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Abstract In this article we consider sums S(t) = ^n^{tf{n/t)), where ip denotes, essentially, the
fractional part minus h, f is a C4-function with / " non-vanishing, and summation is extended over an
interval of order t. For the mean-square of S(t), an asymptotic formula is established. If / is algebraic
this can be sharpened by the indication of an error term.
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1. Introduction and statement of results

Let / be a real-valued function defined on an interval [a, b] with continuous derivatives
up to order 4 and the property that / " has no zero on [a,b]. Further, let rp denote a
row-of-teeth function satisfying

il){w)=w-[w\-\, forwgZ, 1

- \ < tp(w) ^ 5 , for w e Z. J

Finally, let t be a large real parameter. Then the objective of the present article will be
to study the sum

S(t)= V Jtffc
nei

It is clear that S(t) is connected with the problem of counting the lattice points in the
Euclidean (£, 7/)-plane between the curve

and the £-axis (see also §2 of [15]). In classic times, upper estimates for sums of this
type have been obtained by Vinogradov [20] and van der Corput [18,19], who ultimately
proved that

s{t) < t2/3-So
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with some (very small) So > 0. Under the general conditions stated, there was no improve-
ment until recently when Huxley deduced his 'Discrete Hardy Littlewood Method' from
earlier ideas due to Bombieri and Iwaniec [1] and Iwaniec and Mozzochi [7]. Huxley's
sharpest version [5] contains the bound

«S(*)«i46/73(log*)315/146 (1.2)

(under the additional technical condition that f1-3' has no zero on [a, 6]). For a full
account, the reader is refered to Huxley's textbook [6]. We remark parenthetically that
a more general sum which contains a second parameter U ̂  t, namely

S(t,U) =

is important for rounding-error estimations in connection with classic numerical inte-
gration methods. This, too, has been worked out by Huxley [4]. The upper bounds he
established depend in a complicated way on the relative size of U and t and are given in
a table exceeding one printed page.

To establish a lower estimate for S(t) and results on its mean-square, one needs one
more condition which is most efficiently stated in the following geometric terms.

Definition 1.1. A smooth curve C is said to satisfy the tangent condition if none of
the tangents of C contains the origin.

In the first part of this investigation [15], the upper estimate (1.2) has been comple-
mented by the lower bound

and the mean-square estimate

/ (<S(i))2dt«T2, (1.4)
o

as T —> oo. The objective of the present article is to sharpen this latter result by a precise
asymptotic formula.

Theorem 1.2. For arbitrary real-valued f 6 C4[a,b], with f" < 0 on [a,b], suppose
that the curve C : r\ = /(£), £ 6 [a, b], satisfies the tangent condition. Then it follows that

2[ («S(i))2di~CT2,
o

with

u,v£T>
G(u)=G(v)
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where u = (u\,U2), v = (vi, V2) are elements of Z x N,

£> = {(C.i?) € K x R+ : -rif'(a) < ^ ^ -77.

311

where <p denotes the inverse function off, and J2* means that ifu lies on the boundary
ofD, K(U) gets a factor ^ (and accordingly for v).

Remark 1.3. The condition that / " < 0 is technically convenient, but implies no real
loss of generality: if / " > 0 one can replace / by - / and xfj by —tp, with (1.1) still valid.

Remark 1.4. It is in fact sufficient to prove that (under the conditions stated)

r2T

/ ;
(5(i))2dt~3CT2. (1.5)

To see this, apply (1.5) with T replaced by
integral over [0,TR-] by (1.4). This gives

= 2~kT, k = 1 , . . . , K, and estimate the

lim sup
T-»oo

i r
=j /

K

fc=i

I - K

Since K can be picked arbitrarily large, Theorem 1.2 is immediate.

Remark 1.5. To fit our result into the frame of the classic theory, it is instructive to
refer to the Gaussian circle problem. (For a thorough account on its history, the reader
may consult, for example, the book of Kratzel [9].) Let r(n) the number of ways to write
n € No as a sum of two squares, i.e.

in) = # { K v ) e Z 2 :u2 +v2 =

then it is well known that

with

So{t):=

with xpt(u>) = w — [w] — 5 throughout. Concerning the mean-square of this remainder
term, Katai [8] proved that

n = l
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thereby refining earlier results of Cramer [2] and Landau [13]. By (1.6) and a simple
integration by parts,

/ £6
o

It is an easy exercise to verify that, for this special case, ^fgO) is equal to our C. (Note
that f{w) = (1 — u;2)1/2 implies that K(UI,U2) = (u2 + u 2 . ) " 3 / 4 ^ and G{ui,u2) =

Furthermore, we are able to sharpen the statement of Theorem 1.2, provided that the
function / and the limits a, b are algebraic.

