset 𝑌 ⊆ 𝑋 of full size all of whose n-sized subsets belong to the same cell, i.e., [𝑌 ]𝑛 ⊆ 𝑃𝑖 for one of the i’s. Equivalently,
for every coloring 𝑐 : [𝑋 ]𝑛 → 𝑘, there exists a subset 𝑌 ⊆ 𝑋 of full size that is c-homogeneous, i.e., 𝑐 � [𝑌 ]𝑛 is constant.
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group consisting of malnormal subgroups (see Definition 3.3). Moreover, our group contains a nonal-
gebraic unconditionally closed set, which can be shown by proving that small sets can be covered by a
topologizable subgroup, similarly to the argument by Sipacheva [43, Lemmas 1 and A.4].

1.1. Can’t you do better than 𝒏 = 10120?

We believe a better n is achievable, but that is not the focus of this paper. In this paper, we establish a
two-dimensional construction scheme for producing a group G of cardinality 𝜅 as a limit of a coherent
system of subgroups 〈𝐺𝛾,𝑖 | 𝛾 < 𝜅, 𝑖 < 𝜃〉, where 𝐺𝛾+1,𝑖+1 is obtained as a particular amalgamation of
the groups 𝐺𝛾,𝑖 and 𝐺𝛾,𝑖+1 over 𝐺𝛾+1,𝑖 . The number 𝑛 = 10120 comes from our amalgamation lemma,
and so by plugging in alternative amalgamation lemmas to our construction scheme, we expect groups
of various characteristics may be produced, including n-Shelah groups with 𝑛 < 10120.

1.2. Organization of this paper

In Section 2, we fix our notations and conventions, and provide some necessary background from small
cancellation theory.

In Section 3, we prove an amalgamation lemma that will serve as a building block in our two-
dimensional recursive construction of a Shelah group.

In Section 4, we provide set-theoretic sufficient conditions for the existence of two types of maps to
exist, and moreover be active over each other. The first type comes from the classical theory of negative
square-bracket partition relations [14, §18], and enables to eliminate the need for CH in the construction
of a Shelah group of size ℵ1. The second type comes from the theory of subadditive strongly unbounded
functions [28], and enables to push the construction to higher cardinals including limit cardinals. At the
level of successors of regulars, both of these colorings are obtained in ZFC using the method of walks
on ordinals [45] that did not exist at the time Shelah’s paper [40] was written.

In Section 5, we provide a transfinite construction of a Shelah group guided by the colorings given
by Section 4, and using the amalgamation lemma of Section 3.

2. Preliminaries

2.1. Notations and conventions

Under ordinals, we always mean von Neumann ordinals, and for a set X, the symbol |𝑋 | always refers
to the smallest ordinal with the same cardinality. For a set X, the symbol P (𝑋) denotes the power set of
X, while if 𝜃 is a cardinal, we use the standard notation [𝑋] 𝜃 for {𝑌 ∈ P (𝑋) | |𝑌 | = 𝜃} – similarly for
[𝑋]<𝜃 and [𝑋] ≤𝜃 . We let H𝜃 denote the collection of all sets of hereditary cardinality less than 𝜃. A
set D is a club in a cardinal 𝜅 iff 𝐷 ⊆ 𝜅 and for every 𝜖 < 𝜅, sup(𝐷 ∩ 𝜖) ∈ 𝐷 ∪ {0} and 𝐷 \ 𝜖 ≠ ∅. For a
function f and a subset 𝐴 ⊆ dom( 𝑓 ), we either write 𝑓 [𝐴] or 𝑓 “𝐴 for { 𝑓 (𝑎) | 𝑎 ∈ 𝐴}. By a sequence,
we mean a function on an ordinal, where for a sequence 𝑠 = 〈𝑠𝛼 | 𝛼 < dom(𝑠)〉, the length of 𝑠 (in
symbols ℓ(𝑠)) denotes dom(𝑠). We denote the empty sequence by 〈〉. For a set X and an ordinal 𝛼, we
use 𝛼𝑋 = {𝑠 | ℓ(𝑠) = 𝛼, Im(𝑠) ⊆ 𝑋}.

2.2. Small cancellation theory

The main algebraic tool we are going to use is small cancellation theory. In this regard, the paper is
self-contained, but for more details and proofs, the interested reader can consult [29, §5. 11] and [40, §1].

By convention, the free group with a set of generators A is denoted here by 𝐹𝐴, and the normal
closure of a set S in a group G is denoted here by ncl(𝑆, 𝐺).
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Definition 2.1. Given groups 𝐻, 𝐾, 𝐿 such that 𝐾 ∩ 𝐿 = 𝐻 (as sets) – in particular, 𝐻 ≤ 𝐾, 𝐿 – then
one constructs the free amalgamation of K and L over H as

𝐾 ∗𝐻 𝐿 = 𝐹𝐾∪𝐿/𝑁,

where 𝑁 = ncl(𝐸𝐾 ∪ 𝐸𝐿 , 𝐹𝐾∪𝐿), and for 𝐺 ∈ {𝐾, 𝐿},

𝐸𝐺 = {𝑔1𝑔2𝑔
−1
3 | 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, 𝑔1𝑔2 = 𝑔3}.

We invoke basic results about the structure of groups of the form 𝐾 ∗𝐻 𝐿.

Definition 2.2. If 𝑔 = 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1 ∈ 𝐾 ∗𝐻 𝐿, where 𝑔∗𝑖 ∈ 𝐾 ∪ 𝐿, then we call the sequence of 𝑔∗𝑖 ’s the

canonical form of the group element of g, if

• either 𝑛 = 1, or
• 𝑛 > 1, and for each 𝑖 < 𝑛

(1) 𝑔∗𝑖 ∉ 𝐻,
(2) 𝑖 + 1 < 𝑛 → (𝑔∗𝑖 ∈ 𝐾 ⇐⇒ 𝑔∗𝑖+1 ∈ 𝐿),

We note the following fact.

Fact 2.3 [39, Lemma 2.1]. Suppose that 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1 and 𝑔∗∗0 𝑔∗∗1 · · · 𝑔∗∗𝑚−1 are canonical representations

of the same element in 𝐾 ∗𝐻 𝐿. Then 𝑔∗0, 𝑔
∗∗
0 ∈ 𝐾 , or 𝑔∗0, 𝑔

∗∗
0 ∈ 𝐿, and (𝑔∗0)

−1𝑔∗∗0 ∈ 𝐻.

Using the above fact, it is not difficult to verify that the canonical form is unique in the following
sense.

Fact 2.4. Suppose that 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1 and 𝑔∗∗0 𝑔∗∗1 · · · 𝑔∗∗𝑚−1 are canonical representations of the same

element in 𝐾 ∗𝐻 𝐿. Then 𝑛 = 𝑚, and there exist ℎ0, ℎ1, ℎ2, . . . , ℎ𝑛 ∈ 𝐻 with ℎ0 = ℎ𝑛 = 1 such that

(∀𝑖 < 𝑛) [𝑔∗∗𝑖 = ℎ−1
𝑖 𝑔∗𝑖 ℎ𝑖+1] .

Definition 2.5. Fix 𝑔 ∈ 𝐾 ∗𝐻 𝐿 distinct from 1, and the canonical representation 𝑔 = 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1. We

say that 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1 is weakly cyclically reduced if

• 𝑛 = 1, or
• n is even, or
• 𝑔∗𝑛−1𝑔

∗
0 ∉ 𝐻, equivalently, g has no conjugate that has a canonical representation shorter than 𝑛 − 1.

Recalling Fact 2.4, it is not difficult to see that the property of being weakly cyclically reduced is
a property of the group element 𝑔 ∈ 𝐾 ∗𝐻 𝐿, so it does not depend on the particular choice of the
canonical representation 𝑔 = 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑛−1.

Observation 2.6.

(1) If 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1 is a canonical representation of an element 𝑔 ≠ 1, 𝑛 ≥ 2, then g has a conjugate

𝑔′ that has a canonical representation of length 𝑚 = 1, or 𝑚 = 2𝑘 for some 𝑘 ≥ 1. Moreover, each
conjugate 𝑔′′ of g has length at least m.

(2) If 𝑔∗0𝑔
∗
1 · · · 𝑔

∗
𝑛−1 is a canonical representation of an element 𝑔 ≠ 1, n is even, and 𝑔′ is a weakly

cyclically reduced conjugate of g, then 𝑔′ has a canonical representation in the following form:

𝑔′ = 𝑥 ′𝑖𝑔
∗
𝑖+1𝑔

∗
𝑖+2 · · · 𝑔

∗
𝑛−1𝑔

∗
0 · · · 𝑔

∗
𝑖−1𝑥

′′
𝑖 ,

where
• if 𝑔∗𝑖 ∈ 𝐾 , then 𝑥 ′𝑖 , 𝑥

′′
𝑖 ∈ 𝐾 and 𝐾 |= 𝑥 ′′𝑖 𝑥

′
𝑖 = 𝑔∗𝑖 ,

• if 𝑔∗𝑖 ∈ 𝐿, then 𝑥 ′𝑖 , 𝑥
′′
𝑖 ∈ 𝐿 and 𝐿 |= 𝑥 ′′𝑖 𝑥

′
𝑖 = 𝑔∗𝑖 .

In particular, the length of any canonical representation of 𝑔′ is either n or 𝑛 + 1.
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Definition 2.7 [29, p. 286]. Let 𝐻 ≤ 𝐾, 𝐿 be groups such that 𝐿 ∩ 𝐾 = 𝐻, and fix 𝑅 ⊆ 𝐾 ∗𝐻 𝐿. We say
that R is symmetrized if for every 𝑔 ∈ 𝑅,

(1) 𝑔−1 ∈ 𝑅, and
(2) for each 𝑔′ that is conjugate to g and weakly cyclically reduced, 𝑔′ ∈ 𝑅.

Definition 2.8 [29, p. 286]. Let 𝑋 ⊆ 𝐾 ∗𝐻 𝐿, and 𝜒 ∈ (0, 1). We say that X satisfies 𝐶 ′(𝜒), if whenever

(1) 𝑔∗𝑛−1𝑔
∗
𝑛−2 · · · 𝑔

∗
1𝑔

∗
0, 𝑔

∗∗
0 𝑔∗∗1 · · · 𝑔∗∗𝑚−1 ∈ 𝑋 ,

(2) 𝑔∗𝑛−1𝑔
∗
𝑛−2 · · · 𝑔

∗
1𝑔

∗
0𝑔

∗∗
0 𝑔∗∗1 · · · 𝑔∗∗𝑚−1 ≠ 1,

(3) ℓ < 𝑛, 𝑚, and
(4) 𝑔∗ℓ−1𝑔

∗
ℓ−2 · · · 𝑔

∗
0𝑔

∗∗
0 𝑔∗∗1 · · · 𝑔∗∗ℓ−1 ∈ 𝐻,

then ℓ < min(𝑛, 𝑚) · 𝜒, and moreover, min(𝑛, 𝑚) > 1
𝜒 .

Definition 2.9 [29, p. 286]. Let 𝐻, 𝐾, 𝐿 be as in Definition 2.1, and let 𝑔 ∈ 𝐾 ∗𝐻 𝐿. We say that the
word 𝑤0𝑤1 · · ·𝑤𝑚−1 is a part of g if

(1) 𝑤0𝑤1 · · ·𝑤𝑚−1 ∈ 𝐾 ∗𝐻 𝐿 is in canonical form,
(2) for some weakly cyclically reduced conjugate 𝑔′ of g, the word 𝑤0𝑤1 · · ·𝑤𝑚−1 is a subword of a

canonical representation of 𝑔′ (i.e., for some canonical representation 𝑣0𝑣1 · · · 𝑣𝑛−1 of 𝑔′ and some
𝑘 ≤ 𝑛 − 𝑚, we have 𝑣𝑘 = 𝑤0, 𝑣𝑘+1 = 𝑤1, . . . , 𝑣𝑘+𝑚−2 = 𝑤𝑚−2 and 𝑣𝑘+𝑚−1 = 𝑤𝑚−1).

We cite the following lemma, which is our key technical tool borrowed from small cancellation theory.

Fact 2.10 [29, Theorem 11.2]. Let 𝐻 ≤ 𝐾, 𝐿 be groups, 𝐾∩𝐿 = 𝐻, 𝑘 ≥ 6, and assume that 𝑅 ⊆ 𝐾 ∗𝐻 𝐿
is symmetrized and satisfies 𝐶 ′( 1

𝑘 ).
Then, letting 𝑁 = ncl(𝑅, 𝐾 ∗𝐻 𝐿) be the normal subgroup generated by R, for every weakly cyclically

reduced 𝑤 ∈ 𝑁 that is nontrivial (i.e., 𝑤 ≠ 1), there exist 𝑟 ∈ 𝑅 and a part p of r, which is also a part of
w, and ℓ(𝑝) > 𝑘−3

𝑘 ℓ(𝑟).

Corollary 2.11. If 𝐻, 𝐾, 𝐿, 𝑅 are as in Fact 2.10, then for the canonical projection map 𝜋 : 𝐾 ∗𝐻 𝐿 →
(𝐾 ∗𝐻 𝐿)/𝑁 , it is the case that 𝜋 � 𝐾 and 𝜋 � 𝐿 are injective, and 𝜋“𝐾 ∩ 𝜋“𝐿 = 𝜋“𝐻 (where 𝐾, 𝐿 are
identified with the subgroups of 𝐾 ∗𝐻 𝐿).

3. Finding the right amalgam

The main result of this section is Lemma 3.4 below. It originates from the lemma by G. Hesse appearing
in the Appendix of [40]. The lemma will serve as a building block in the recursive construction of
Section 5.

Definition 3.1. Let 𝜚(𝑥, 𝑦) denote the word 𝑥𝑦𝑥2𝑦𝑥3𝑦 · · · 𝑥80𝑦.

Note that ℓ(𝜚(𝑥, 𝑦)) = 3320.

Definition 3.2. For all 𝑗 < 𝜔 and 𝑥, 𝑦, we shall define a word 𝜚 𝑗 (𝑥, 𝑦) over the alphabet {𝑥, 𝑦}. First,
define a sequence 〈𝑛 𝑗 | 𝑗 < 𝜔〉 of integers via 𝑛 𝑗 = 3320 𝑗 . Then, let 𝜚 𝑗 (𝑥, 𝑦) = 𝜚(𝑥𝑛 𝑗 , 𝑦𝑛 𝑗 ), so that
𝜚0 = 𝜚.

Definition 3.3. Let 𝐺 ≤ 𝐻 be a pair of groups.

• Define an equivalence relation ∼𝐺 over H via

𝑎 ∼𝐺 𝑏 iff 𝑎 ∈ 𝐺𝑏±1𝐺,

where 𝐺𝑏±1𝐺 denotes the set 𝐺𝑏𝐺 ∪ 𝐺𝑏−1𝐺.
• We say that G is a malnormal subgroup of H, and denote it by 𝐺 ≤m 𝐻, if for all 𝑔 ∈ 𝐺 \ {1} and

ℎ ∈ 𝐻 \ 𝐺, it is the case that ℎ−1𝑔ℎ ∉ 𝐺.
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Note that ≤m is a transitive relation.

Lemma 3.4. Let 𝐻 ≤ 𝐾 , 𝐻 ≤m 𝐿 be groups, 𝐾 ∩ 𝐿 = 𝐻 and suppose that we are given a system of
quadruples

𝑆 = {(ℎ𝜎 , 𝑎𝜎 , 𝑏𝜎 , 𝑏
′
𝜎) | 𝜎 ∈ Σ} ⊆ 𝐻 × (𝐾 \ 𝐻) × (𝐿 \ 𝐻) × (𝐿 \ 𝐻)

that satisfies the following two:

(1) for every 𝜎 ∈ Σ, 𝑏𝜎 �𝐻 𝑏′𝜎;
(2) for all 𝜎 ≠ 𝜎∗ in Σ, at least one of the following holds:

(�)a 𝑎𝜎 �𝐻 𝑎𝜎∗ (in K);
(�)b 𝑏𝜎 �𝐻 𝑏𝜎∗;
(�)c 𝑏𝜎 = 𝑏𝜎∗ and 𝑎𝜎 ≠ 𝑎𝜎∗;
(�)d there are subgroups 𝐻𝜎 ≤ 𝐻 and 𝐾𝜎 ≤ 𝐾 such that all of the following hold:

(i) 𝐾𝜎 ∩ 𝐻 = 𝐻𝜎;
(ii) 𝑎𝜎 , 𝑎𝜎∗ ∈ 𝐾𝜎 \ 𝐻 = 𝐾𝜎 \ 𝐻𝜎;

(iii) 𝑏𝜎 �𝐻𝜎 𝑏𝜎∗ (although typically 𝑏𝜎 ∼𝐻 𝑏𝜎∗);
(iv) 𝑏𝜎 �𝐻 𝑏′𝜎∗;
(v) (𝐾𝜎 \ 𝐻) · (𝐻 \ 𝐾𝜎) · (𝐾𝜎 \ 𝐻) ⊆ (𝐾 \ 𝐻).

