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ABSTRACT

This paper considers reinsurance retention limits in cases where the cedent has
a choice between a pure quota-share treaty, a pure excess of loss treaty or a
combination of the two. Our primary aim is to find the combination of retention
limits which minimizes the skewness coefficient of the insurer's retained risk
subject to constraints on the variance and the expected value of his retained risk.
The results are given without specifying precisely how the excess of loss reinsur-
ance premium is calculated. It is also shown that, depending to some extent on
the constraint on the variance, the solution to the problem is a pure excess of
loss treaty if the excess of loss premium is calculated using the expected value
or standard deviation principle but that this need not be true if the variance
principle is used.
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1. INTRODUCTION

This paper considers reinsurance retention limits in cases where the cedent has
a choice between a pure quota-share treaty, a pure excess of loss treaty or a
combination of the two. Such combinations occur in practice; see, for example,
GERATHEWOHL (1980, Vol. 2, p. 371).

We assess the effects on the insurer of a particular combination of reinsurance
treaties by considering three moment functions of the insurer's retained risk.
These functions are the skewness coefficient and the variance of the insurer's net
claims and the insurer's expected net profit. Our primary aim is to find the
combination of retention limits which minimizes the skewness coefficient of the
insurer's net claims, subject to a maximum value for the variance of the insurer's
net claims and a minimum value for the insurer's expected net profit.

In Section 3 we show that the solution to this problem is unchanged if we
replace the skewness coefficient by the coefficient of variation of the insurer's net
claims.

Constrained optimization as a criterion for determining optimal retention limits
has been used before, see BUHLMANN (1970, pp. 114-119), but not in relation
to a combination of types of reinsurance. Combinations of types of reinsurance
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have not often been discussed in the mathematical insurance literature; one
notable exception is LEMAIRE, REINHARD and VINCKE (1981). There are some
similarities between our paper and theirs, but also some important differences.
For example, in our paper we allow the claim number distribution to be more
general than the Poisson (for example negative binomial). There is also a differ-
ence in the way in which we assume the reinsurance premiums are calculated.
We assume the quota-share premium is calculated on a proportional basis with
a commission payment to the insurer; we do not specify how the excess of loss
reinsurance premium is calculated but make some assumptions about this pre-
mium which are shown to be satisfied if it is calculated using the expected value,
standard deviation or variance principles.

In Section 2 we describe in detail the two reinsurance treaties and discuss our
assumptions relating to the excess of loss reinsurance premium.

In Section 3 we state our problems and give the solution in general form.
In Section 4 we give the solution to our problems assuming the excess of loss

reinsurance premium is calculated using the expected value, the standard devi-
ation or the variance principle. It is shown that, provided the constraint involving
the variance of the insurer's retained risk is not too restrictive, the optimal solution
is a pure excess of loss treaty in the first two cases but this need not to be true
in the last case.

In Section 5 we discuss briefly the necessity of the assumptions made concerning
the claim number distribution.

In Section 6 we give a numerical example to illustrate our results.

2. THE REINSURANCE ARRANGEMENT AND THE COST OF THE EXCESS
OF LOSS REINSURANCE

2.1. The Reinsurance Arrangement

Consider a risk for which the aggregate gross (of reinsurance) claims in some
fixed time interval are denoted by a random variable Y. We assume Y has a
compound distribution, so that

i = \

where {XJ, with 0 =s x0 < Xt < xx =s +oo, is a sequence of i.i.d. random variables,
with common distribution function F, representing the amounts of the individual
claims and N is a random variable, independent of the X('s, representing the
number of claims in the time interval. We shall assume that F is continuous and
that the third moments of X, and N are finite (although this will not always be
necessary). Let Ai, A2 and A3 denote the mean, variance and third central moment
of N. Throughout this and the following two sections, which contain our main
results, we shall make the following two assumptions:

(2.1.1) A2-A,ss0

(2.1.2) 2A2
;-A1A2-A,A33=0.
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In Section 5 we shall comment on the necessity of these assumptions for our
results but for the present we remark that both assumptions will hold if N has
either a Poisson or a negative binomial distribution.