Theorem 1.6. For a real-valued function f 6 C4[a, b], with f" < 0 on [a, b], again let
the curve C •.•q — /(£), £ £ [o, b], satisfy the tangent condition. Suppose further that a, b
are algebraic numbers and that there exists a polynomial p G Z[X, V] such that

p(x,f{x))=0,

for all x G [a, 6]. Then it follows that

LT

{S(t)f dt = CT2 + O(T2-"),

for some (small) u> > 0 depending on f and a,b (C as in Theorem 1.2).

The method of the proofs of both results will make use of the ideas developed in the
first-named author's papers [10] and [11], where corresponding asymptotics are estab-
lished related to the arithmetic functions r^ (n), which count the number of ways to write
a positive integer n as the sum (respectively, the difference) of two fcth powers.

2. Some auxiliary results

Lemma 2.1 (Vaalers's Lemma). For arbitrary w G E and H € M+, H ^ 1, sup-
pose that ip satisfies (1.1), and put

ipjj(w) = —•

where

Then the following inequality holds

Proof. For w £ Z, this is one of the main results in Vaaler [17]. For a very well-
readable exposition, see also the book of Graham and Kolesnik [3, p. 116]. The case
w € Z is an obvious consequence by a limit argument or by direct evaluation. •
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Lemma 2.2 (A sharp form of the van der Corput transformation). Suppose
that g is a real-valued function which possesses four continuous derivatives on the interval
[A, B\. Let L and W be real parameters not less than 1, such that B - A^. L,

gU){w) < WLl'j, for we [A,B], j = 1,2,3,4,

and, for some C* > 0,

g"(w) ^ C*WL~X, for we [A,B].

Denote by <j> the inverse function of g', and define

(0, ifg'{x) e Z,

m m • • . / _ M L \\ TTr . e k e >

with || • || denoting the distance from the nearest integer. Then it follows that

e(g(k))= V "
) V ' - ' \ T \ / /

+ O(r(A) + r(B))+O(\og(2 + W)),

with the notation

a^n^6 a<n<b

where xz(-) is the indicator function of the integers. The O-constant depends on C* and
on the constants implied in the order symbols in the suppositions.

Remark 2.3. Unfortunately, this result does not appear to be available explicitly in
the literature. There are versions which state what is needed but impose a complicated
condition essentially meaning that g is algebraic (see Kratzel Theorem 2.11 in [9], which
is based on ideas due to Vinogradov). Graham and Kolesnik [3] avoid this restriction
but unfortunately produce an error term 0{yjL/W) (in our notation) which is too crude
for the present purpose. However, it is easy to construct what we need from the ideas in
Graham and Kolesnik [3] and Kratzel [9]. Let us first state the following result.

Lemma 2.4. Suppose that F is a reai-vaiued function which possesses four continuous
derivatives on the interval [A, B\. Let L and W be real parameters not less than 1, such
that B-A^L,

j, forwe[A,B], j = 1,2,3,4,

and, for some C* > 0,

F"{w) > C*WL~X, for we [A,B\.
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Suppose further that there exists a value c € [A, B] for which F'(c) = 0. Define

Then it follows that

fB

/ e{F{w))dw
J A

(F"(c))-1/2e( i + F ( c ) ) + 0(R(A) + R(B)) + o(^j, ifA<c<B,

i(F"(A))-1/2e(I + F(A)) + O(R(B)) + o(^j, ifc = A,

( I + F{B)) + O(R(A)) + o ( - p ) , ifc = B.