Then, letting R be the symmetric closure of {ℎ−1
𝜎 𝜚(𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎) | 𝜎 ∈ Σ}, 𝑀 = 𝐾 ∗𝐻 𝐿, 𝑁 =

ncl(𝑅, 𝑀) be the generated normal subgroup and 𝑀∗ = 𝑀/𝑁 , all of the following hold:

(A) R satisfies the condition 𝐶 ′( 1
10 ), and consequently, the group 𝑀∗ embeds both K and L with

𝑀∗ |= 𝐾 ∩ 𝐿 = 𝐻

and 𝐾 ∪ 𝐿 generates 𝑀∗. Moreover, the set 𝑅+ defined to be the symmetric closure of

{ℎ−1
𝜎 𝜚(𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎), 𝜚 𝑗 (𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎) | 𝜎 ∈ Σ, 𝑗 ∈ 𝜔 \ {0}}

also satisfies 𝐶 ′( 1
10 );

(B) 𝐾 ≤m 𝑀∗, and if 𝐻 ≤m 𝐾 , then 𝐿 ≤m 𝑀∗;
(C) for all 𝑏, 𝑏∗ ∈ 𝐿 \ 𝐻 and 𝑧 ∈ 𝐾 \ 𝐻, if 𝑏 ∼𝐻 𝑏∗, then 𝑀∗ |= 𝑏∗𝑧 �𝐾 𝑏𝑧𝑏𝑧;
(D) if 𝑏, 𝑏′ ∈ 𝐿 \ 𝐻, 𝑎 ∈ 𝐾 \ 𝐻, then 𝑀∗ |= 𝑏𝑎𝑏′ ∉ 𝐾 , 𝑏𝑎 ∉ 𝐾 (and similarly, the parallel statement

with interchanging K and L);
(E) if 𝑎, 𝑎′ ∈ 𝐾 \ 𝐻, 𝑎 �𝐻 ′ 𝑎′ for subgroups 𝐻 ′ ≤ 𝐻 and 𝐿 ′ ≤ 𝐿 such that 𝐿 ′ ∩ 𝐾 = 𝐿 ′ ∩ 𝐻 = 𝐻 ′,

then 𝑎 �𝐿′ 𝑎′ holds too (in 𝑀∗);
(F) similarly, if 𝑏, 𝑏′ ∈ 𝐿 \ 𝐻, 𝑏 �𝐻 ′ 𝑏′ for subgroups 𝐻 ′ ≤ 𝐻 and 𝐾 ′ ≤ 𝐾 such that 𝐾 ′ ∩ 𝐿 =

𝐾 ′ ∩ 𝐻 = 𝐻 ′, then 𝑏 �𝐾 ′ 𝑏′ holds (in 𝑀∗);
(G) if K and L are torsion-free, then so is 𝑀∗.

Proof. First we note that for all 𝑎 ∈ 𝐾 \ 𝐻, 𝑏, 𝑏′ ∈ 𝐿 \ 𝐻, the word 𝜚(𝑏𝑎, 𝑏′𝑎) is an alternating word
(over the union of 𝐾 \ 𝐻 and 𝐿 \ 𝐻) of length 6640.

(A) By Corollary 2.11 (and 𝑅 ⊆ 𝑅+), it is enough to argue that 𝑅+ satisfies 𝐶 ′( 1
10 ). To this end, fix two

elements 𝑔 ≠ 𝑔∗ in 𝑅+, as well as some canonical representations

𝑔 = 𝑔0𝑔1 · · · 𝑔𝑛−1,
𝑔∗ = 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑚−1.

By Clause (2) of Observation 2.6, there are 𝑖, 𝑖∗ ∈ 𝜔 such that 𝑛 ∈ {6640𝑛𝑖 , 6640𝑛𝑖 + 1}, 𝑚 ∈
{6640𝑛𝑖∗ , 6640𝑛𝑖∗ + 1}.
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Let 𝑙 ∈ 𝜔, and assume that
∧

𝑘≤𝑙

(𝐾 ∗𝐻 𝐿 |= 𝑔−1
𝑘−1𝑔

−1
𝑘−2 · · · 𝑔

−1
0 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑘−1 ∈ 𝐻), (*)

so we have to show that 𝑙 < 664 · min(𝑛𝑖 , 𝑛𝑖∗ ).
Assume on the contrary that 𝑙 ≥ 664 · 𝑛𝑖 . We can choose 𝜎 ∈ Σ, 𝜀 ∈ {1,−1}, such

that letting 𝑟 = ℎ−1
𝜎 𝜚𝑛𝑖 (𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎), g is a weakly cyclically reduced conjugate of 𝑟 𝜀 =

(ℎ−1
𝜎 𝜚𝑛𝑖 (𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎))

𝜀 if 𝑛𝑖 = 0, or of 𝑟 𝜀 = (𝜚𝑛𝑖 (𝑏𝜎𝑎𝜎 , 𝑏
′
𝜎𝑎𝜎))

𝜀 , and similarly for 𝑔∗, 𝑟∗
and 𝜎∗, 𝜀∗. If we fix the canonical representations

𝑟 = 𝑢0𝑢1 · · · 𝑢6640𝑛𝑖−1,

where 𝑢 𝑗 ∈ {𝑏𝜎 , 𝑏
′
𝜎 , 𝑎𝜎 , ℎ

−1
𝜎 𝑏𝜎}, and similarly

𝑟∗ = 𝑢∗0𝑢
∗
1 · · · 𝑢

∗
6640𝑛𝑖∗−1,

then again recalling Observation 2.6(2), we can assume that there exist 𝑗 < 6640𝑛𝑖 , 𝑗∗ < 6640𝑛𝑖∗ ,
such that whenever 0 < 𝑘 < 6640𝑛𝑖 − 1, then 𝑔𝑘 = 𝑢𝜀

𝑗+𝜀𝑘 , and if 0 < 𝑘 < 6640𝑛𝑖∗ − 1, then
𝑔∗𝑘 = (𝑢∗𝑗∗+𝜀∗𝑘 )

𝜀∗ .
We first observe that 𝑖 = 𝑖∗, since otherwise if, say, 𝑖 < 𝑖∗ did hold, then for some 1 ≤ 𝑘, 𝑘 ′ ≤ 81𝑛𝑖

with 𝑢 𝑗+𝜀𝑘 = 𝑏𝜎 , 𝑢 𝑗+𝜀𝑘′ = 𝑏′𝜎 , while 𝑢∗𝑗+𝜀𝑘 = 𝑢∗𝑗+𝜀𝑘′ ∈ {𝑏𝜎∗ , 𝑏′𝜎∗ }, and so by (*), we get

𝑏𝜎 = 𝑢 𝑗+𝜀𝑘 ∼𝐻 𝑢∗𝑗+𝜀𝑘 = 𝑢∗𝑗+𝜀𝑘′ ∼𝐻 𝑢 𝑗+𝜀𝑘′ = 𝑏′𝜎 ,

contradicting 𝑏𝜎 �𝐻 𝑏′𝜎 . From now on, n will denote the common value of 𝑛𝑖 = 𝑛𝑖∗ .
Now note that 𝑏𝜎 ∼𝐻 𝑏𝜎∗ : there is a k with 1 ≤ 𝑘 ≤ 10𝑛 such that 𝑢 𝑗+𝜀𝑘 ∈ {𝑏𝜎 , ℎ

−1
𝜎 𝑏𝜎},

and 𝑢∗𝑗∗+𝜀∗𝑘 ∈ {𝑏𝜎∗ , ℎ−1
𝜎∗𝑏𝜎∗ }, so by (*) for some ℎ ∈ 𝐻, we have 𝑏−𝜀

𝜎 ℎ𝑏𝜀∗

𝜎∗ ∈ 𝐻, implying that
𝑏𝜎 ∼𝐻 𝑏𝜎∗ . Similarly, for some 𝑘•, 1 ≤ 𝑘• ≤ 2𝑛, 𝑢 𝑗+𝜀𝑘• = 𝑎𝜎 , and 𝑢∗𝑗∗+𝜀∗𝑘• = 𝑎𝜎∗ , and by the
same line of reasoning, 𝑎𝜎 ∼𝐻 𝑎𝜎∗ .

We clearly get that
(�) either (�)𝑐 , or (�)𝑑 , or 𝜎 = 𝜎∗ holds, and in each case, 𝑏𝜎 �𝐻 𝑏′𝜎∗ .
Now, note that if 𝑗 ≠ 𝑗∗ or 𝜀 ≠ 𝜀∗, then there exists k with 1 ≤ 𝑘 < 500𝑛 such that 𝑢 𝑗+𝜀𝑘 ∈

{𝑏𝜎 , ℎ
−1
𝜎 𝑏𝜎}, and 𝑢∗𝑗∗+𝜀∗𝑘 = 𝑏′𝜎∗ = 𝑏′𝜎 , and for some ℎ ∈ 𝐻, we have 𝑏−𝜀

𝜎 ℎ(𝑏′𝜎∗ ) 𝜀
∗
∈ 𝐻 (or

(ℎ−1
𝜎 𝑏𝜎)

−𝜀ℎ(𝑏′𝜎∗ ) 𝜀
∗), so 𝑏𝜎 ∼𝐻 𝑏′𝜎∗ , contradicting (�). Therefore, hereafter, we can assume that

𝑗 = 𝑗∗ and 𝜀 = 𝜀∗.
We now divide our analysis into a few cases and subcases:
� If either (�)𝑐 or 𝜎 = 𝜎∗, then necessarily, 𝑏𝜎 = 𝑏𝜎∗ and 𝑏′𝜎 = 𝑏′𝜎∗ . But now for some k

with 1 ≤ 𝑘 ≤ 10𝑛, 𝑔𝑘 = 𝑔∗𝑘 = 𝑏𝜀
𝜎 , so for

ℎ = 𝑔−1
𝑘−1𝑔

−1
𝑘−2 · · · 𝑔

−1
0 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑘−1 ∈ 𝐻,

we have

𝑔−1
𝑘 ℎ𝑔∗𝑘 ∈ 𝐻,

but then 𝐻 ≤m 𝐿 together with 𝑏𝜎 ∈ 𝐿 \ 𝐻 imply that ℎ = 1.
�� If 𝜎 = 𝜎∗, then invoking Observation 2.6(2) again (and recalling that g and 𝑔∗ are

cyclically reduced conjugates of ℎ−1
𝜎 𝜚(𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎)), it is straightforward to check

that 𝑗 = 𝑗∗ and 𝜀 = 𝜀∗ imply 𝑔 = 𝑔∗, which is a contradiction.
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�� If 𝜎 ≠ 𝜎∗ and 𝑎𝜎 ≠ 𝑎𝜎∗ , then 𝑔−1
𝑘 ℎ𝑔∗𝑘 = 1 implies that

𝑔−1
𝑘+1(𝑔

−1
𝑘 ℎ𝑔∗𝑘 )𝑔

∗
𝑘+1 = 𝑎−𝜀

𝜎 𝑎𝜀
𝜎∗ ≠ 1,

and in the following step (conjugating by 𝑏𝜎 = 𝑏𝜎∗ again), we get a contradiction.
� If the pair 𝜎, 𝜎∗ satisfies condition (�)𝑑 , then we argue as follows. First, we claim that the

there exists a k with 1 ≤ 𝑘 < 10𝑛 + 2 such that following three hold:
(�)1 𝑔𝑘 = 𝑢𝜀

𝑗+𝜀𝑘 = 𝑎𝜀
𝜎 ,

(�)2 𝑔∗𝑘 = (𝑢∗𝑗+𝜀𝑘 )
𝜀 = 𝑎𝜀

𝜎∗ ,
(�)3 ℎ = 𝑔−1

𝑘−1𝑔
−1
𝑘−2 · · · 𝑔

−1
0 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑘−1 ∈ 𝐻 \ 𝐾 ′ = 𝐻 \ 𝐻 ′.

As before, for some 𝑘• < 10𝑛, we have 𝑢𝜀
𝑗+𝜀𝑘• = 𝑎𝜀

𝜎 , and (𝑢∗𝑗+𝜀𝑘• )
𝜀 = 𝑎𝜀

𝜎∗ , 𝑢𝜀
𝑗+𝜀 (𝑘•+1) =

𝑏𝜀
𝜎 , and 𝑢∗

𝑗+𝜀 (𝑘•+1) = 𝑏𝜀
𝜎∗ . Suppose that

ℎ = 𝑔−1
𝑘•−1𝑔

−1
𝑘•−2 · · · 𝑔

−1
0 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑘•−1 ∈ 𝐻 ′.

Then ℎ′ = 𝑎−𝜀
𝜎 ℎ𝑎𝜀

𝜎∗ ∈ 𝐾 ′𝐻 ′𝐾 ′ = 𝐾 ′, and by our indirect assumptions 𝑎−𝜀
𝜎 ℎ𝑎𝜀

𝜎 ∈ 𝐻, so ℎ′

lies in the intersection 𝐾 ′ ∩ 𝐻 = 𝐻 ′. Now

𝑢−𝜀
𝑗+𝜀 (𝑘•+1)ℎ

′𝑢𝜀
𝑗+𝜀 (𝑘•+1) = 𝑏−𝜀

𝜎 ℎ′𝑏𝜀
𝜎∗ ∈ 𝑏−𝜀

𝜎 𝐻 ′𝑏𝜀
𝜎∗ ,

so by (�)𝑑 (iii), this product is not in 𝐻 ′; thus, we can assume that some 𝑘 < 10𝑛 + 2
satisfies (�)1–(�)2.But then using 𝑎𝜎 , 𝑎𝜎∗ ∈ 𝐾 ′ \ 𝐻 ′,

𝑔−1
𝑘 𝑔−1

𝑘 · · · 𝑔−1
0 𝑔∗0𝑔

∗
1 · · · 𝑔

∗
𝑘 = 𝑎−𝜀

𝜎 ℎ𝑎𝜀
𝜎∗

∈ (𝐾 ′ \ 𝐻) · (𝐻 \ 𝐻 ′) · (𝐾 ′ \ 𝐻) ⊆ 𝐾 \ 𝐻.

This is a contradiction.
(B) Fix 𝑔, 𝑔′ ∈ 𝐾 \ {1} ⊆ 𝑀∗, and 𝑧 ∈ 𝑀∗ \ 𝐾 , with a canonical form 𝑧 = 𝑧0𝑧1 · · · 𝑧𝑚−1 satisfying it

does not contain any subsequence 𝑧𝜎0 𝑧𝜎0+1 · · · 𝑧𝜎0+ 𝑗−1 that is a subsequence of a canonical form
of an element 𝑟 ∈ 𝑅, where 𝑗 > 6640

2 + 1 (we can assume this, since otherwise, we could insert the
entire sequence of the inverse of this fixed canonical form of r). Now suppose that 𝑧𝑔𝑧−1𝑔′ = 1
holds in 𝑀∗; that is,

𝑀 |= 𝑧𝑔𝑧−1𝑔′ ∈ 𝑁.

W.l.o.g. 𝑧0, 𝑧𝑚−1 ∈ 𝐿 (thus m is odd), since otherwise, we can replace g with 𝑧𝑚−1𝑔𝑧
−1
𝑚−1 ∈ 𝐾 \ {1},

and 𝑔′ with 𝑧−1
0 𝑔′𝑧0 ∈ 𝐾 \ {1}. Now as 𝑔, 𝑔′ ∈ 𝐾 , if 𝑔, 𝑔′ are not in H, then the product

𝑧0𝑧1 · · · 𝑧𝑚−1𝑔𝑧
−1
𝑚−1 · · · 𝑧

−1
0 𝑔′ is in a weakly cyclically reduced form; otherwise, if 𝑔 ∈ 𝐻, then

𝑧𝑚−1𝑔𝑧
−1
𝑚−1 ∈ 𝐿 \ 𝐻 (here, we use 𝐻 ≤m 𝐿 and that 𝑧𝑚−1 ∈ 𝐿 \ 𝐻), and similarly, 𝑔′ ∈ 𝐻

implies 𝑧−1
0 𝑔′𝑧0 ∈ 𝐿 \ 𝐻. So by these reductions, we obtain a product in a cyclically reduced form

of length 2𝑚 + 2 or 2𝑚, or 2𝑚 − 2. A cyclic conjugate of this word contains a long (> 7/10)
subword of some canonical form of an 𝑟 ∈ 𝑅. By our assumptions on z (not containing more
than half of a canonical representation of r), this has to involve either g or 𝑔′; in fact, either the
word 𝑧 𝑗 𝑧 𝑗+1 · · · 𝑧𝑚−1𝑔𝑧

−1
𝑚−1𝑧

−1
𝑚−2 · · · 𝑧

−1
𝑗 (or 𝑧 𝑗 𝑧 𝑗+1 · · · 𝑧𝑚−2(𝑧𝑚−1𝑔𝑧

−1
𝑚−1)𝑧

−1
𝑚−2 · · · 𝑧

−1
𝑗 if 𝑔 ∈ 𝐻), or

𝑧−1
𝑗∗
𝑧−1
𝑗∗−1 · · · 𝑧

−1
0 𝑔′𝑧0𝑧1 · · · 𝑧 𝑗∗ contains a long (> 2/10 fraction) subword of a canonical form of some

𝑟 ∈ 𝑅 (in the latter case, if 𝑔′ ∈ 𝐻, then of course we mean the word 𝑧−1
𝑗∗
𝑧−1
𝑗∗−1 · · · (𝑧

−1
0 𝑔′𝑧0)𝑧1 · · · 𝑧 𝑗∗).