We assume the insurer of the risk arranges a combination of quota-share and
excess of loss reinsurance in the following way:

Firstly, the insurer chooses a quote-share retention level which we denote a
so that the insurer's aggregate claims, net of quota-share reinsurance, are aY.
We assume the cost of the quota-share reinsurance is calculated on a proportional
basis with a commission payment. (See CARTER (1979, p. 87).) More precisely,
let P denote the insurer's gross (of expenses and reinsurance) premium income
in respect of this risk. We assume an amount eP is used to cover the insurer's
expenses, irrespective of the level of reinsurance. The premium of the quote-share
reinsurance is (1 -a)P less a commision payment of c(l -a)P.

Secondly, the insurer chooses an excess of loss retention level which we denote
M so that the insurer's aggregate claims, net of quota-share and excess of loss
reinsurance, can be represented by a random variable Y(a, M), where

Y(a, M) = I min (aXh M).

We denote by P(a, M) the premium paid to the reinsurer in respect of the excess
of loss arrangement and we assume the premiums for the two arrangements are
calculated independently of each other. (It could be argued that there should be
a connection between the two reinsurance premium calculations since 100%
reinsurance should cost the same for the two types of treaty but we do not make
this extra assumption). Hence the insurer's net (of expenses and reinsurance
costs) premium income is

P{c-e) + aP(l-c)-P(a,M).

2.2. The Cost of the Excess of Loss Reinsurance

Let C(a, M) denote the cost to the insurer of the excess of loss reinsurance
arrangement, so that

(2.2.1) C(a, M) = P(a, M)-E[aY- Y(a, M)]

Throughout this paper we make the following assumptions concerning C(a, M):

(2.2.2) C(a, M)e<g, fora, M>0,

where *#, is the class of functions with continuous derivatives of order /.

(2.2.3) Ifx, = +oo, lim C(a, M) = 0 for any a €(0,1]
M-»°o

Ifx, <+oo, C(a, M) = 0 for any M 5* ax, and any a e (0,1]

(2.2.4) dC/dM <0 for M e(0, ax,) and any a e(0,1]

(2.2.5) C(a, M) is a convex function of a and M.
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Assumptions (2.2.3) are natural. (2.2.4) implies only that the cost of the excess
of loss arrangement should decrease as more of the risk is retained by the insurer.
(2.2.5) is a little more difficult to interpret but it holds in all our examples in
Section 2.3. Roughly speaking, if we regard a as fixed, (2.2.4) and (2.2.5) together
imply that as M decreases, the cost of reinsurance increases and the rate of
increase of this cost should also increase.

From assumption (2.2.2), (2.2.3) and (2.2.4) we can see that

(2.2.6) C(a, M)s=0 for any a e[0, 1] and any M3=0

with

(2.2.7) C(a, M) = 0 if and only if M > ax,.

2.3. Some Examples

In this section we discuss very briefly the assumptions of Section 2.2 when P(a, M)
is calculated according to some well known principles.

When P{a, M) is calculated according to the expected value principle, standard
deviation principle or variance principle (see, for example, GERBER (1979, p. 67)
it is not difficult to prove that C(a, M) satisfies (2.2.2), (2.2.3) and (2.2.4). If
P(a, M) is calculated according to the expected value principle it can be shown
that C{a, M) satisfies (2.2.5). Now suppose that P{a, M) is calculated according
to the standard deviation principle so that, after a little calculation,

C{a, M) =/{A,G2(a, M) + (A2-A,)H2(a, /

Where / is a positive loading factor and
I" Too "11/2

G(a,M) = \ (ax-M)2dF(x)\ ,

H(a, M) =\ (ax-M) dF(x).
J Ml a

It can be shown that given any two non-negative convex functions g\(x) and
g2{x) the function g(x) = [g2{x) + gl(x)]1/2 is still convex. It can also be shown
that H(a, M) is a convex function of (a, M) (this is equivalent to say that C(a, M)
is convex if P(a, M) is calculated according to the expected value principle).
Since A ^ A ^ O by assumption, in order to prove that C(a,M) is convex we
only have to prove that G(a, M) is convex. The convexity of G(a, M) follows
easily since

G(a, M)e<€2 fora>0, M > 0

32G(a, M)/dM2 s= 0 using the Cauchy-Schwarz inequality
and

{d2G(a, M)/dM2} • {d2G(a, M)/da2} - {d2G(a, M)/da dM}2 = 0.