Proof of Lemma 2.4. For A < c < B, this is explicitly contained in Lemma 3.4 of
Graham and Kolesnik [3]. The case c = B can be reduced to c = A by the substitution
w —> A + B — w. Finally, to deal with the case c = A, it suffices to have a close look at the
proof of Lemma 3.4 in [3]. Here, F is approximated by its quadratic Taylor expansion
q(w) at the stationary point c. If c = A, the integral JA e(q(w)) dw can be evaluated by
an obvious variant of Lemma 3.3 (in [3]), namely

r/o
The ingenious estimation of the remainder integral then works exactly as in [3]. •

Proof of Lemma 2.2. We start from formula (2.20) in Kratzel [9], and follow the
proof of his Theorem 2.11 (p. 48). Thus, first of all,

Here, we want to replace

E
with

E
and estimate the error we thereby commit. If {g'(B)} ^ | (with {•} denoting the frac-
tional part), we have to take into account the integral corresponding to m* = [g'(5)] +1:
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by the first (respectively, second) derivative test. If 0 < {g'(A)} < | , an analogous
argument produces the bound O(r(A)) for the very first integral. Consequently,

E
Each of these integrals is now evaluated by Lemma 2.4, with Fm(t) = g(t) — mt instead
of F(t) (and R(-) replaced by Rm(-)). The main terms give no difficulty, thus we proceed
to estimate the remainder. If g'(B) £ Z, we have

E *»(*)< EE ^J
g>(

otherwise,

(B)- \

The cases g'{A) Eli ox g'(A) £ Z are dealt with in the same way, producing the bound
r(A) + log(2 + W). This completes the proof of Lemma 2.2. •

We conclude this section by summarizing some important properties of the function
G(t;,ri) defined in Theorem 1.2. First of all, it is evident that G(£,ri) is homogeneous,
of degree 1, and possesses continuous partial derivatives up to order 3 throughout its
domain of definition V. Furthermore, the following facts have been verified in [15]:

(i) G(£, rf) is of the same sign throughout V; and

(ii) there exist constants C2 > c\ > 0, such that, for all (£,77) € V,

c! ve+v2^ G(c, T?) < c2y/eT^. (2.1)

3. Proof of Theorem 1.2

We start with a bit of notation. For real T > 0 and any function $ 6 L2[T, 2T], we define

2T
MT($)= / ($(t))2dt.

JT

Throughout the sequel, T (large) and e > 0 (small) are independent parameters (with
logT sufficiently large compared to |loge| if necessary); all O and -C-constants may
depend on / and [a, b], but not on T and e. We put H = [T] + s/2 (so that H x T and
H <£ Q). Finally, let t G [T,2T] throughout the sequel.

Appealing to Vaaler's Lemma, we shall approximate <S(i) by

£*(*)= E *H
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It readily follows that

f ( Y, h(h,H) Y, cos(2whtf(j)))dt+^, (3.1)

with

We shall first evaluate

where

MT{S*H)= [ ( J2 h^H) E

Our analysis will yield a bound for the right-hand side of (3.1) as a by-result.
We start by submitting the inner trigonometric sum to a van der Corput transform.

Applying Lemma 2.2 with g{w) = —htf(w/t), L x T, W x h, we readily obtain

\ J el —htfi — 1 I = —;= \J K(m,h)e(—tG(m,h) + | )
at<n^.bt —hf'(a)^m^ — hf'(b)

+ O(log(l + h)) + O(rh(a)) + O(rh(b)), (3.2)

with

'°>
: = a or b).mm ||/i/'(c)|| ,—7=), else.

First, we estimate the contribution of the error terms to M.T{S*H). If /'(a) £ Q, Th{a) is
bounded, and, thus,

Y fc(h,H)rh(a)<: ^ ft"1 «: log if.

if / » t Q,

V /32(/l,//K(a)+ V 02(h,H)rh(a)

< | log e | max

Since the same applies to rh(b), we conclude that

( Y^

e))2 + eT2. (3.3)
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Considering the imaginary part of (3.2). it remains to evaluate MT{y/tE{T>(H))), intro-
ducing the useful notation

D(//) := {(m, h) G Z x N : -hf'(a) < m ^ -hf'(b), l^h^H},

and, for any domain D 0 CI ) .

h, H)n(m, ft) sin{2irtG(m, ft) - ±TT).

We split up P ( w ) into subsets Z>i, V2 defined by

Vi = {(m, ft) G Z x N : (m, ft) 6 £>, 1 ̂  ft ^ (1/e)},

D2 = {(m, h)eZxN:(m,h)eV, (1/e) < ft < H}.