But this is impossible since in any 𝑟 = 𝑟0𝑟1 · · · 𝑟𝑛−1 ∈ 𝑅 (𝑛 ∈ {6640, 6641}) at any fixed 𝑡 ∈
[ 6640

10 , 6640·9
10 ], there exists 𝑘 < 250 such that (for some 𝜎 ∈ Σ) 𝑟𝑡−𝑘 ∈ 𝐻𝑏±1

𝜎 𝐻, 𝑟𝑡+𝑘 ∈ 𝐻 (𝑏′𝜎)
±1𝐻,

and so 𝑟𝑡−𝑘 �𝐻 𝑟𝑡+𝑘 , while 𝑧𝑘 , 𝑧−1
𝑘 are clearly ∼𝐻 -related.
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(C) Suppose otherwise, for example, for some 𝑘, 𝑘 ′ ∈ 𝐾 either

𝑦 = (𝑏∗𝑧)𝑘 (𝑧−1𝑏−1𝑧−1𝑏−1)𝑘 ′ = 1 in 𝑀∗

or

𝑦 = (𝑏∗𝑧)𝑘 (𝑏𝑧𝑏𝑧)𝑘 ′ = 1.

Observe that after performing the cancellations in the free amalgam M and writing 𝑦 = 𝑦0𝑦1 · · · 𝑦𝑚−1
as a reduced (alternating) word, in both cases (regardless of whether 𝑘, 𝑘 ′ ∈ 𝐻), there is at most one
j for which 𝑦 𝑗 ∈ 𝐿 \𝐻 and 𝑦 𝑗 �𝐻 𝑏. Now possibly replacing 𝑦0𝑦1 · · · 𝑦𝑚−1 with a weakly cyclically
reduced conjugate of it (if the reduced form of 𝑦0𝑦1 · · · 𝑦𝑚−1 is not weakly cyclically reduced), this
clause remains true (and the resulting word similarly belongs to N in M). It is not difficult to see
that there exists at least one 𝑗 ′ such that 𝑦 𝑗′ ∼𝐻 𝑏. Again, 𝑦0𝑦1 · · · 𝑦𝑚−1 (or a cyclical permutation
of it) contains a long subword of a canonical form of some 𝑟 ∈ 𝑅, but any such subword (if longer
than 400) contains at least two-two occurrences of 𝑏𝜎 and 𝑏′𝜎 (for some 𝜎 ∈ Σ), and b cannot be
∼𝐻 -equivalent with both 𝑏𝜎 and 𝑏′𝜎 (since 𝑏𝜎 �𝐻 𝑏′𝜎).

(D) This is the same as above. Assuming that 𝑀∗ |= 𝑏𝑎𝑏′ ∈ 𝐾 , then for some 𝑎′ ∈ 𝐾 , 𝑀∗ |= 𝑏𝑎𝑏′𝑎′ = 1,
so

𝑀 |= 𝑏𝑎𝑏′𝑎′ ∈ 𝑁.

Now if 𝑎′ ∈ 𝐾 \ 𝐻, then the word 𝑏𝑎𝑏′𝑎′ is weakly cyclically reduced, so any weakly cyclically
reduced conjugate to it is of length either 4 or 5 and clearly cannot contain a long subword of any
𝑟 ∈ 𝑅.

If 𝑎′ ∈ 𝐻, then depending on whether 𝑏′′ = 𝑏′𝑎′𝑏 ∈ 𝐻, we have that either 𝑏−1(𝑏𝑎𝑏′𝑎′)𝑏 =
𝑎ℎ ∈ 𝐾 \ 𝐻 is weakly cyclically reduced (so 𝑀 |= 𝑏𝑎𝑏′𝑎′ = 𝑏(𝑎ℎ)𝑏−1 ∉ 𝑏𝑁𝑏−1 = 𝑁) or
𝑏−1𝑏𝑎𝑏′𝑎′𝑏 = 𝑎𝑏′𝑎′𝑏 = 𝑎𝑏′′ (where 𝑏′′ ∉ 𝐻), which is weakly cyclically reduced, and similarly
cannot lie in N.

(E) Let 𝑎, 𝑎′ ∈ 𝐾 \ 𝐻 be such that 𝑎 �𝐻 ′ 𝑎′, and fix 𝑙, 𝑙 ′ ∈ 𝐿 ′. Suppose that 𝑀∗ |= 𝑎𝑙𝑎′𝑙 ′ = 1; that is,

𝑀 |= 𝑤 = 𝑎𝑙𝑎′𝑙 ′ ∈ 𝑁.

We can write w as a reduced word. If 𝑙 ∈ 𝐻, then 𝑙 ∈ 𝐻 ′, and since 𝑎 �𝐻 ′ 𝑎′, we have 𝑎𝑙𝑎′ ∈ 𝐾 \𝐻 ′,
so either 𝑤 = (𝑎𝑙𝑎′)𝑙 ′ is a product of an element of 𝐾 \ 𝐻 ′ and 𝐿 \ 𝐻 (if 𝑙 ′ ∉ 𝐻) which has to lie
in 𝐾 (𝐿 \ 𝐻) (which is disjoint to N) or (𝑎𝑙𝑎′)𝑙 ′ ∈ (𝐾 \ 𝐻 ′) · 𝐻 ′ = 𝐾 \ 𝐻 ′, and we are done.

So w.l.o.g. 𝑙 ∉ 𝐻. (Similarly, 𝑀∗ |= 𝑎′𝑙 ′𝑎𝑙 = 1 implies that w.l.o.g. 𝑙 ′ ∉ 𝐻). So any weakly
cyclically reduced conjugate of 𝑤 ∈ 𝑀 has length at most 5 and contains at least 2 entries from
𝐾 \ 𝐻. But 𝑤 ∈ 𝑁 implies that some weakly cyclically reduced conjugate contains a long subword
of some 𝑟 ∈ 𝑅, which is clearly impossible.

(F) The proof of (E) works here too.
(G) Let 𝑔 ∈ 𝑀∗, 𝑛 ∈ 𝜔, 𝑛 > 1 be such that 𝑔 ≠ 1, 𝑀∗ |= 𝑔𝑛 = 1. Recalling Observation 2.6, we can

write g as an alternating product of elements of 𝐾 \ 𝐻 and 𝐿 \ 𝐻

𝑔 = 𝑔0𝑔1 · · · 𝑔2𝑚−1.

W.l.o.g. there exists no conjugate 𝑦𝑔𝑦−1 of g, and 𝑔′ with 𝑔′(𝑦𝑔𝑦−1)−1 ∈ 𝑁 such that 𝑔′ has
a shorter canonical representation than 2𝑚, since we can replace g with 𝑔′ and get a torsion
element. Therefore, there is no 𝑟 ∈ 𝑅, 𝜎0 < 2𝑚 with the sequence 𝑔𝜎0𝑔𝜎0+1 · · · 𝑔2𝑚−1𝑔0𝑔1 · · · 𝑔𝜎0−1
containing a subsequence of a canonical representation of r of length 𝑗 > 6640

2 + 1.Now, since

𝑀 |= (𝑔0𝑔1 · · · 𝑔2𝑚−1)
𝑛 ∈ 𝑁,
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there exists a cyclic conjugate of (𝑔0𝑔1 · · · 𝑔2𝑚−1)
𝑛 and a subsequence 𝑠0𝑠1 · · · 𝑠 𝑗 of it that is also

a subsequence of a canonical form of some 𝑠 ∈ 𝑅 with 𝑗 ≥ 7
10 · 6640. Our assumptions above on

𝑔0𝑔1 · · · 𝑔2𝑚−1 easily imply

2𝑚 ≤
6640

2
+ 1;

thus,

2𝑚 +
2

10
· 6640 − 1 ≤ 𝑗 ,

and clearly, 2𝑚+330 ≤ 𝑗 . This way we get that 𝑠ℓ ∼𝐻 𝑠ℓ+2𝑚 for each ℓ ≤ 330, but as s is a cyclically
reduced conjugate of ℎ−1

𝜎 𝜚(𝑏𝜎𝑎𝜎 , 𝑏
′
𝜎𝑎𝜎) or of its inverse (for some 𝜎 ∈ Σ), we get that for some

ℓ ∈ [1, 330]𝑠ℓ ∈ 𝐻 (𝑏𝜎)
±1𝐻, 𝑠ℓ+2𝑚 ∈ 𝐻 (𝑏′𝜎)

±1𝐻; thus, 𝑠ℓ �𝐻 𝑠ℓ+2𝑚. This is a contradiction. �

4. A set-theoretic interlude

In this section, 𝜒, 𝜃, 𝜇, 𝜆 and 𝜅 all denote nonzero cardinals. Recall that [𝜅]2 stands for the collection
of all unordered pairs {𝛼, 𝛽} of ordinals in 𝜅, but here we identify it with the collection of all ordered
pairs (𝛼, 𝛽) with 𝛼 < 𝛽.

Definition 4.1. A map 𝑑 : [𝜅]2 → 𝜃 is subadditive if the following inequalities hold for all 𝛼 < 𝛽 <
𝛾 < 𝜅:

(1) 𝑑 (𝛼, 𝛾) ≤ max{𝑑 (𝛼, 𝛽), 𝑑 (𝛽, 𝛾)};
(2) 𝑑 (𝛼, 𝛽) ≤ max{𝑑 (𝛼, 𝛾), 𝑑 (𝛽, 𝛾)}.

Notation 4.2. Whenever the map 𝑑 : [𝜅]2 → 𝜃 is clear from the context, we define for all 𝛾 < 𝜅 and
𝑖 ≤ 𝜃, the following sets:

• 𝐷
𝛾
<𝑖 = {𝛽 < 𝛾 | 𝑑 (𝛽, 𝛾) < 𝑖}, and

• 𝐷
𝛾
≤𝑖 = {𝛽 < 𝛾 | 𝑑 (𝛽, 𝛾) ≤ 𝑖}.

Lemma 4.3. If 𝑑 : [𝜅]2 → 𝜃 is subadditive, then for all 𝛾 < 𝜅, 𝑖 ≤ 𝜃, and 𝛽 ∈ 𝐷
𝛾
<𝑖 , it is the case that

𝐷
𝛾
<𝑖 ∩ 𝛽 = 𝐷

𝛽
<𝑖 .

Proof. Suppose that 𝑑 : [𝜅]2 → 𝜃 is subadditive, and let 𝛾, 𝑖 and 𝛽 be as above.
� By Definition 4.1(1), for every 𝛼 ∈ 𝐷

𝛽
<𝑖 , 𝑑 (𝛼, 𝛾) ≤ max{𝑑 (𝛼, 𝛽), 𝑑 (𝛽, 𝛾)}, so, since 𝛼 ∈ 𝐷

𝛽
<𝑖 and

𝛽 ∈ 𝐷
𝛾
<𝑖 , we infer that 𝑑 (𝛼, 𝛾) < 𝑖 and 𝛼 ∈ 𝐷

𝛾
<𝑖 ∩ 𝛽.

�By Definition 4.1(2), for every𝛼 ∈ 𝐷
𝛾
<𝑖∩𝛽, 𝑑 (𝛼, 𝛽) ≤ max{𝑑 (𝛼, 𝛾), 𝑑 (𝛽, 𝛾)}, so, since𝛼, 𝛽 ∈ 𝐷

𝛾
<𝑖 ,

we infer that 𝑑 (𝛼, 𝛽) < 𝑖 and 𝛼 ∈ 𝐷
𝛽
<𝑖 . �

Theorem 4.4. Suppose that 𝜆 is an infinite regular cardinal. Then there exist two maps 𝑐 : [𝜆+]2 → 𝜆+

and 𝑑 : [𝜆+]2 → 𝜆 such that

• d is subadditive;
• for every 𝐴 ∈ [𝜆+]𝜆

+ , there exists a club 𝐷 ⊆ 𝜆+ such that for every 𝛿 ∈ 𝐷, for every 𝛽 ∈ 𝜆+ \ 𝛿,
for every 𝜉 < 𝛿, for every 𝑖 < 𝜆, there are cofinally many 𝛼 < 𝛿 such that 𝛼 ∈ 𝐴, 𝑐(𝛼, 𝛽) = 𝜉 and
𝑑 (𝛼, 𝛽) > 𝑖.

Proof. Let d be the function 𝜌 : [𝜆+]2 → 𝜆 defined in [45, §9.1]. By [45, Lemma 9.1.1], d is subadditive.
By [45, Lemma 9.1.2], d is also locally small (i.e., |𝐷𝛾

≤𝑖 | < 𝜆 for all 𝛾 < 𝜆+ and 𝑖 < 𝜆).
Next, by [37], we may fix a coloring 𝑐 : [𝜆+]2 → 𝜆+ witnessing 𝜆+ � [𝜆+;𝜆+]2

𝜆+ . By [22, Lemma
3.16], this means that for every 𝐴 ∈ [𝜆+]𝜆

+ , there exists an 𝜖 < 𝜆+ such that, for all 𝛽 ∈ 𝜆+ \ 𝜖 and 𝜉 < 𝜖 ,
there exists 𝛼 ∈ 𝐴 ∩ 𝜖 such that 𝑐(𝛼, 𝛽) = 𝜉.

We now verify that c and d are as sought.
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Claim 4.4.1. Let 𝐴 ∈ [𝜆+]𝜆
+ . Then there exists a club 𝐷 ⊆ 𝜆+ such that for every 𝛿 ∈ 𝐷, for every

𝛽 ∈ 𝜆+ \ 𝛿, for every 𝜉 < 𝛿, for every 𝑖 < 𝜆, there are cofinally many 𝛼 < 𝛿 such that 𝛼 ∈ 𝐴, 𝑐(𝛼, 𝛽) = 𝜉
and 𝑑 (𝛼, 𝛽) > 𝑖.
Proof. Let 〈𝑀𝛾 | 𝛾 < 𝜆+〉 be a sequence of elementary submodels of H𝜆++ , each of size 𝜆, such that
{𝐴, 𝑒} ∈ 𝑀0, such that 𝑀𝛾 ∈ 𝑀𝛾+1 for every 𝛾 < 𝜆+, and such that 𝑀𝛿 =

⋃
𝛾<𝛿 𝑀𝛾 for every limit

nonzero 𝛿 < 𝜆+. It follows that 𝐶 = {𝛾 < 𝜆+ | 𝑀𝛾 ∩ 𝜆+ = 𝛾} is a club in 𝜆+.
We claim that the following club is as sought:

𝐷 = {𝛿 < 𝜆+ | otp(𝐶 ∩ 𝛿) = 𝜆𝛿}.

To this end, let 𝛿 ∈ 𝐷, 𝛽 ∈ 𝜆+ \ 𝛿, 𝜉 < 𝛿, 𝑖 < 𝜆, and 𝜂 < 𝛿. We shall find an 𝛼 ∈ 𝐴∩ 𝛿 above 𝜂 such that
𝑐(𝛼, 𝛽) = 𝜉 and 𝑑 (𝛼, 𝛽) > 𝑖.

For every 𝛾 ∈ 𝐶 \ 𝜉, the set 𝐴𝛾 = 𝐴 \ 𝛾 is in [𝜆+]𝜆
+
∩ 𝑀𝛾+1, and hence, there exists 𝜖 ∈ 𝜆+ ∩ 𝑀𝛾+1

such that for all 𝛽′ ∈ 𝜆+ \ 𝜖 and 𝜉 ′ < 𝜖 , there exists 𝛼′ ∈ 𝐴𝛾 ∩ 𝜖 such that 𝑐(𝛼′, 𝛽′) = 𝜉 ′. In particular,
we may pick 𝛼𝛾 ∈ 𝐴 ∩ 𝑀𝛾+1 \ 𝛾 such that 𝑐(𝛼𝛾 , 𝛽) = 𝜉. It follows that 𝛾 ↦→ 𝛼𝛾 is a strictly increasing
function from 𝐶 ∩ 𝛿 to 𝐴 ∩ 𝛿. As 𝛿 ∈ 𝐷, we infer that 𝐴′ = {𝛼 ∈ 𝐴 ∩ 𝛿 | 𝜂 < 𝛼 & 𝑐(𝛼, 𝛽) = 𝜉} has
size 𝜆. As d is locally small, we may now pick 𝛼 ∈ 𝐴′ \ 𝐷

𝛽
≤𝑖 . Then 𝛼 ∈ 𝐴 ∩ 𝛿 above 𝜂, 𝑑 (𝛼, 𝛽) > 𝑖 and

𝑐(𝛼, 𝛽) = 𝜉, as sought. �

This completes the proof. �

Remark 4.5. The preceding result does not generalize to the case when 𝜆 is a singular cardinal. Indeed,
it follows from [28, Lemma 3.38] that if 𝜆 is the singular limit of strongly compact cardinals, then for
every infinite cardinal 𝜃 ≤ 𝜆, for every subadditive map 𝑑 : [𝜆+]2 → 𝜃, there must exist an 𝐴 ∈ [𝜆+]𝜆

+

such that sup{𝑑 (𝛼, 𝛽) | 𝛼 < 𝛽 in 𝐴} < 𝜃.
Definition 4.6 [41]. Pr1(𝜅, 𝜅, 𝜃, 𝜒) asserts the existence of a coloring 𝑐 : [𝜅]2 → 𝜃 such that for every
𝜎 < 𝜒, every pairwise disjoint subfamily A ⊆ [𝜅]𝜎 of size 𝜅, and every 𝜏 < 𝜃, there are 𝑎, 𝑏 ∈ A with
sup(𝑎) < min(𝑏) such that 𝑐[𝑎 × 𝑏] = {𝜏}.
Definition 4.7 [26]. U(𝜅, 𝜇, 𝜃, 𝜒) asserts the existence of a coloring 𝑑 : [𝜅]2 → 𝜃 such that for every
𝜎 < 𝜒, every pairwise disjoint subfamily A ⊆ [𝜅]𝜎 of size 𝜅, and every 𝜏 < 𝜃, there exists B ∈ [A]𝜇

such that, for all 𝑎, 𝑏 ∈ B with sup(𝑎) < min(𝑏), it is the case that min(𝑑 [𝑎 × 𝑏]) ≥ 𝜏.
Theorem 4.8. Suppose that
• 𝜃 < 𝜅 are infinite regular cardinals;
• 𝑐 : [𝜅]2 → 𝜅 is a coloring witnessing Pr1 (𝜅, 𝜅, 𝜅, 4);
• 𝑑 : [𝜅]2 → 𝜃 is a subadditive coloring witnessing U(𝜅, 2, 𝜃, 2).

Then, for every 𝐴 ∈ [𝜅]𝜅 , there exists a club 𝐷 ⊆ 𝜅 such that for every 𝛿 ∈ 𝐷, for every 𝛽 ∈ 𝜅 \ 𝛿,
for every 𝜉 < 𝛿, for every 𝑖 < 𝜃, there are cofinally many 𝛼 < 𝛿 such that 𝛼 ∈ 𝐴, 𝑐(𝛼, 𝛽) = 𝜉 and
𝑑 (𝛼, 𝛽) > 𝑖.
Proof. We start by verifying a special case.
Claim 4.8.1. Let 𝐴 ∈ [𝜅]𝜅 , 𝜉 < 𝜅 and 𝑖 < 𝜃. There exists 𝛾 < 𝜅 such that for every 𝛽 ∈ 𝜅 \ 𝛾, there
exists 𝛼 ∈ 𝐴 ∩ 𝛾 such that 𝑐(𝛼, 𝛽) = 𝜉 and 𝑑 (𝛼, 𝛽) > 𝑖.
Proof. For every 𝜖 < 𝜅, 𝐴 \ 𝜖 is in [𝜅]𝜅 , and as 𝑑 : [𝜅]2 → 𝜃 witnesses U(𝜅, 2, 𝜃, 2), it is the case that
𝑑“[𝐴 \ 𝜖]2 is cofinal in 𝜃. It thus follows that we may fix a 𝜅-sized pairwise disjoint subfamily A of
[𝐴]2 such that 𝑑 (𝑎) > 𝑖 for all 𝑎 ∈ A. Note that for all 𝛽 < 𝜅 and 𝑎 ∈ A ∩ P (𝛽), there must exist some
𝛼 ∈ 𝑎 such that 𝑑 (𝛼, 𝛽) > 𝑖 because, by subadditivity,

𝑖 < 𝑑 (𝑎) ≤ max{𝑑 (min(𝑎), 𝛽), 𝑑 (max(𝑎), 𝛽)}.

Therefore, it now suffices to prove that there exists some 𝛾 < 𝜅 such that for every 𝛽 ∈ 𝜅 \ 𝛾, there
exists 𝑎 ∈ A ∩ P (𝛾) such that 𝑐[𝑎 × {𝛽}] = {𝜉}. Towards a contradiction, suppose that this is not the
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case. For every 𝛾 < 𝜅, fix 𝛽𝛾 ∈ 𝜅 \ 𝛾 such that there exists no 𝑎 ∈ A ∩ P (𝛾) with 𝑐[𝑎 × {𝛽𝛾}] = {𝜉}.
For each 𝛾 < 𝜅, set 𝑎𝛾 = {𝛽𝛾} ∪ 𝑎 for some 𝑎 ∈ A such that min(𝑎) > 𝛽𝛾 . Fix a club 𝐶 ⊆ 𝜅 such that
for every 𝛾 ∈ 𝐶, for every �̄� < 𝛾, max(𝑎�̄�) < 𝛾. It follows that A′ = {𝑎𝛾 | 𝛾 ∈ 𝐶} is a collection of
𝜅-many pairwise disjoint elements of [𝜅]3. So, since c witnesses Pr1(𝜅, 𝜅, 𝜅, 4), we may find 𝑎, 𝑏 ∈ A′

with max(𝑎) < min(𝑏) such that 𝑐[𝑎 × 𝑏] = {𝜉}. Pick �̄�, 𝛾 in C such that 𝑎 = 𝑎�̄� and 𝑏 = 𝑎𝛾 . From
max(𝑎 �̄�) < min(𝑎𝛾), it follows that �̄� < 𝛾, and

max(𝑎 �̄�) < 𝛾 ≤ 𝛽𝛾 = min(𝑎𝛾).

In particular, 𝑎′ = 𝑎 �̄�\{𝛽𝛾} is an element ofA∩P (𝛾) and 𝑐[𝑎′×{𝛽𝛾}] = {𝜉}. This is a contradiction. �

Now, given 𝐴 ∈ [𝜅]𝜅 , let 〈𝑀𝛾 | 𝛾 < 𝜅〉 be a sequence of elementary submodels of H𝜅+ , each of
size less than 𝜅, such that {𝐴, 𝑐, 𝑑} ∪ 𝜃 ⊆ 𝑀0, such that 𝑀𝛾 ∈ 𝑀𝛾+1 for every 𝛾 < 𝜅, and such that
𝑀𝛿 =

⋃
𝛾<𝛿 𝑀𝛾 for every limit nonzero 𝛿 < 𝜅. We claim that the following club is as sought:

𝐷 = {𝛿 < 𝜅 | 𝑀𝛿 ∩ 𝜅 = 𝛿}.

To see it, let 𝛽 ∈ 𝜅 \ 𝛿, 𝜉 < 𝛿, 𝑖 < 𝜃, and 𝜖 < 𝛿; we must find 𝛼 ∈ 𝐴 with 𝜖 ≤ 𝛼 < 𝛿 such that 𝑐(𝛼, 𝛽) = 𝜉
and 𝑑 (𝛼, 𝛽) > 𝑖. The set 𝐴′ = 𝐴 \ 𝜖 is in [𝜅]𝜅 ∩𝑀𝛿 , and so are 𝜉 and i. It thus follows from Claim 4.8.1
that there exists 𝛾 ∈ 𝜅 ∩𝑀𝛿 such that for every 𝛽′ ∈ 𝜅 \ 𝛾, there exists 𝛼 ∈ 𝐴′ ∩ 𝛾 such that 𝑐(𝛼, 𝛽′) = 𝜉
and 𝑑 (𝛼, 𝛽′) > 𝑖. As 𝛾 < 𝛿 ≤ 𝛽, it follows that there exists 𝛼 ∈ 𝐴′ ∩ 𝛾 such that 𝑐(𝛼, 𝛽) = 𝜉 and
𝑑 (𝛼, 𝛽) > 𝑖. Evidently, 𝜖 ≤ 𝛼 < 𝛿. �

In reading the next definition, recall that for a set X of ordinals, acc(𝑋) stands for the set of all
nonzero 𝜉 ∈ 𝑋 such that sup(𝑋 ∩ 𝜉) = 𝜉.

Definition 4.9 [5]. For infinite regular cardinals 𝜃 < 𝜅, the principle �(𝜅, �𝜃 ) asserts the existence of a
sequence �𝐶 = 〈𝐶𝛼 | 𝛼 < 𝜅〉 satisfying the following:

• for every 𝛼 < 𝜅, 𝐶𝛼 is a closed subset of 𝛼 with sup(𝐶𝛼) = sup(𝛼);
• for all 𝛼 < 𝜅 and �̄� ∈ acc(𝐶𝛼), if otp(𝐶𝛼) ≥ 𝜃, then 𝐶�̄� = 𝐶𝛼 ∩ �̄�;
• for every club D in 𝜅, there exists some 𝛼 ∈ acc(𝐷) such that 𝐷 ∩ 𝛼 ≠ 𝐶𝛼.

Note that �(𝜅, �𝜗) implies �(𝜅, �𝜃 ) whenever 𝜗 < 𝜃. The strongest instance �(𝜅, �𝜔) is commonly
denoted by �(𝜅).

Corollary 4.10. Suppose that 𝜃 < 𝜅 are infinite regular cardinals.
If either �(𝜅, �𝜃 ) holds or if there exists a uniformly coherent 𝜅-Souslin tree, then there exist two

maps 𝑐 : [𝜅]2 → 𝜅 and 𝑑 : [𝜅]2 → 𝜃 such that

• d is subadditive;
• for every 𝐴 ∈ [𝜅]𝜅 , there exists a club 𝐷 ⊆ 𝜅 such that for every 𝛿 ∈ 𝐷, for every 𝛽 ∈ 𝜅 \ 𝛿, for every

𝜉 < 𝛿, for every 𝑖 < 𝜃, there are cofinally many 𝛼 < 𝛿 such that 𝛼 ∈ 𝐴, 𝑐(𝛼, 𝛽) = 𝜉 and 𝑑 (𝛼, 𝛽) > 𝑖.

Proof. By Theorem 4.4, we may assume that 𝜃+ < 𝜅. Also, by Theorem 4.8, it suffices to find a map
𝑐 : [𝜅]2 → 𝜅 witnessing Pr1(𝜅, 𝜅, 𝜅, 4), and a subadditive map 𝑑 : [𝜅]2 → 𝜃 witnessing U(𝜅, 2, 𝜃, 2).

By [36, Theorem B], �(𝜅) implies Pr1 (𝜅, 𝜅, 𝜅, 𝜃). Inspecting the proof of [36, Theorem 3.3] makes it
clear that the same conclusion already follows from �(𝜅, �𝜃 ). In addition, by [28, Theorem A], �(𝜅, �𝜃 )
yields a subadditive witness to U(𝜅, 2, 𝜃, 2).

Next, by [28, Corollary 3.29], the existence of a uniformly coherent 𝜅-Souslin tree yields a subadditive
witness to U(𝜅, 2, 𝜃, 2). It is also well known that the existence of a uniformly coherent 𝜅-Souslin tree
induces a witness to Pr1(𝜅, 𝜅, 𝜅, 𝜔). �

Remark 4.11. Coming back to the limitation highlighted in Remark 4.5, we point out that the conclusion
of Corollary 4.10 is nevertheless compatible with a bounded amount of large cardinals. The point is
that �(𝜅, �𝜃 ) may be added by means of a 𝜃-directed-closed and 𝜅-strategically-closed forcing, so by
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Laver’s indestructibility theorem, �(𝜅, �𝜃 ) is compatible with 𝜃 being supercompact. In parallel, the
existence of a uniformly coherent 𝜅-Souslin tree is compatible with 𝜅 possessing a generically-large
cardinal property that refutes �(𝜅, �𝜃 ) for all 𝜃 < 𝜅 (see [27, Theorem 3.3]).

5. A construction of a Shelah group

This section is devoted to proving the core result of this paper. The assumptions of the upcoming theorem
are motivated by the results of the previous section.

Theorem 5.1. Suppose

• 𝜃 < 𝜅 is a pair of infinite regular cardinals;
• 𝑐 : [𝜅]2 → 𝜅 is a coloring;
• 𝑑 : [𝜅]2 → 𝜃 is a subadditive coloring;
• for every 𝐴 ∈ [𝜅]𝜅 , there exists a club 𝐵 ⊆ 𝜅 such that for every 𝛽 ∈ 𝐵, there exists 𝛾 ∈ 𝐴 above 𝛽

such that for all 𝜉 < 𝛽 and 𝑖 < 𝜃, there are cofinally many 𝛼 < 𝛽 such that 𝛼 ∈ 𝐴, 𝑐(𝛼, 𝛾) = 𝜉 and
𝑑 (𝛼, 𝛾) > 𝑖.

Then there exists a torsion-free Shelah group G of size 𝜅.

Before embarking on the proof, we make a few promises and unfold some of their consequences.

5.1. Promises and their consequences

We start by listing our promises:

(p)1 We shall recursively construct distinguished group elements 〈𝑥𝛼 | 𝛼 < 𝜅〉 generating the whole
group G. For every subset 𝐴 ⊆ 𝜅, 𝐺𝐴 will denote the group generated by {𝑥𝛼 | 𝛼 ∈ 𝐴}, so that
𝐺 ∅ = {1} and 𝐺𝜅 = 𝐺;

(p)2 For every 𝛾 ≤ 𝜅, the underlying set of 𝐺𝛾 will be an initial segment of 𝜅;
(p)3 For all 𝛾 < 𝜅 and 𝑖 < 𝜃, 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

is torsion-free;4
(p)4 For all 𝛾 < 𝜅 and 𝑖 < 𝜃, 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝐷
𝛾
≤𝑖
= 𝐺𝐷

𝛾
<𝑖

;
(p)5 For all 𝛾 < 𝜅 and 𝑖 < 𝜃, 𝐺𝐷

𝛾
<𝑖

≤m 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

;
(p)6 For all 𝛾 ∈ [1, 𝜅) and 𝑖 ∈ [1, 𝜃), 𝐺𝐷

𝛾
≤𝑖∪{𝛾 }

is the group 𝑀∗ given by Lemma 3.4 when invoked
with the groups
• 𝐻 = 𝐺𝐷

𝛾
<𝑖

,
• 𝐾 = 𝐺𝐷

𝛾
≤𝑖

,
• 𝐿 = 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

,
and an appropriate (possibly empty) system S.

At the outset, we also agree on the following pieces of notation.

Notation 5.2. For every subset 𝐴 ⊆ 𝜅, we shall denote by ≡𝐴 the relation ∼𝐺𝐴 of Definition 3.3. That
is, 𝑔 ≡𝐴 ℎ iff there are 𝑦0, 𝑦1 ∈ 𝐺𝐴 and 𝜀 ∈ {1,−1} such that 𝑔 = 𝑦0 · ℎ

𝜀 · 𝑦1.

Notation 5.3. For all 𝛾 < 𝜅 and 𝑔 ∈ 𝐺𝛾 , let

𝑖
𝛾
𝑔 = min{𝑖 < 𝜃 | 𝑔 ∈ 𝐺𝐷

𝛾
≤𝑖
}.

We shall also record the first appearance of an element 𝑔 ∈ 𝐺𝜅 \ {1} by letting

𝛼𝑔 = min{𝛼 < 𝜅 | 𝑔 ∈ 𝐺𝛼+1}.

4Recall Notation 4.2.
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Since 𝑔 ∈ 𝐺𝛼𝑔∪{𝛼𝑔 } and 𝛼𝑔 =
⋃

𝑖<𝜃 𝐷
𝛼𝑔

≤𝑖 , it also makes sense to define

𝑖𝑔 = min{𝑖 < 𝜃 | 𝑔 ∈ 𝐺𝐷
𝛼𝑔
≤𝑖 ∪{𝛼𝑔 }

}.

As for 𝑔 = 1, since 𝐺0 = 𝐺 ∅ = {1}, we agree to let 𝛼1 = −1 and 𝑖1 = 0.

Remark 5.4. By possibly replacing 𝑑 : [𝜅]2 → 𝜃 with the map (𝛼, 𝛽) ↦→ 1 + 𝑑 (𝛼, 𝛽), we may assume
that 0 ∉ Im(𝑑). This tacit assumption will ensure that for every 𝑔 ∈ 𝐺, if 𝑖𝑔 = 0, then either 𝑔 = 1 or g
is an element of the cyclic group 〈𝑥𝛼𝑔 〉.

Notation 5.3 induces a well-ordering ≺ of G, as follows.

Definition 5.5. For 𝑔 ≠ ℎ in G, we shall let 𝑔 ≺ ℎ if one of the following holds:

• 𝛼𝑔 < 𝛼ℎ;
• 𝛼𝑔 = 𝛼ℎ and 𝑖𝑔 < 𝑖ℎ;
• 𝛼𝑔 = 𝛼ℎ and 𝑖𝑔 = 𝑖ℎ and 𝑔 ∈ ℎ.5

Note that min(𝐺, ≺) = 1.

Lemma 5.6. For all 𝛾 < 𝜅 and 𝑖 ≤ 𝜃, 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝛾 = 𝐺𝐷
𝛾
<𝑖

.

Proof. Let 𝛾 < 𝜅 and 𝑖 ≤ 𝜃. As 𝐺𝛾 =
⋃

𝑗<𝜃 𝐺𝐷
𝛾
< 𝑗

, it suffices to prove that for every 𝑗 ∈ (𝑖, 𝜃],

𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝐷
𝛾
< 𝑗

= 𝐺𝐷
𝛾
<𝑖
. (I)

The case 𝑗 = 𝑖 + 1 is immediate from (𝑝)4, and the case in which j is a limit ordinal follows from the
fact that 𝐺𝐷

𝛾
< 𝑗

=
⋃

𝑙< 𝑗 𝐺𝐷
𝛾
<𝑙

for j limit. So, suppose that 𝑗 ∈ [𝑖 + 1, 𝜃) is such that (I) holds. By (𝑝)4,
𝐺𝐷

𝛾
< 𝑗∪{𝛾 }

∩ 𝐺𝐷
𝛾
≤ 𝑗

= 𝐺𝐷
𝛾
< 𝑗

holds as well. Since 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

⊆ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

, altogether,

𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝐷
𝛾
≤ 𝑗

= 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

∩ 𝐺𝐷
𝛾
≤ 𝑗

= 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝐷
𝛾
< 𝑗

= 𝐺𝐷
𝛾
<𝑖
,

as sought. �

By the preceding, and since 𝐷
𝛾
<0 = ∅, the group 〈𝑥𝛾〉 generated by 𝑥𝛾 will have a trivial intersection

with 𝐺𝛾 . Another consequence of the preceding is as follows.