In order to estimate the contribution of T>2: we further put

S(h, t) := ff»fog) 53" «(m> ft) sin(27riG(m, ft) - IT

Hi = 2~lH, Mi =]Hi+i,Hi[ for i = 0 , 1 , . . . , I, with I minimal such that HI+X < (1/e).
We thus obtain

/ •2T

Mr{VtE{V2)) = / t

i=o

^ 53 5(ft, t)). (3.4)
i=o ^

We further put

Ai := {(m, ft) G Z x N : ft G Hi, -ft/ '(a) ^ m ^ -ft/'(6)},

and write u = ( u ! , ^ ) , v = (v i ,^ ) : for elements of Z x N in the sequel. We thus obtain

S(h,t))=,

/•2T
x /

/•2T
/ tsm(2ntG(u) - \n)sm(2TrtG(v) - \n)dt.

JT
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These integrals can be estimated either trivially or by the second mean-value theorem,
on the basis of the elementary identity

sin A sin B = \{cos{A - B) - cos{A + B)). (3.5)

Observing also that /32(^, H) -C h~1, /t(m, ft) < 1, we arrive at

£) (3-6)
But this last expression (apart from an additional factor T) occurred already in [15,
formula (5.5)]. As we have shown there (cf. the unnumbered formula below (5.7) in [15])
it is <r T2H^l/3 + TlogT. Inserting this into (3.4), we infer that

/
MT(VtE(V2)) < e1/6Y^(H~1/6T2 + Hl/6TlogT)

i=0

(3.7)

At this point, we notice that our analysis can be readily modified to deal with the right-
hand side of (3.1). We only have to replace e by 2 (say), the sine by the cosine, and 02 by
f3i. In view of the stronger bound fii(h,H) <c H~l, the factor H~z in (3.6) changes to
H"2H~1, and one obtains altogether (taking into account that the error terms coming
from the van der Corput transformation give at most the same bound as we had in (3.3)):

+ ^ ( # - 2 # " / 6 T 2 + H-2H™/eTlogT)
i=° +T(logT)4 + T(K1{e))2 +eT2

+ H-'^T2 + H1/6T\ogT + T(logT)4 + T(Ki(e))2 + eT2

T(JftTi(e))2+eT2. (3.8)

It remains to evaluate

= r;
r2T
i

X
f
/ t sm{2ntG(u) - \n) sin(2TTtG(v) - W) di.

JT

The integrals are again computed using (3.5). If we consider only the contribution of
'COS(J4 — 5 ) ' and only the terms corresponding to u, v with G(u) = G(v), replace T>\ by
V, and approximate 02{h,H) by (irh)'1, we readily obtain the main term 3CT2 stated
in (1.5), with C as defined in Theorem 1.2. We only have to estimate the several errors
we thereby commit as follows.
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(i) The contribution of the 'cos(A + B) 'part of (3.5). By the second mean-value theorem,
this is

(ii) The contribution of the u, v e 2?i with G(u) ^ G(v). By the same argument, this is

J2 ^lG{u)
T

G{v)l«K3(e)T. (3.10)

(iii) The error term caused by extending T>\ to all ofV. To estimate this we notice that,
by a result of Swinnerton-Dyer [16],

G(v) = W

for any fixed 6 > 0 and large W. Further, u e V implies that u\ <gC u2 and, thus,
|G(u)| x \u\i x U2 (by an appeal to (2.1)), with | • I2 denoting the Euclidean norm.
Consequently, the error term in question is

«r2

ue(T>-T>i)

/ 1 N - 1 / 5 + 5 / 2

« T 2 ^ r ( n ) n - 6 / 5 + i / 2 « T 2 ( i ) « e 1 / ^ 2 . (3.11)

(This argument also verifies the convergence of the series representing C.)