Corollary 5.7. For every 𝛾 < 𝜅, 𝐺𝛾 ≤m 𝐺𝛾+1.

Proof. Let 𝑔 ∈ 𝐺𝛾 \ {1} and ℎ ∈ 𝐺𝛾+1 \ 𝐺𝛾 for a given 𝛾 < 𝜅. Find a large enough 𝑖 < 𝜃 such that
𝑔 ∈ 𝐺𝐷

𝛾
<𝑖

and ℎ ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

\ 𝐺𝐷
𝛾
<𝑖

. Then, by (𝑝)5,

ℎ−1𝑔ℎ ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

\ 𝐺𝐷
𝛾
<𝑖
.

Finally, Lemma 5.6 yields that ℎ−1𝑔ℎ ∉ 𝐺𝛾 . �

The next consequence of our promises is the upcoming Lemma 5.9. In order to state it, we agree to
say that a set 𝐴 ⊆ 𝜅 is absorbent if for every 𝛾 ∈ 𝐴, there exists some 𝑖 ≤ 𝜃 such that 𝐴 ∩ 𝛾 = 𝐷

𝛾
<𝑖 . To

exemplify,

Proposition 5.8. For all 𝛾 < 𝜅 and 𝑖 ≤ 𝜃, 𝐷𝛾
<𝑖 is absorbent.

Proof. By Lemma 4.3. �

5Recall (𝑝)2.

https://doi.org/10.1017/fmp.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.5


16 M. Poór and A. Rinot

Lemma 5.9. Suppose that 𝐴, 𝐴′ are absorbent subsets of 𝜅.

(1) For every 𝑔 ∈ 𝐺𝐴 \ {1}, 𝐷𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔} ⊆ 𝐴;

(2) For all 𝛾 < 𝜅, 𝑖 < 𝜃, and 𝑔 ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

, we have 𝑖𝑔 < 𝑖;
(3) For all 𝛾 < 𝜅 and 𝑔 ∈ 𝐺𝛾 \ {1}, we have 𝑖𝛾𝑔 = max{𝑑 (𝛼𝑔, 𝛾), 𝑖𝑔};
(4) 𝐺𝐴 ∩ 𝐺𝐴′ = 𝐺𝐴∩𝐴′ .

Proof. (1) Let 𝑔 ∈ 𝐺𝐴\{1}. Denote by 𝛾 ∈ 𝐴 the minimal ordinal such that 𝑔 ∈ 𝐺𝐴∩(𝛾+1) . In particular,
𝑔 ∉ 𝐺𝐴∩𝛾 and 𝛼𝑔 ≤ 𝛾. As A is absorbent, we may now fix 𝑖 ≤ 𝜃 such that 𝐴 ∩ 𝛾 = 𝐷

𝛾
<𝑖 . Consequently,

𝑔 ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

. If 𝛼𝑔 < 𝛾, then 𝑔 ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∩ 𝐺𝛾 , which, by Lemma 5.6 is equal to 𝐺𝐷
𝛾
<𝑖

= 𝐺𝐴∩𝛾 ,
contradicting the fact that 𝑔 ∉ 𝐺𝐴∩𝛾 . So, 𝛼𝑔 = 𝛾, and hence, 𝑔 ∈ 𝐺𝐷

𝛼𝑔
<𝑖 ∪{𝛼𝑔 }

. As 𝐺𝐷
𝛼𝑔
<𝑖 ∪{𝛼𝑔 }

=
⋃

𝑗<𝑖 𝐺𝐷
𝛾
≤ 𝑗∪{𝛾 }

, the definition of 𝑖𝑔 implies that 𝑖𝑔 < 𝑖. Altogether, 𝐷𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔} ⊆ 𝐷

𝛾
<𝑖 ∪ {𝛾} ⊆ 𝐴.

(2) Let 𝛾 < 𝜅, 𝑖 < 𝜃, and 𝑔 ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

. By Clause (1), 𝐷𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔} ⊆ 𝐷

𝛾
<𝑖 ∪ {𝛾}. If 𝛼𝑔 = 𝛾, then

the inclusion implies that 𝑖𝑔 < 𝑖. Otherwise, 𝛼𝑔 ∈ 𝐷
𝛾
<𝑖 , and then Lemma 4.3 implies that

𝐷
𝛼𝑔

≤𝑖𝑔
= (𝐷

𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔}) ∩ 𝛼𝑔 ⊆ 𝐷

𝛾
<𝑖 ∩ 𝛼𝑔 = 𝐷

𝛼𝑔

<𝑖 ,

so, again 𝑖𝑔 < 𝑖.
(3) Let 𝛾 < 𝜅 and 𝑔 ∈ 𝐺𝛾 \ {1}. Clearly, 𝛼𝑔 < 𝛾. Also, recalling Notation 5.3, 𝑔 ∈ 𝐺𝐷

𝛾

≤𝑖
𝛾
𝑔

. So, Clause

(1) together with Proposition 5.8 imply that 𝐷𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔} ⊆ 𝐷

𝛾

≤𝑖
𝛾
𝑔

. In particular, 𝑑 (𝛼𝑔, 𝛾) ≤ 𝑖
𝛾
𝑔 , and, by

Lemma 4.3, also

𝐷
𝛼𝑔

≤𝑖𝑔
= (𝐷

𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔}) ∩ 𝛼𝑔 ⊆ 𝐷

𝛾

≤𝑖
𝛾
𝑔
∩ 𝛼𝑔 = 𝐷

𝛼𝑔

≤𝑖
𝛾
𝑔
,

and hence, 𝑖𝑔 ≤ 𝑖
𝛾
𝑔 . This shows that 𝑖 = max{𝑑 (𝛼𝑔, 𝛾), 𝑖𝑔} is ≤ 𝑖

𝛾
𝑔 . However, since 𝛼𝑔 ∈ 𝐷

𝛾
≤𝑑 (𝛼𝑔 ,𝛾)

⊆

𝐷
𝛾
≤𝑖 , Lemma 4.3 implies that

𝐷
𝛼𝑔

≤𝑖𝑔
⊆ 𝐷

𝛼𝑔

≤𝑖 = 𝐷
𝛾
≤𝑖 ∩ 𝛼𝑔,

and hence, 𝑔 ∈ 𝐺𝐷
𝛼𝑔
≤𝑖 ∪{𝛼𝑔 }

⊆ 𝐺𝐷
𝛾
≤𝑖

. Consequently, 𝑖𝛾𝑔 ≤ 𝑖.
(4) By Clause (1), for every 𝑔 ∈ 𝐺𝐴 ∩ 𝐺𝐴′ , either 𝑔 = 1 (and then 𝑔 ∈ 𝐺 ∅ ⊆ 𝐺𝐴∩𝐴′), or

𝐷
𝛼𝑔

≤𝑖𝑔
∪ {𝛼𝑔} ⊆ 𝐴 ∩ 𝐴′, and then 𝑔 ∈ 𝐺𝐷

𝛼𝑔
≤𝑖𝑔

∪{𝛼𝑔 }
⊆ 𝐺𝐴∩𝐴′ by the definition of 𝑖𝑔 and 𝛼𝑔. The other

inclusion is trivial. �

Corollary 5.10. For all 𝛽 ≤ 𝛾 < 𝜅, for all 𝑗 < 𝑖 < 𝜃, for all 𝑔, ℎ ∈ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾 , if 𝑔 ≡𝐷
𝛾
<𝑖∩𝛽

ℎ, then
𝑔 ≡𝐷

𝛾
< 𝑗∩𝛽

ℎ.

Proof. Let 𝛽 ≤ 𝛾 < 𝜅 such that 𝛾 ≥ 𝜃 and let 𝑗 < 𝑖 < 𝜃. Suppose that 𝑔, ℎ ∈ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾 are such
that 𝑔 �𝐷𝛾

< 𝑗∩𝛽
ℎ, and we shall prove by induction on 𝑙 ∈ [ 𝑗 , 𝑖] that

𝑔 �𝐷𝛾
<𝑙
∩𝛽 ℎ. (II)

Recalling Clause (4) of Lemma 5.9, 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

∩𝐺𝛾 = 𝐺𝐷
𝛾
< 𝑗

, so we infer that 𝑔, ℎ ∈ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

\𝐺𝐷
𝛾
< 𝑗

.
The case 𝑙 = 𝑗 is trivial, and the case in which l is a limit ordinal follows from continuity. So, suppose

that 𝑙 ∈ [ 𝑗 , 𝑖) is such that (II) holds, and we shall prove that 𝑔 �𝐷𝛾
≤𝑙
∩𝛽 ℎ. W.l.o.g. 𝑙 ≥ 1, otherwise

𝐺𝐷
𝛾
<0

= 𝐺𝐷
𝛾
≤0

= {1}, so both relations ≡𝐷
𝛾
<0

and ≡𝐷
𝛾
≤0

are the identity on 𝐺𝐷
𝛾
≤0∪{𝛾 }

.
By (𝑝)6, the group 𝐺𝐷

𝛾
≤𝑙
∪{𝛾 } was given by Lemma 3.4 when invoked with 𝐻 = 𝐺𝐷

𝛾
<𝑙

, 𝐾 = 𝐺𝐷
𝛾
≤𝑙

and 𝐿 = 𝐺𝐷
𝛾
<𝑙
∪{𝛾 }. Consider 𝐾 ′ = 𝐺𝐷

𝛾
≤𝑙
∩𝛽 , which is a subgroup of K, and then let 𝐻 ′ = 𝐾 ′ ∩ 𝐿.
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By Lemma 5.9(4),

𝐻 ′ = 𝐺𝐷
𝛾
≤𝑙
∩𝛽 ∩ 𝐺𝐷

𝛾
<𝑙
∪{𝛾 } = 𝐺𝐷

𝛾
<𝑙
∩𝛽 ,

meaning that (II) asserts that 𝑔 �𝐻 ′ ℎ.
As 𝑔, ℎ ∈ 𝐺𝐷

𝛾
< 𝑗∪{𝛾 }

⊆ 𝐿, and 𝐻 ′ = 𝐾 ′ ∩ 𝐿 = 𝐾 ′ ∩ 𝐻 (since 𝐾 ∩ 𝐿 = 𝐻), Clause (F) of Lemma 3.4
implies that 𝑔 �𝐾 ′ ℎ. That is, 𝑔 �𝐷𝛾

≤𝑙
∩𝛽 ℎ, as sought. �

Notation 5.11. As a last step of preparation, we fix a surjection �𝜋 = (𝜋0, 𝜋1, 𝜋2, 𝜋3, 𝜋4) from 𝜅 to
𝜅 × 𝜅 × 𝜅 × 𝜅 × {1,−1}; that is, for all 𝜂0, 𝜂1, 𝜂2, 𝜂3 ∈ 𝜅 and 𝜀 ∈ {1,−1}, there exists a 𝜉 < 𝜅 such that

�𝜋(𝜉) = (𝜋0 (𝜉), 𝜋1 (𝜉), 𝜋2 (𝜉), 𝜋3 (𝜉), 𝜋4 (𝜉)) = (𝜂0, 𝜂1, 𝜂2, 𝜂3, 𝜀).

5.2. The recursive construction

We are now ready to start the recursive process. We start by letting 𝑥0 generate an infinite cyclic group
(i.e., Z), and we assume this group 𝐺1 has underlying set 𝜔. Hereafter, we shall not worry about
(𝑝)2 since it is clear it may be secured. Next, suppose that 𝛾 ∈ [1, 𝜅) is such that 𝐺𝛾 has already
been defined and satisfies all of our promises. Note that (𝑝)3 implies that for every 𝛽 < 𝛾, the group
𝐺𝛽+1 =

⋃
𝑖<𝜃 𝐺𝐷

𝛽
<𝑖∪{𝛽 }

is torsion-free, and so is 𝐺𝛾 =
⋃

𝛽<𝛾 𝐺𝛽+1. To construct 𝐺𝛾+1, we first let
𝑥𝛾 = min(𝜅 \𝐺𝛾), and now we need to describe the group relationship between 𝑥𝛾 and the elements of
𝐺𝛾 . We will define 〈𝐺𝐷

𝛾
<𝑖∪{𝛾 }

| 𝑖 < 𝜃〉 by recursion on 𝑖 < 𝜃, in such a way that all of our promises are
kept.

Here we go. As 𝐷𝛾
<0 = 𝐷

𝛾
≤0 = ∅ (recall Remark 5.4), we mean 𝐺𝐷

𝛾
≤0

= {1}, and we let 𝐺𝐷
𝛾
≤0∪{𝛾 }

=
𝐺 {𝛾 } be the infinite group Z generated by 𝑥𝛾 . Note that {1} = 𝐺𝐷

𝛾
≤0

≤m 𝐺𝐷
𝛾
≤0∪{𝛾 }

vacuously holds.
Moving on, suppose that 𝑖 < 𝜃 is such that 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

has already been defined. For all 𝑗 ≤ 𝑖 and 𝛽 ≤ 𝛾,
let 𝐸

𝛾
< 𝑗,𝛽 be the restriction of the equivalence relation ≡(𝐷

𝛾
< 𝑗∩𝛽)

to 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

. Next, use Definition
5.5 to define a transversal 𝑇𝛾

< 𝑗,𝛽 for those equivalence classes of 𝐸
𝛾
< 𝑗,𝛽 that lie in 𝐺𝐷

𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾 =

𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝐷
𝛾
< 𝑗

, as follows:

𝑇
𝛾
< 𝑗,𝛽 = {min([𝑔]𝐸𝛾

< 𝑗,𝛽
, ≺) | 𝑔 ∈ 𝐺𝐷

𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾}.

Lemma 5.12. For all 𝑗 ≤ 𝑖 and 𝛼 ≤ 𝛽 ≤ 𝛾,

(1) 𝐸
𝛾
<𝑖,𝛽 � (𝐺𝐷

𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾) = 𝐸
𝛾
< 𝑗,𝛽 � (𝐺𝐷

𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾);
(2) 𝑇

𝛾
< 𝑗,𝛽 ⊆ 𝑇

𝛾
<𝑖,𝛽;

(3) 𝑇
𝛾
<𝑖,𝛼 ⊇ 𝑇

𝛾
<𝑖,𝛽 .

Proof. (1) By Corollary 5.10.
(2) Let 𝑡 ∈ 𝑇

𝛾
< 𝑗,𝛽 . As 𝐺 (𝐷

𝛾
< 𝑗∩𝛽)

ℎ±1𝐺 (𝐷
𝛾
< 𝑗∩𝛽)

⊆ 𝐺𝛾 for every ℎ ∈ 𝐺𝛾 , it is the case that [𝑔]𝐸𝛾
< 𝑗,𝛽

is

disjoint from 𝐺𝛾 for every 𝑔 ∈ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

\ 𝐺𝛾 . In particular, 𝑡 ∈ 𝐺𝛾+1 \ 𝐺𝛾 , so that 𝑖𝑡 = 𝑖
𝛾+1
𝑡 < 𝑗 .

Therefore, by Clause (1),

[𝑡]𝐸𝛾
<𝑖,𝛽

∩ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

= [𝑡]𝐸𝛾
< 𝑗,𝛽

.

For every 𝑔 ∈ [𝑡]𝐸𝛾
<𝑖,𝛽

\ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

, we have 𝑖𝑔 = 𝑖
𝛾+1
𝑔 ≥ 𝑗 > 𝑖𝑡 , and then Definition 5.5 implies that

𝑡 ≺ 𝑔. Altogether,

min([𝑡]𝐸𝛾
<𝑖,𝛽

, ≺) = min([𝑡]𝐸𝛾
< 𝑗,𝛽

, ≺) = 𝑡.
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(3) This is clear from the definition of 𝑇𝛾
<𝑖,𝛼, 𝑇𝛾

<𝑖,𝛽 , as the equivalence relation 𝐸
𝛾
< 𝑗,𝛼 is a refinement

of 𝐸𝛾
< 𝑗,𝛽 . �

Our next goal is to the define the system 𝑆 = {(ℎ𝜎 , 𝑎𝜎 , 𝑏𝜎 , 𝑏
′
𝜎) | 𝜎 ∈ Σ} that will yield the definition

of 𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

, as per (𝑝)6. We start with a rough approximation Σ++ of Σ, we then refine it to Σ+ ⊆ Σ++,
and finally we find the appropriate Σ ⊆ Σ+.

Definition 5.13. Let

• Σ++ = {(𝑎, 𝑡) | 𝑎 ∈ 𝐺𝐷
𝛾
≤𝑖
\ 𝐺𝐷

𝛾
<𝑖
, 𝛼𝑎 ∈ 𝐷

𝛾
≤𝑖 \ 𝐷

𝛾
<𝑖 , 𝑡 ∈ 𝑇

𝛾
<𝑖,𝛼𝑎

};
• Σ+ = {(𝑎, 𝑡) ∈ Σ++ | ∀𝑙 < 4 [𝜋𝑙 (𝑐(𝛼𝑎, 𝛾)) ∈ 𝐺𝛾]}.

Definition 5.14. For each 𝜎 = (𝑎, 𝑡) ∈ Σ+, we attach the following objects:

⊲ 𝑎𝜎 = 𝑎;
⊲ 𝑡𝜎 = 𝑡;
⊲ ℎ𝜎 = 𝜋0 (𝑐(𝛼𝑎, 𝛾));
⊲ 𝑦𝜎,0 = 𝜋1 (𝑐(𝛼𝑎, 𝛾));
⊲ 𝑦𝜎,1 = 𝜋2 (𝑐(𝛼𝑎, 𝛾));
⊲ 𝑧𝜎 = 𝜋3 (𝑐(𝛼𝑎, 𝛾));
⊲ 𝜀𝜎 = 𝜋4 (𝑐(𝛼𝑎, 𝛾));
⊲ 𝑏𝜎 = 𝑦𝜎,0 · 𝑡

𝜀𝜎 · 𝑦𝜎,1 · 𝑧𝜎;
⊲ 𝑏′𝜎 = 𝑏𝜎 · 𝑏𝜎;
⊲ 𝐾𝜎 = 𝐺𝐷

𝛾
≤𝑖
∩ 𝐺 (𝛼𝑎+1) .

We then let Σ be the set of all 𝜎 ∈ Σ+ for which all of the following hold:

(1) max{𝛼𝑦𝜎,0 , 𝛼𝑦𝜎,1 , 𝛼𝑧𝜎 } < 𝛼𝑎𝜎 ;
(2) max{𝑖𝑡 , 𝑖𝛾𝑦𝜎,0 , 𝑖

𝛾
𝑦𝜎,1 } < 𝑖

𝛾
𝑧𝜎 < 𝑖 (in particular, 𝑖𝛾𝑧𝜎 ≥ 1);

(3) ℎ𝜎 ∈ 𝐺𝐷
𝛾
<𝑖

.

Remark 5.15. Clause (1) implies that 𝑦𝜎,0, 𝑦𝜎,1, 𝑧𝜎 ∈ 𝐺𝛼𝑎𝜎
, and Clause (2) implies that, for some

𝑗 < 𝑖, 𝑦𝜎,0, 𝑦𝜎,1 ∈ 𝐺𝐷
𝛾
< 𝑗

, 𝑡 ∈ 𝐺𝐷
𝛾
< 𝑗∪{𝛾 }

, and 𝑧𝜎 ∉ 𝐺𝐷
𝛾
< 𝑗

.

Definition 5.16. Denote 𝐻 = 𝐺𝐷
𝛾
<𝑖

, 𝐾 = 𝐺𝐷
𝛾
≤𝑖

, 𝐿 = 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

, and

𝑆 = {(ℎ𝜎 , 𝑎𝜎 , 𝑏𝜎 , 𝑏
′
𝜎) | 𝜎 ∈ Σ}.

Lemma 5.17. 𝐻 ≤ 𝐾 , 𝐻 ≤m 𝐿, 𝐾 ∩ 𝐿 = 𝐻 and 𝑆 ⊆ 𝐻 × (𝐾 \ 𝐻) × (𝐿 \ 𝐻) × (𝐿 \ 𝐻).

Proof. It is clear that 𝐻 = 𝐺𝐷
𝛾
<𝑖

≤ 𝐺𝐷
𝛾
≤𝑖
= 𝐾 . By (𝑝)5, 𝐻 ≤m 𝐿, and by (𝑝)4, 𝐾 ∩ 𝐿 = 𝐻.

Next, let 𝜎 ∈ Σ. By Definition 5.14(3), ℎ𝜎 ∈ 𝐻. Since 𝜎 ∈ Σ++, 𝑎𝜎 ∈ 𝐾 \ 𝐻. Recall that
𝑡 ∈ 𝑇

𝛾
<𝑖,𝛼 ⊆ 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

\ 𝐺𝛾 = 𝐿 \ 𝐺𝛾 . By Lemma 5.9(4), 𝐻 = 𝐿 ∩ 𝐺𝛾 , and hence, 𝑡 ∈ 𝐿 \ 𝐻. By
Definition 5.14(2), 𝑦𝜎,0, 𝑦𝜎,1, 𝑧𝜎 are in 𝐻 ≤ 𝐿, so, altogether, 𝑏𝜎 and 𝑏′𝜎 are in L as well. Since 𝑡 ∉ 𝐻,
we get that 𝑏𝜎 ∉ 𝐻. Finally, to see that 𝑏′𝜎 ∉ 𝐻, it suffices to verify that 𝑏′𝜎 ∈ 𝐺𝐷

𝛾
≤ 𝑗∪{𝛾 }

\ 𝐺𝐷
𝛾
≤ 𝑗

for
some 𝑗 < 𝑖, since 𝐻 = 𝐺𝐷

𝛾
<𝑖

≤ 𝐺𝛾 , and 𝐺𝐷
𝛾
≤ 𝑗∪{𝛾 }

∩ 𝐺𝛾 = 𝐺𝐷
𝛾
≤ 𝑗

by Lemma 5.9(4).
By the definition of Σ and since 𝑦𝜎,0, 𝑦𝜎,1 ∈ 𝐺𝐷

𝛾

<𝑖
𝛾
𝑧𝜎

, we have that 𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1 ∈ 𝐺𝐷

𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 } \

𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

and 𝑧𝜎 ∈ 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

\ 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

. By (𝑝)6, 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎 ∪{𝛾}

has been obtained by invoking Lemma 3.4

(note that 𝑖𝛾𝑧𝜎 ≥ 1 necessarily) with �̄� = 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

, �̄� = 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 }, and �̄� = 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

, and then Clause

(D) of that lemma implies that

(𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1) · 𝑧𝜎 · (𝑦𝜎,0 · 𝑡

𝜀𝜎 · 𝑦𝜎,1) ∉ �̄� = 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

,
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and then the fact that 𝑧𝜎 ∈ 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

implies that

𝑏′𝜎 = (𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1) · 𝑧𝜎 · (𝑦𝜎,0 · 𝑡

𝜀𝜎 · 𝑦𝜎,1) · 𝑧𝜎 ∉ �̄� = 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

,

as sought. �

Lemma 5.18. For every 𝜎 ∈ Σ, 𝑏𝜎 �𝐻 𝑏′𝜎 .

Proof. Let 𝜎 = (𝑎, 𝑡) in Σ. Set

𝑗 = max{𝑖𝑡 , 𝑖𝛾𝑦𝜎,0 , 𝑖
𝛾
𝑦𝜎,1 }.

From 𝜎 ∈ Σ, we infer that 𝑗 < 𝑖
𝛾
𝑧𝜎 < 𝑖, and

𝑦𝜎,0, 𝑦𝜎,1 ∈ 𝐺𝐷
𝛾
≤ 𝑗

⊆ 𝐺𝐷
𝛾
≤ 𝑗∪{𝛾 }

.

Recall that 𝑡 ∈ 𝑇
𝛾
<𝑖,𝛼𝑎

⊆ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

\ 𝐺𝛾; therefore,

𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1 ∈ 𝐺𝐷

𝛾
≤ 𝑗∪{𝛾 }

≤ 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 } .

By Lemma 5.9(4), 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

= 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 } ∩ 𝐺𝛾 , so since 𝑡 ∉ 𝐺𝛾 ,

𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1 ∈ 𝐺𝐷

𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 } \ 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

.

By (𝑝)6, 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎 ∪{𝛾}

has been obtained by invoking Lemma 3.4 (note that 𝑖𝛾𝑧𝜎 ≥ 1 necessarily) with

�̄� = 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

, �̄� = 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 }, and �̄� = 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

, and then Clause (C) of that lemma together with the

facts that 𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1 ∈ �̄� \ �̄� and 𝑧𝜎 ∈ �̄� \ �̄� imply that for 𝑏 = 𝑏∗ = 𝑦𝜎,0 · 𝑡

𝜀𝜎 · 𝑦𝜎,1 and 𝑧 = 𝑧𝜎 ,
it is the case that 𝑏∗𝑧 ��̄� 𝑏𝑧𝑏𝑧. That is,

𝑏𝜎 �𝐺
𝐷

𝛾

≤𝑖
𝛾
𝑧𝜎

𝑏′𝜎 ,

which is the same as ¬(𝑏𝜎 𝐸
𝛾

<𝑖
𝛾
𝑧𝜎 +1,𝛾 𝑏′𝜎). By Lemma 5.12(1),

𝐸
𝛾
<𝑖,𝛾 � (𝐺𝐷

𝛾

<𝑖
𝛾
𝑧𝜎 +1

∪{𝛾 } \ 𝐺𝛾) = 𝐸
𝛾

<𝑖
𝛾
𝑧𝜎 +1,𝛾 � (𝐺𝐷

𝛾

<𝑖
𝛾
𝑧𝜎 +1

∪{𝛾 } \ 𝐺𝛾),

and hence, 𝑏𝜎 �𝐺
𝐷

𝛾
<𝑖

∩𝛾
𝑏′𝜎 , which concludes our proof (since 𝐺𝐷

𝛾
<𝑖∩𝛾

= 𝐻). �

Lemma 5.19. For all 𝜎 ≠ 𝜎∗ in Σ, at least one of the following holds:

(�)a 𝑎𝜎 �𝐻 𝑎𝜎∗;
(�)b 𝑏𝜎 �𝐻 𝑏𝜎∗;
(�)c 𝑏𝜎 = 𝑏𝜎∗ and 𝑎𝜎 ≠ 𝑎𝜎∗;
(�)d all of the following hold:

(i) 𝛼𝑎𝜎 = 𝛼𝑎𝜎∗ (so 𝐾𝜎 = 𝐾𝜎∗);
(ii) 𝑎𝜎 , 𝑎𝜎∗ ∈ 𝐾𝜎 \ 𝐻;

(iii) 𝑏𝜎 �𝐻𝜎 𝑏𝜎∗ , where 𝐻𝜎 = 𝐾𝜎 ∩ 𝐻;
(iv) 𝑏𝜎 �𝐻 𝑏′𝜎∗;
(v) 𝐾 |= (𝐾𝜎 \ 𝐻) · (𝐻 \ 𝐾𝜎) · (𝐾𝜎 \ 𝐻) ⊆ (𝐾 \ 𝐻).

Proof. We start with two general claims.
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Claim 5.19.1. Suppose 𝑎, 𝑎∗ ∈ 𝐺𝐷
𝛾
≤𝑖

are such that 𝛼𝑎 < 𝛼𝑎∗ < 𝛾 and 𝛼𝑎, 𝛼𝑎∗ ∈ 𝐷
𝛾
≤𝑖 \ 𝐷

𝛾
<𝑖 . Then

𝑎 �𝐻 𝑎∗.

Proof. Since 𝛼𝑎, 𝛼𝑎∗ ∈ 𝐷
𝛾
≤𝑖 \𝐷

𝛾
<𝑖 , Lemma 5.9(1) implies that a and 𝑎∗ are not in 𝐺𝐷

𝛾
<𝑖

. We shall prove
by induction on 𝛽 ∈ [𝛼𝑎∗ , 𝛾] that

𝑎 ∉ 𝐺𝐷
𝛾
<𝑖∩𝛽

(𝑎∗)±1𝐺𝐷
𝛾
<𝑖∩𝛽

. (III)

The base case 𝛽 = 𝛼𝑎∗ follows from the following constellation:

• 𝑎 ∈ 𝐺𝐷
𝛾
≤𝑖
∩ 𝐺𝛼𝑎+1 = 𝐺𝐷

𝛾
≤𝑖∩(𝛼𝑎+1) ⊆ 𝐺𝛼𝑎+1 ⊆ 𝐺𝛼𝑎∗

,
• 𝑎∗ ∈ 𝐺𝛼𝑎∗+1 \ 𝐺𝛼𝑎∗

, and
• 𝐺𝐷

𝛾
<𝑖∩𝛼𝑎∗

⊆ 𝐺𝛼𝑎∗
.

The case that 𝛽 is a limit follows from continuity, so suppose that 𝛽 ∈ [𝛼𝑎∗ , 𝛾] satisfies (III), and we
shall show that

𝑎 ∉ 𝐺𝐷
𝛾
<𝑖∩(𝛽+1) (𝑎

∗)±1𝐺𝐷
𝛾
<𝑖∩(𝛽+1) .

To avoid trivialities, we may assume that 𝛽 ∈ 𝐷
𝛾
<𝑖 , so that, by Lemma 4.3, 𝐷𝛾

<𝑖 ∩ 𝛽 = 𝐷
𝛽
<𝑖 and

𝐷
𝛾
≤𝑖 ∩ 𝛽 = 𝐷

𝛽
≤𝑖 . Therefore, 𝛼𝑎, 𝛼𝑎∗ ∈ 𝐷

𝛽
≤𝑖 \ 𝐷

𝛽
<𝑖 . So Notation 5.3 together with Lemma 5.9(4) imply

that 𝑎 ∈ 𝐺𝐷
𝛾
≤𝑖∩(𝛼𝑎+1) ⊆ 𝐺

𝐷
𝛽
≤𝑖

and 𝑎∗ ∈ 𝐺𝐷
𝛾
≤𝑖∩(𝛼𝑎∗ +1) ⊆ 𝐺

𝐷
𝛽
≤𝑖

. As 𝛼𝑎, 𝛼𝑎∗ ∉ 𝐷
𝛽
<𝑖 , Lemma 5.9(1) implies

that 𝑎, 𝑎∗ ∉ 𝐺
𝐷

𝛽
<𝑖

. Altogether,

𝑖
𝛽
𝑎 = 𝑖 = 𝑖

𝛽
𝑎∗ .

Now 𝛽 > 𝛼𝑎∗ ≥ 0 and 𝑖 ≥ 1, since 𝛽 ∈ 𝐷
𝛾
<𝑖 , so (𝑝)6 tells us that 𝐺

𝐷
𝛽
≤𝑖∪{𝛽 }

was constructed by
invoking Lemma 3.4 with �̄� = 𝐺

𝐷
𝛽
<𝑖

, �̄� = 𝐺
𝐷

𝛽
≤𝑖

and �̄� = 𝐺
𝐷

𝛽
<𝑖∪{𝛽 }

. By Lemma 5.9,

�̄� ∩ �̄� = 𝐺
𝐷

𝛽
<𝑖∪{𝛽 }

∩ 𝐺
𝐷

𝛽
≤𝑖
= 𝐺

𝐷
𝛽
<𝑖

= �̄�,

so, taking (III) into account, Clause (E) of Lemma 3.4 implies that

𝑎 ∉ �̄�(𝑎∗)±1 �̄�.

However, �̄� = 𝐺
𝐷

𝛽
<𝑖∪{𝛽 }

= 𝐺𝐷
𝛾
<𝑖∩(𝛽+1) , so we are done. �

Claim 5.19.2. Let 𝛼 ∈ 𝐷
𝛾
≤𝑖 \ 𝐷

𝛾
<𝑖 and 𝑎, 𝑎∗ ∈ 𝐺𝐷

𝛾
≤𝑖∩(𝛼+1) \ 𝐺𝛼.

(1) For every 𝑔 ∈ 𝐺𝐷
𝛾
<𝑖∩(𝛽+1) \ 𝐺𝐷

𝛾
<𝑖∩𝛽

with 𝛽 ∈ 𝐷
𝛾
<𝑖 \ 𝛼, we have 𝑎 · 𝑔 · 𝑎∗ ∉ 𝐺𝐷

𝛾
<𝑖∩(𝛽+1) ;

(2) For every 𝑔 ∈ 𝐺𝐷
𝛾
<𝑖
\ 𝐺𝛼, we have 𝑎 · 𝑔 · 𝑎∗ ∉ 𝐺𝐷

𝛾
<𝑖

.

Proof. (1) Fix g and 𝛽 as above. Now in the same line of reasoning as in Claim 5.19.1, 𝐷𝛾
<𝑖 ∩ 𝛽 = 𝐷

𝛽
<𝑖 ,

𝐷
𝛾
≤𝑖 ∩ (𝛽 + 1) = 𝐷

𝛽
≤𝑖 ∪ {𝛽}. Therefore, 𝐺𝐷

𝛾
<𝑖∩(𝛽+1) is equal to 𝐺

𝐷
𝛽
<𝑖∪{𝛽 }

, and the latter (recalling 𝛽 ≥ 1,
and 𝑖 ≥ 1 which is true since 𝛽 ∈ 𝐷

𝛾
<𝑖) was obtained by invoking Lemma 3.4 with �̄� = 𝐺

𝐷
𝛽
<𝑖

, �̄� = 𝐺
𝐷

𝛽
≤𝑖

,
�̄� = 𝐺

𝐷
𝛽
<𝑖∪{𝛽 }

(where 𝑔 ∈ �̄� \ �̄�). So just apply (the parallel of) Clause (D) of the said Lemma.
(2) Suppose not, and let g be a counterexample. Let 𝛽 be minimal such that 𝑔 ∈ 𝐺𝛽+1. By Lemma

5.9(4), 𝐺𝐷
𝛾
<𝑖

∩ 𝐺𝛽+1 = 𝐺𝐷
𝛾
<𝑖∩(𝛽+1) , and hence, 𝑔 ∈ 𝐺𝐷

𝛾
<𝑖∩(𝛽+1) \ 𝐺𝐷

𝛾
<𝑖∩𝛽

. Then, By Lemma 5.9(1),
𝛽 ∈ 𝐷

𝛾
<𝑖 , so that 𝛽 ∈ 𝐷

𝛾
<𝑖 \𝛼. As 𝑎 ·𝑔 ·𝑎∗ ∈ 𝐺𝛼+1 ·𝐺𝛽+1 ·𝐺𝛼+1 = 𝐺𝛽+1, and recalling that 𝑎 ·𝑔 ·𝑎∗ ∈ 𝐺𝐷

𝛾
<𝑖

,
we infer that 𝑎 · 𝑔 · 𝑎∗ ∈ 𝐺𝐷

𝛾
<𝑖
∩ 𝐺𝛽+1 = 𝐺𝐷

𝛾
<𝑖∩(𝛽+1) , contradicting Clause (1). �
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Suppose now that 𝜎 = (𝑎, 𝑡) and 𝜎∗ = (𝑎∗, 𝑡∗) are two distinct elements of Σ. We assume that
alternatives (�)𝑎–(�)𝑐 fail, and we shall verify alternative (�)𝑑 . Note that our assumptions have the
following immediate consequences.