(iv) The error coming from approximating /?2 • Recalling the definition in Vaaler's Lemma,
it is clear that T(UI) = 1 + O(w2) on [0,1], thus

The overall error is, therefore,

5 ] \u\2lH~2T2 «#4(e). (3.12)

We are now ready to collect all partial results. Putting together (3.3) and (3.7)-(3.12)
(with Cauchy's inequality in the back of our mind), we readily see that

lim sup
1

- 3C ,1/12

Since e can be chosen arbitrarily small, this completes the proof of (1.5) and thereby
that of Theorem 1.2. D
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4. Proof of Theorem 1.6

In what follows, u>o (small) and C\,C2,---, (possibly large) denote suitable positive
constants depending on / and a, b. (The Cj may depend on each other but not on wo-)
It clearly suffices to make the above deduction of Theorem 1.2 effective in the sense that
we put

e = T~W0,

and replace K\(e), K^e),..., by certain powers of e~l = T"°. We start with two more
auxiliary results.

Lemma 4.1. Assume that the function f satisfies the suppositions of Theorem 1.6
and let G : V —>• E be defined as in Theorem 1.2. Then the following conclusions hold
true.

(i) There exists a polynomial p* € Z[X, Y, Z] such that

P*(Z,V,G(Z,V)) = O, forall(tv)eV.

(ii) For anyu= (u1:u2), v = (vi,v2) € Dn(Z x N) with G{u) ± G(v),

| G ( « ) - G ( v ) | > M - C l ,

where M := max{|tzi|,W2, |^i |, ^2}-

Proof of Lemma 4.1. The verification of (i) is a straightforward exercise in classic
algebra. To establish (ii), let us write

P*(X,Y,Z) = J2aid,k
i,j,k

with Ak € Z[X, Y], k = 0 ,1 , . . . . We start from the equations

)fc=0, ^ f c (u )G( i , ) f e = 0,

and apply a device usually employed to show that a - (3 is algebraic if a, (3 are also (see,
for example, Landau [14, p. 6]). It follows that there exists a polynomial p such that

p(G(u) - G(v)) = 0,

with

p{Z)= J2 Bk(^,v)Zk (BK{u,v)(u,v)y£0),

where K(u,v) ^ C2, and the Bk are polynomials in four variables with rational integer
coefficients that satisfy Bk{u,v) <g M°3.

We now consider the (minimal) field extension F over Q that contains G{u) — G(v)
along with all its conjugates. Let Q denote the corresponding Galois group, then, of
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course, \Q\ = [F : <Q>] ^ C4. Since BK(u/u)(u,v)(G(u) — G(v)) is a non-zero algebraic
integer, the absolute value of its norm is

Y[x(G(u)-G(v))

For every x €\G> x{G(u) - G(v)) is a zero of p, hence

V

Therefore,

|G(u) - G(v)\ X(G(u) - G(v))
- 1

which establishes part (ii) of Lemma 4.1.

Lemma 4.2. For any algebraic number a of degree N ^ 2,

1.

•

with a computable -^.-constant depending on a.

Proof of Lemma 4.2. By Liouville's classic theorem, there exists c(a) > 0 such that

for all h 6 N. Thus, Lemma 4.2 is a special case of Lemma 3.3 in Kuipers and Niederreiter
[12, p. 123]. D

We are now prepared to continue the proof of Theorem 1.6, i.e. (as we said earlier) to
replace all the Kj(e) in the deduction of Theorem 1.2 by explicit powers of e~l = Tu°.
We start after (3.2) with the estimation of

P2(h,H)rh(a),

for f'(a) £ Q. Since, by assumption, /'(a) is an algebraic number, this is

fc(h,H)rh(a)+ £ (32(h,H)rh(a)
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by an appeal to Lemma 4.2. Of course the same applies to f'(b). Therefore, the expression
KI(E:) in (3.3) and the preceding unnumbered formula can be replaced by TCeU°, and
(3.8) becomes

MT(S - SJj) < T11/6 + T1 + 2 C W o + T2-"0. (4.2)

Next we consider (3.10). By Lemma 4.1,

The same bound holds for the sums in (3.10) (since G is of constant sign) and (3.12).
Combining (4.2), (4.3), and (3.11), and appealing to Cauchy's inequality, we thus obtain

I (S{t)f dt = 3CT2 + o(T3/2+CeUJ0) + o(T2-"o/2)
JT

Choosing LOQ sufficiently small, we conclude that

(•IT

/
JT

(S(t))2 dt = WT2 + O{T2~") {w > 0).

A dyadic decomposition of the interval [0, T] now completes the proof of Theorem 1.6. •
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