Claim 5.19.3. 𝑏𝜎 ∼𝐻 𝑏𝜎∗ , 𝑡 ≠ 𝑡∗, and 𝛼𝑎 = 𝛼𝑎∗ .

Proof. The first part follows from the failure of alternative (�)𝑏 , and the last part follows from failure
of alternative (�)𝑎 together with Claim 5.19.1.

In addition, if t were to equal 𝑡∗, Definition 5.14 (using 𝛼𝑎 = 𝛼𝑎∗ ) would have implied that alternative
(�)𝑐 holds. So 𝑡 ≠ 𝑡∗. �

It thus follows from Definition 5.14 that

(ℎ𝜎 , 𝑦𝜎,0, 𝑦𝜎1 , 𝑧𝜎 , 𝐾𝜎) = (ℎ𝜎∗ , 𝑦𝜎∗ ,0, 𝑦𝜎∗
1
, 𝑧𝜎∗ , 𝐾𝜎∗ ).

Consequently,

max{𝑖𝑡 , 𝑖𝑡∗ , 𝑖𝛾𝑦𝜎,0 , 𝑖
𝛾
𝑦𝜎∗ ,0 , 𝑖

𝛾
𝑦𝜎,1 , 𝑖

𝛾
𝑦𝜎∗ ,1 } < 𝑖

𝛾
𝑧𝜎 ,

and hence, the next two elements are in 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎 ∪{𝛾}

:

• 𝑏 = 𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1,

• 𝑏∗ = 𝑦𝜎∗ ,0 · (𝑡
∗) 𝜀𝜎∗ · 𝑦𝜎∗ ,1;

moreover,

𝑏, 𝑏∗ ∉ 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

, (IV)

since 𝑦𝜎,0, 𝑦𝜎,1, 𝑦𝜎∗ ,0, 𝑦𝜎∗ ,1 ∈ 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

. Note that

𝐾𝜎 = 𝐺𝐷
𝛾
≤𝑖
∩ 𝐺 (𝛼𝑎+1) = 𝐺𝐷

𝛾
≤𝑖∩(𝛼𝑎+1)

and

𝐻𝜎 = 𝐾𝜎 ∩ 𝐻 = 𝐺𝐷
𝛾
≤𝑖∩(𝛼𝑎+1) ∩ 𝐺𝐷

𝛾
<𝑖

= 𝐺𝐷
𝛾
<𝑖∩𝛼𝑎

by Lemma 5.9(4).
As 𝜎 ∈ Σ, it is also the case that 𝑧𝜎 ∈ 𝐺𝐷

𝛾

≤𝑖
𝛾
𝑧𝜎

≤ 𝐺𝐷
𝛾
<𝑖

= 𝐻 and

𝑦𝜎,0 · 𝑡
𝜀𝜎 · 𝑦𝜎,1 = 𝑏𝜎 · 𝑧−1

𝜎 ,

so that 𝑏 ∼𝐻 𝑏𝜎 . Likewise, 𝑏∗ ∼𝐻 𝑏𝜎∗ . Recalling that 𝑏𝜎 ∼𝐻 𝑏𝜎∗ , altogether

𝑏 ∼𝐻 𝑏∗.

Now, (𝑝)6 tells us that 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

∪{𝛾 } was constructed by invoking Lemma 3.4 with �̄� = 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

,

�̄� = 𝐺𝐷
𝛾

≤𝑖
𝛾
𝑧𝜎

and �̄� = 𝐺𝐷
𝛾

<𝑖
𝛾
𝑧𝜎

∪{𝛾 } (again, 𝑖𝛾𝑧𝜎 ≥ 1, by Clause (2) of Definition 5.14). Trivially, 𝑧𝜎 ∉ �̄�.

In addition, 𝑏, 𝑏∗ ∉ �̄� by (IV). Thus, Clause (C) of that lemma implies that 𝑏∗ · 𝑧𝜎∗ ��̄� 𝑏 · 𝑧𝜎 · 𝑏 · 𝑧𝜎 ,
and hence, 𝑏′𝜎 ��̄� 𝑏𝜎∗ . Finally, 𝑏′𝜎 �𝐻 𝑏𝜎∗ (i.e., 𝑏′𝜎 �𝐺𝐷

𝛾
<𝑖

𝑏𝜎∗) by Lemma 5.12(1).
However, by the definition of 𝑇𝛾

<𝑖,𝛼𝑎𝜎
, we get that 𝑡 �𝐾𝜎∩𝐻 𝑡∗. As 𝐾𝜎 ∩𝐻 = 𝐺𝐷

𝛾
≤𝑖∩(𝛼𝑎𝜎 +1) ∩𝐺𝐷

𝛾
<𝑖

=
𝐺𝐷

𝛾
<𝑖∩(𝛼𝑎𝜎 +1) = 𝐺𝐷

𝛾
<𝑖∩𝛼𝑎𝜎

, we also get that 𝑏𝜎 �𝐾𝜎∩𝐻 𝑏𝜎∗ , since 𝑧𝜎 = 𝑧𝜎∗ , 𝑦𝜎,0, 𝑦𝜎,1 ∈ 𝐺𝐷
𝛾
<𝑖∩𝛼𝑎𝜎

(by recalling the definition of Σ). At this stage, it remains to check Clause (v), but this follows from
Claim 5.19.2(2). �
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By Lemmas 5.17, 5.18 and 5.19, the tuple (𝐻, 𝐾, 𝐿, 𝑆) satisfies all of the assumptions of Lemma
3.4. Adhering to (𝑝)6, we then let 𝐺𝐷

𝛾
≤𝑖∪{𝛾 }

be the outcome 𝑀∗ of Lemma 3.4 when invoked with this
tuple. By Clause (A) of that lemma, 𝐾, 𝐿 ≤ 𝑀∗,

𝑀∗ |= 𝐾 ∩ 𝐿 = 𝐻,

and 𝑀∗ is generated by 𝐾 ∪ 𝐿 = 𝐺𝐷
𝛾
≤𝑖
∪ 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

. This means that 𝑀∗ is generated by the set of
generators {𝑥𝛽 | 𝛽 ∈ 𝐷

𝛾
≤𝑖 ∪ {𝛾}}, and hence, (𝑝)4 is preserved. Also, Clause (B) implies that 𝐾 ≤m 𝑀∗;

hence, (𝑝)5 is preserved as well.
Our promise (𝑝)3 implies that 𝐿 = 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

and

⋃

𝛽<𝛾

𝐺𝛽+1 =
⋃

𝛽<𝛾

⋃

𝑗<𝜃

𝐺
𝐷

𝛽
< 𝑗∪{𝛽 }

are both torsion-free. In particular, K, being a subgroup of 𝐺𝛾 =
⋃

𝛽<𝛾 𝐺𝛽+1 is torsion-free as well. It
now follows from Clause (G) of Lemma 3.4 that we have maintained (𝑝)3.

This completes the description of the recursive construction of our group G.

5.3. Verification

We now turn to show that G is an n-Shelah group for 𝑛 = 10120.

Lemma 5.20. Let 𝑍 ∈ [𝐺]𝜅 . Then 𝑍10120 = 𝐺.

Proof. By possibly thinning out (using the pigeonhole principle), we may assume the existence of some
𝑗 < 𝜃 such that 𝑖𝑧 = 𝑗 for all 𝑧 ∈ 𝑍 . Set 𝐴 = {𝛼𝑧 | 𝑧 ∈ 𝑍 \ {1}}, so that 𝐴 ∈ [𝜅]𝜅 . For each 𝛼 ∈ 𝐴, pick
𝑧𝛼 ∈ 𝑍 such that 𝛼𝑧𝛼 = 𝛼.

Recalling the hypothesis of Theorem 5.1, we now let B be a club in 𝜅 such that for every 𝛽 ∈ 𝐵, there
exists a 𝛾 ∈ 𝐴 above 𝛽 such that

∀𝜉 < 𝛽∀𝑖 < 𝜃 [sup{𝛼 ∈ 𝐴 ∩ 𝛽 | 𝑐(𝛼, 𝛾) = 𝜉 & 𝑑 (𝛼, 𝛾) > 𝑖} = 𝛼] . (V)

Recalling (𝑝)2 and the surjection �𝜋 of Notation 5.11, the following is yet another club in 𝜅:

𝐶 = {𝛽 < 𝜅 | 𝐺𝛽 = 𝛽 & �𝜋[𝛽] = 𝛽 × 𝛽 × 𝛽 × 𝛽 × {−1, 1}}.

Now, let h be an arbitrary element of G, and we shall show that h is in 𝑍10120. Pick a large enough
𝛽 ∈ 𝐵 ∩ 𝐶 such that ℎ ∈ 𝐺𝛽 , and then pick 𝛾 ∈ 𝐴 above 𝛽 satisfying (V). As 𝑖𝑧𝛾 = 𝑗 , we consider the
unique 𝑡 ∈ 𝑇

𝛾
< 𝑗+1,𝛽 such that 𝑡 𝐸𝛾

< 𝑗+1,𝛽 𝑧𝛾 . By the choice of t, we may pick

𝑦0, 𝑦1 ∈ 𝐺𝐷
𝛾
< 𝑗+1∩𝛽

(VI)

and 𝜀 ∈ {−1, 1} such that

𝑧𝛾 = 𝑦0 · 𝑡
𝜀 · 𝑦1.

It follows that max{𝑖𝛾𝑦0 , 𝑖
𝛾
𝑦1 } ≤ 𝑗 , and as 𝑡 ∈ 𝑇

𝛾
< 𝑗+1,𝛽 ⊆ 𝐺𝐷

𝛾
< 𝑗+1∪{𝛾 }

, Lemma 5.9(2) implies that 𝑖𝑡 ≤ 𝑗 as
well.
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As 𝛾 was chosen to satisfy (V), we may fix �̄� ∈ 𝐴 ∩ 𝛽 with 𝑑 (�̄�, 𝛾) > 𝑗 . Set 𝑧 = 𝑧 �̄� and note that, by
Lemma 5.9(3),

max{𝑖𝑡 , 𝑖𝛾𝑦0 , 𝑖
𝛾
𝑦1 } ≤ 𝑗 < 𝑑 (�̄�, 𝛾) ≤ 𝑖

𝛾
𝑧 . (VII)

As 𝛼𝑧 = �̄� < 𝛽, we may find a large enough 𝜁 < 𝛽 such that 𝑦0, 𝑦1, 𝑧 ∈ 𝐺𝜁+1. Altogether,
𝑦0, 𝑦1, 𝑧 ∈ 𝐺𝐷

𝛾

≤𝑖
𝛾
𝑧
∩(𝜁+1) .

As 𝛽 ∈ 𝐶 and 𝑧 ∈ 𝐺𝛽 , it follows from (VI) that we may find a 𝜉 < 𝛽 such that

(𝜋0 (𝜉), 𝜋1 (𝜉), 𝜋2 (𝜉), 𝜋3 (𝜉), 𝜋4 (𝜉)) = (ℎ, 𝑦0, 𝑦1, 𝑧, 𝜀).

Utilizing (V) once more, we now pick 𝛼 ∈ 𝐴 ∩ 𝛽 above max{𝛼ℎ , 𝜁 } such that 𝑐(𝛼, 𝛾) = 𝜉 and
𝑑 (𝛼, 𝛾) > max{𝑖𝛾ℎ , 𝑖

𝛾
𝑧 }. Consider 𝑖 = 𝑑 (𝛼, 𝛾), and note that by (VII),

max{𝑖𝑡 , 𝑖𝛾𝑦0 , 𝑖
𝛾
𝑦1 , 𝑖𝑧𝛼 , 𝑖

𝛾
ℎ , 𝑖

𝛾
𝑧 } < 𝑑 (𝛼, 𝛾) = 𝑖,

so that

𝑦0, 𝑦1, ℎ, 𝑧 ∈ 𝐺𝐷
𝛾
<𝑖
∩ 𝐺𝛼 . (VIII)

Next, consider the group elements 𝑎 = 𝑧𝛼, 𝑏 = 𝑧𝛾 · 𝑧, and 𝑏′ = 𝑏 · 𝑏, and the pair 𝜎∗ = (𝑎, 𝑡).

Claim 5.20.1. 𝜎∗ is in Σ++ of Definition 5.13.

Proof. From 𝑑 (𝛼, 𝛾) = 𝑖, we get that 𝐷𝛾
<𝑖 ∩ (𝛼 + 1) = 𝐷

𝛾
<𝑖 ∩ 𝛼. By Lemma 4.3, 𝐷𝛼

≤𝑖𝑧𝛼
⊆ 𝐷𝛼

≤𝑑 (𝛼,𝛾)
=

𝐷
𝛾
≤𝑖 ∩𝛼, and hence, 𝑧𝛼 ∈ 𝐺𝐷

𝛾
≤𝑖

. So, if 𝑧𝛼 were to be in 𝐺𝐷
𝛾
<𝑖

, then since 𝛼𝑧𝛼 = 𝛼, Lemma 5.9(4) would
imply that

𝑧𝛼 ∈ 𝐺𝐷
𝛾
<𝑖
∩ 𝐺𝛼+1 = 𝐺𝐷

𝛾
<𝑖∩(𝛼+1) = 𝐺𝐷

𝛾
<𝑖∩𝛼 ⊆ 𝐺𝛼,

contradicting the fact that 𝛼𝑧𝛼 = 𝛼. Altogether, 𝑧𝛼 ∈ 𝐺𝐷
𝛾
≤𝑖
\ 𝐺𝐷

𝛾
<𝑖

.
Next, since 𝑡 ∈ 𝑇

𝛾
< 𝑗+1,𝛽 and 𝛼 < 𝛽, Lemma 5.12(3) implies that 𝑡 ∈ 𝑇

𝛾
< 𝑗+1,𝛼. In addition, since

𝑖 = 𝑑 (𝛼, 𝛾) > 𝑖
𝛾
𝑧 > 𝑗 , Lemma 5.12(2) implies that 𝑡 ∈ 𝑇

𝛾
<𝑖,𝛼. Also, 𝑖 = 𝑑 (𝛼, 𝛾) amounts to saying that

𝛼𝑧𝛼 = 𝛼 ∈ 𝐷
𝛾
≤𝑖 \ 𝐷

𝛾
<𝑖 , so we have established that 𝜎∗ ∈ Σ++. �

Looking at Definition 5.14, we arrive at the following table of evaluations:

Table 1. Evaluations..

• 𝑎𝜎∗ = a = 𝑧𝛼 = a
• 𝑡𝜎∗ = t = t = t
• ℎ𝜎∗ = 𝜋0 (𝑐 (𝛼𝑎 , 𝛾)) = 𝜋0 ( 𝜉 ) = h
• 𝑦𝜎∗ ,0 = 𝜋1 (𝑐 (𝛼𝑎 , 𝛾)) = 𝜋1 ( 𝜉 ) = 𝑦0
• 𝑦𝜎∗ ,1 = 𝜋2 (𝑐 (𝛼𝑎 , 𝛾)) = 𝜋2 ( 𝜉 ) = 𝑦1
• 𝑧𝜎∗ = 𝜋3 (𝑐 (𝛼𝑎 , 𝛾)) = 𝜋3 ( 𝜉 ) = z
• 𝜀𝜎∗ = 𝜋4 (𝑐 (𝛼𝑎 , 𝛾)) = 𝜋4 ( 𝜉 ) = 𝜀
• 𝑏𝜎∗ = 𝑦𝜎∗ ,0 · 𝑡 𝜀𝜎∗ · 𝑦𝜎∗ ,1 · 𝑧𝜎∗ = 𝑧𝛾 · 𝑧 = b
• 𝑏′

𝜎∗
= 𝑏𝜎∗ · 𝑏𝜎∗ = 𝑧𝛾 · 𝑧 · 𝑧𝛾 · 𝑧 = 𝑏′

• 𝐾𝜎∗ = 𝐺𝐷
𝛾
≤𝑖
∩𝐺(𝛼𝑎+1) = 𝐺𝐷

𝛾
≤𝑖
∩𝐺(𝛼+1) = 𝐺𝐷

𝛾
≤𝑖∩(𝛼+1)

It thus follows from (VIII) that 𝜋𝑙 (𝑐(𝛼𝑎, 𝛾)) ∈ 𝐺𝛾 for every 𝑙 < 4, so that 𝜎∗ is moreover in Σ+, as
per Definition 5.13. Looking at Conditions (1)–(3) of Definition 5.14, we see that 𝜎∗ is a member of Σ,
as well: conditions (1) and (3) follow from (VIII), and condition (2) follows from (VII) and the fact that
𝑖
𝛾
𝑧 < 𝑖.
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Claim 5.20.2. ℎ−1𝜚(𝑏 · 𝑎, 𝑏′ · 𝑎) = 1 holds in 𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

.

Proof. Recall that the group 𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

was obtained as the output group 𝑀∗ of Lemma 3.4, when
invoked with (𝐻, 𝐾, 𝐿, 𝑆) of Definition 5.16. Specifically, 𝐻 = 𝐺𝐷

𝛾
<𝑖

, 𝐾 = 𝐺𝐷
𝛾
≤𝑖

, 𝐿 = 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

and
𝑆 = {(ℎ𝜎 , 𝑎𝜎 , 𝑏𝜎 , 𝑏

′
𝜎) | 𝜎 ∈ Σ} of Definition 5.14. But 𝑀∗ is 𝑀/𝑁 , where M is the free amalgam

𝐾 ∗𝐻 𝐿, and N is the least normal subgroup containing {ℎ−1
𝜎 𝜚(𝑏𝜎 · 𝑎𝜎 , 𝑏

′
𝜎 · 𝑎𝜎) | 𝜎 ∈ Σ}; hence, for

each 𝜎 ∈ Σ, we have ℎ−1
𝜎 𝜚(𝑏𝜎 · 𝑎𝜎 , 𝑏

′
𝜎 · 𝑎𝜎) ∈ 𝑁 , and clearly,

𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

= 𝑀∗ = 𝑀/𝑁 |= ℎ−1
𝜎 𝜚(𝑏𝜎 · 𝑎𝜎 , 𝑏

′
𝜎 · 𝑎𝜎) = 1.

By Table 1, 𝑏 = 𝑏𝜎∗ , 𝑏′ = 𝑏′𝜎∗
, 𝑎 = 𝑎𝜎∗ , and ℎ = ℎ𝜎∗ ; hence, ℎ−1𝜚(𝑏 · 𝑎, 𝑏′ · 𝑎) = 1. �

Recall that for all 𝑥, 𝑦 ∈ 𝐺, 𝜚(𝑥, 𝑦) is a word of length 3320 over the alphabet {𝑥, 𝑦}, so since
𝜚(𝑏𝑎, 𝑏′𝑎) = ℎ, the fact that 𝑧𝛼, 𝑧𝛾 and z all come from the initial set Z implies that

𝜚(𝑧𝛾 · 𝑧 · 𝑧𝛼 , 𝑧𝛾 · 𝑧 · 𝑧𝛾 · 𝑧 · 𝑧𝛼) ∈ 𝑍9720+400.

Thus, we have verified that h is in 𝑍10120. �

Lemma 5.21.

(1) G admits no 𝑇1 topology other than the discrete topology;
(2) G is not well-behaved in the sense of [15, p. 624];6
(3) 𝐺 \{1} is a nonalgebraic unconditionally closed set (i.e., closed in each Hausdorff group topology).

Proof. (1) This is a standard consequence of the malnormality of the 𝐺𝛾’s (𝛾 < 𝜅). Suppose that 𝜏 is
some 𝑇1 topology on G. Fix 𝑔 ∈ 𝐺 distinct from 1. Then 𝑈 = 𝐺 \ {𝑔} is 𝜏-open, so there is a 𝜏-open
neighborhood V of 1 for which 𝑉𝑛 ⊆ 𝑈, where n is the integer for which G is n-Shelah. Note that if
|𝑉 | = 𝜅, then 𝑉𝑛 = 𝐺, which is a contradiction, so it must be the case that |𝑉 | < 𝜅. But then 𝑉 ⊆ 𝐺𝛾 for
some large enough 𝛾 < 𝜅. Now 𝐺𝛾 ≤m 𝐺𝛾+1 by Corollary 5.7, so for any choice of ℎ ∈ 𝐺𝛾+1 \ 𝐺𝛾 , it
is the case that (ℎ−1𝑉ℎ) ∩𝑉 = {1} is a 𝜏-open neighborhood of 1, and hence, 𝜏 is discrete.

(2) Suppose not. This means that there exists a map 𝜑 : 𝐺 → [𝐺]<𝜔 such that the following two hold:

(a) 𝜑 is countable-to-one;
(b) for all 𝑥 ≠ 𝑦 in G, 𝜑(𝑥) � 𝜑(𝑦) ⊆ 𝜑(𝑥 · 𝑦) ⊆ 𝜑(𝑥) ∪ 𝜑(𝑦).

By Clause (a) and the Δ-system lemma, we may fix an 𝑋 ⊆ 𝐺 of size 𝜅, some 𝑟 ∈ [𝐺]<𝜔 and some
𝑘 < 𝜔 such that 〈𝜑(𝑥) \ 𝑟 | 𝑥 ∈ 𝑋〉 is a sequence of pairwise disjoint sets, each of size k. It then follows
from Clause (b) that |𝜑(𝑥1 · · · 𝑥𝑙) | ≥ 𝑘 · 𝑙 for every injective finite sequence 〈𝑥1, . . . , 𝑥𝑙〉 of elements of X.
In particular, we may fix a 𝑔 ∈ 𝐺 with |𝜑(𝑔) | > |𝑟 | + 𝑘𝑛, where n is the integer for which G is n-Shelah.
Since 𝑋𝑛 = 𝐺, we may fix a (possibly non-injective) sequence 〈𝑥1, . . . , 𝑥𝑛〉 of elements of X such that
𝑥1 · · · 𝑥𝑛 = 𝑔. However, Clause (b) implies that |𝜑(𝑥1 · · · 𝑥𝑛) | ≤ |𝑟 | + 𝑘𝑛. This is a contradiction.

(3) We need to show that for no system {𝑤𝑖 | 𝑖 ∈ 𝐼} of words over 𝐺 ∪ {𝑥} (where x is an abstract
variable outside G) do we have

𝐺 \ {1} =
⋂

𝑖∈𝐼
{𝑔 ∈ 𝐺 | 𝑓𝑤𝑖 (𝑔) = 1},

where the value of 𝑓𝑤𝑖 (𝑔) ∈ 𝐺 is given by substituting each occurrence of the symbol x in 𝑤𝑖 ∈
<𝜔 (𝐺 ∪ {𝑥, 𝑥−1}) with g, and calculating the value in G. It is easy to see that it suffices to prove that for
no such word w does the following equation holds true:

𝐺 \ {1} = {𝑔 ∈ 𝐺 | 𝑓𝑤 (𝑔) = 1}. (IX)

6Well-behaved is a weakening of the assertion that a group admits a basis. For instance, any infinite commutative cancellative
semigroup is well-behaved (follows from [17, Theorem 23.1]).
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Suppose that w satisfies (IX), and fix a finite subset 𝐵 ⊆ 𝐺 with 𝑤 ∈ <𝜔 (𝐵 ∪ {𝑥, 𝑥−1}). As |𝐵 | < 𝜃,
we may find 𝛾 ∈ [1, 𝜅) and 𝑖 ∈ [1, 𝜃) such that

𝐵 ⊆ 𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

,

so for each 𝑔 ∈ 𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

that is not the identity 𝑓𝑤 (𝑔) = 1.
We are going to prove (provided that Σ from Definition 5.14 in the construction of 𝐺𝐷

𝛾
≤𝑖∪{𝛾 }

is not
empty) that the group 𝐺𝐷

𝛾
≤𝑖∪{𝛾 }

is topologizable (with a non-discrete 𝑇1 topology), which will imply
that 𝐺𝐷

𝛾
≤𝑖∪{𝛾 }

\ {1} is closed (with respect to this nontrivial topology), contradicting that the topology
was non-discrete.

To this end, it is enough to argue that there exists a sequence 〈𝑁∗
𝑘 | 𝑘 ∈ 𝜔〉 of normal subgroups of

𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

such that for each k do 𝑁∗
𝑘+1 ≤ 𝑁∗

𝑘 ,
⋂

𝑘∈𝜔 𝑁∗
𝑘 = {1} and {1} � 𝑁∗

𝑘 hold. Now recall how
𝐺𝐷

𝛾
≤𝑖∪{𝛾 }

was constructed in Subsection 5.2 (appealing to Lemma 3.4 there):

𝐺𝐷
𝛾
≤𝑖∪{𝛾 }

= (𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖
)/𝑁,

where N was the normal closure of {ℎ−1
𝜎 𝜚(𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎) | 𝜎 ∈ Σ} (Σ is from Definition 5.14). Let 𝑁0

denote this N. Observe that it is enough to define a sequence 〈𝑁𝑘 | 𝑘 ∈ 𝜔 \ {0}〉 of normal subgroups
in 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖

that satisfies 𝑁𝑘+1 ≤ 𝑁𝑘 for 𝑘 ≥ 1,
⋂

𝑘∈𝜔 𝑁𝑘 = 𝑁0 and 𝑁0 � 𝑁𝑘 .

Recall that in Definition 3.2, we have the sequence 〈𝑛ℓ | ℓ < 𝜔〉 defined via 𝑛ℓ = 3320ℓ , and that we
let 𝜚ℓ (𝑥, 𝑦) = 𝜚(𝑥𝑛ℓ , 𝑦𝑛ℓ ) (in particular, 𝜚0 = 𝜚), and

𝑅𝑘 = {ℎ−1
𝜎 𝜚0 (𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎), 𝜚ℓ (𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎) | ℓ ≥ 𝑘, 𝜎 ∈ Σ}.

Set 𝑁𝑘 to be the normal closure of 𝑅𝑘 . Now the following will complete the proof:

Claim 5.21.1.

(1) For all 𝜎 ∈ Σ and 𝑘 > 0,

𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖

|= 𝜚𝑘 (𝑏𝜎𝑎𝜎 , 𝑏
′
𝜎𝑎𝜎) ∈ 𝑁𝑘 \ 𝑁0,

(2) 𝑅1 satisfies 𝐶 ′( 1
10 ); moreover, if a group element 𝑔 ∈ 𝐺𝐷

𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖

has a canonical

representation of length < 7
10 · (𝑛𝑘 · 6640) − 1 for some 𝑘 ≥ 1, and 𝑔 ∉ 𝑁0, then 𝑔 ∉ 𝑁𝑘 .

Proof. Let us start with verifying the second clause. 𝑅1 satisfies 𝐶 ′( 1
10 ) just by the moreover part of (A)

from Lemma 3.4. Suppose 𝑘 ∈ 𝜔, 𝑔 ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖

is such that 𝑔 ∉ 𝑁0, and g has a canonical
representation of length

ℓ <
7

10
· (𝑛𝑘 · 6640) − 1. (X)

W.l.o.g. we can assume that whenever 𝑔′ ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖

satisfies

𝑔′ ∈ {ℎ𝑔ℎ−1𝑁0 | ℎ ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖
},

then the length of g’s canonical representation does not exceed that of 𝑔′ (by possibly replacing g with
a 𝑔′ with a shorter representation, since 𝑔 ∈ 𝑁𝑘 \ 𝑁0 ⇒ 𝑔′ ∈ 𝑁𝑘 \ 𝑁0 by the normality of 𝑁0, and
𝑁𝑘 ). Suppose on the contrary that 𝑔 ∈ 𝑁𝑘 . Now Fact 2.10 implies that for a weakly cyclically reduced
conjugate 𝑔′ of g, we have that 𝑔′ has a canonical representation 𝑤 = 𝑤0𝑤1 · · ·𝑤 𝑗−1, which, as a word
contains a subword 𝑠0𝑠1 · · · 𝑠𝑚−1 that is a subword of a representation 𝑟0𝑟1 · · · 𝑟𝑛−1 of some r in the
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symmetric closure of 𝑅𝑘 , and 𝑚 ≥ 7
10𝑛. (W.l.o.g. we can assume that 𝑠𝑖 = 𝑟𝑖 for 𝑖 < 𝑚, by possibly

replacing r with a cyclical conjugate of it, as 𝑅𝑘 is closed under such operations.)
Now clearly, 𝑚 ≤ 𝑗 , and 𝑗 ≤ ℓ + 1 (by Definition 2.5), so it follows from 𝑚 ≥ 7

10𝑛 that ℓ + 1 ≥ 7
10𝑛.

But 𝑛 ∈ {6640 · 𝑛0, 6640 · 𝑛0 + 1, 6640 · 𝑛𝑖 , 6640 · 𝑛𝑖 + 1 | 𝑖 ≥ 𝑘} since the lengths of the words in 𝑅𝑘

form the set {6640 · 𝑛0, 6640 · 𝑛𝑖 | 𝑖 ≥ 𝑘}, r is a weakly cyclically reduced conjugate of some 𝑟 ′ ∈ 𝑅𝑘 ,
and this conjugation can only increase the length by at most one (by Observation 2.6 (2)). Therefore, by
(X), 𝑛 = 6640 · 𝑛0 holds necessarily, and

𝑟0𝑟1 · · · 𝑟𝑛−1 ∈ 𝑁0.

Finally, observe that substituting

(𝑟−1
𝑛−1 · 𝑟

−1
𝑛−2 · · · 𝑟

−1
0 ) · (𝑟0 · 𝑟1 · · · 𝑟𝑚−1) = 𝑟−1

𝑛−1 · 𝑟
−1
𝑛−2 · · · 𝑟

−1
𝑚

instead of 𝑟0 · 𝑟1 · · · 𝑟𝑚−1 in w yields an element in

{ℎ𝑔ℎ−1𝑁0 | ℎ ∈ 𝐺𝐷
𝛾
<𝑖∪{𝛾 }

∗𝐺
𝐷

𝛾
<𝑖

𝐺𝐷
𝛾
≤𝑖
}

with a shorter representation (than that of g), a contradiction.
The first clause is immediate noting that the second clause implies 𝜚𝑘 (𝑏𝜎𝑎𝜎 , 𝑏

′
𝜎𝑎𝜎) ∉ 𝑁𝑘+1. �

This completes the proof. �

Corollary 5.22. For every infinite regular cardinal 𝜆, there exists a torsion-free Shelah group of size 𝜆+.

Proof. Invoke Theorem 5.1 with the pair (𝜅, 𝜃) = (𝜆+, 𝜆), using Theorem 4.4. �

Corollary 5.23. For every regular uncountable cardinal 𝜅, if �(𝜅) holds, then there exists a torsion-free
Shelah group of size 𝜅.

Proof. By Theorem 5.1 together with Corollary 4.10. �

Corollary 5.24. In Gödel’s constructible universe, for every regular uncountable cardinal 𝜅, the fol-
lowing are equivalent:

• there exists a torsion-free Shelah group of size 𝜅;
• there exists a Shelah group of size 𝜅;
• 𝜅 is not weakly compact.

Proof. By [23, Theorem 6.1], in Gödel’s constructible universe, every regular uncountable 𝜅 is either
weakly compact, or�(𝜅) holds. By Corollary 5.23, it thus suffices to prove that weakly compact cardinals
do not carry a Shelah group. To this end, suppose that there is an n-Shelah group of size 𝜅.

Claim 5.24.1. There is a system �𝑓 = 〈 𝑓 𝑗 | 𝑗 < 𝑛𝑛〉 of functions from [𝜅]𝑛 to 𝑛𝑛 + 1 such that⋃
𝑗<𝑛𝑛 𝑓 𝑗“[𝑋]𝑛 = 𝑛𝑛 + 1 for every 𝑋 ∈ [𝜅]𝜅 .

Proof. Fix an n-Shelah group G with underlying set 𝜅. Let 〈𝜓 𝑗 | 𝑗 < 𝑛𝑛〉 list all possible maps from n
to n. For every 𝑗 < 𝑛𝑛, define ℎ 𝑗 : [𝜅]𝑛 → 𝜅 by letting for every n-tuple (𝑔0, 𝑔1, . . . , 𝑔𝑛−1) of elements
of G, enumerated in ∈-increasing order:

ℎ 𝑗 (𝑔0, 𝑔1, . . . , 𝑔𝑛−1) = 𝑔𝜓𝑗 (0) · 𝑔𝜓𝑗 (1) · · · 𝑔𝜓𝑗 (𝑛−1) .

Evidently, for every infinite 𝑋 ⊆ 𝜅,
⋃

𝑗<𝑛𝑛 ℎ 𝑗“[𝑋]𝑛 is nothing but the set of all group words of length
n in the elements of X. So, since G is an n-Shelah group with underlying set 𝜅, for every 𝑋 ⊆ 𝜅 of full
size,

⋃
𝑗<𝑛𝑛 ℎ 𝑗“[𝑋]𝑛 = 𝜅.
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For every 𝑗 < 𝑛𝑛, let 𝑓 𝑗 : [𝜅]𝑛 → (𝑛𝑛 + 1) be the color-blind version of ℎ 𝑗 obtained via

𝑓 𝑗 (𝑢) = min(ℎ 𝑗 (𝑢), 𝑛
𝑛).

Then,
⋃

𝑗<𝑛𝑛 𝑓 𝑗“[𝑋]𝑛 = 𝑛𝑛 + 1 for every 𝑋 ∈ [𝜅]𝜅 . �

Let �𝑓 be given by the claim. Define 𝑐 : [𝜅]𝑛 → 𝑛𝑛
(𝑛𝑛 + 1) via

𝑐(𝑢) = 〈 𝑓 𝑗 (𝑢) | 𝑗 < 𝑛𝑛〉.

Since 𝜅 is weakly compact, 𝜅 → (𝜅)𝑛𝑘 holds for every cardinal 𝑘 < 𝜅 – in particular, for 𝑘 = (𝑛𝑛+1)𝑛𝑛 .
So, we may find a set 𝑋 ∈ [𝜅]𝜅 such that 𝑐 � [𝑋]𝑛 is constant with value, say, 〈𝑚 𝑗 | 𝑗 < 𝑛𝑛〉. Pick an
𝑚 ∈ 𝑛𝑛 +1 distinct from 𝑚 𝑗 for all 𝑗 < 𝑛𝑛. Then 𝑚 ∉

⋃
𝑗<𝑛𝑛 𝑓 𝑗“[𝑋]𝑛, contradicting the choice of �𝑓 . �
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