The fact that C(a, M) satisfies (2.2.5) when P(a, M) is calculated according to
the variance principle follows directly from the corresponding result for the
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standard deviation principle. (Since the square of a non-negative convex function
is also convex).

3. THE PROBLEM AND ITS SOLUTION

3.1. The Problem

The problem, in broad terms, is to choose retention levels a and M which are,
in some sense, optimal for the insurer. We shall assess the effects of reinsurance
by considering moment functions of the distribution of the insurer's retained
risk. More precisely, let W(a, M) be a random variable denoting the insurer's
net (of expense and reinsurance) profit and let E[W(a, M)], V[Y(a, M)],
CV[Y(a, M)] and y(Y(a, M) be the expected net profit and the variance,
coefficient of variation and skewness coefficient of the insurer's net claims respec-
tively. Our main problem is

PROBLEM 1. Minimize y[Y{a, M)] over the set F.

Where T = {{a, M): 0«a=s 1 and M ? 0 and E[W(a, M)~]^B and

for some constants B and D. It is assumed that B and D are such that T ̂  0 .
(Note that we assume CV[Y(a, M)] and y[Y(a, M)] are zero if either a =0 or
M = 0, as well as C[ Y(a, M)] when a = 0.)

We shall show that any solution to problem 1 is a solution to problem 2 and
vice versa, where problem 2 is

PROBLEM 2. Minimize CV[Y(a, M)] over the set I\

Note that V[ Y{a, M)] = V[ W(a, M)] and y[ Y(a, M)] =-y[ W(a, M)] so that
problem 1 can be expressed entirely in terms of the insurer's net profit. This is
not the case for problem 2 since here is no simple relationship between
CV[Y(a, M)] and CV[W(a, M)].

In order to solve the above problems it will be helpful to consider the following
simpler problem:

PROBLEM 3. Minimize y[Y(a, M)] over the set IY

Where r, = {(a, M): 0=s a « 1, Ms*0, E[W{a, M)]^ B}

or equivalently (as we will see),

PROBLEM 4. Minimize CV[Y{a, M)] over the set Tu

i.e., we drop the constraint concerning the variance.

3.2. The Skewness Coefficient and the Coefficient of Variation
of the Total Net Claims

The statement and proof of the following result assume, for convenience, that
xo>0.
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RESULT 1. (i) y[Y(a, Af)] and CV[Y(a, M)] are functions of class <£, for
a, M > 0.

(ii) Both of them are strictly increasing functions of the single variable M/a
for x0 < M/ a < x, and points such that 0 < M/ a *s x0 and M/ a & x, give minimum
and maximum values respectively of the two functions over the set
{(a, M):a, M>0}.

(iii) y[Y(au Mx)]> y[Y(a2, M2)] if and only if CV[Y(au M,)]>
2, M2)].

PROOF, (i) A little calculation gives the following formulae:

(3.2.1) ? tf
(3.2.2)

(3.2.3)

where
'M/a

= \
Jo

Using integration by parts and the assumptions that F(0) = 0 and that F is
continuous, we have

'M/a

(3.2.4) r
Jofrom which the proof of (i) follows immediately,

(ii) Let z = M/a. Then we can see that

(3.2.5)

where

Jo
ak=\ (x/z)kdF(x)+l-F(z).

J

Substituting (3.2.5) into (3.2.1), (3.2.2) and (3.2.3) we see that CV[Y(a, M)] and
y[Y(a, M)] can be expressed as functions of the single variable z. We shall show
that dy[Y(z)]/dz>0, for xo<z<x,

XJA2 (x2z2-x3z)dF(x) + A,(A2-A,)/i(z)

+ (2A2-A,A2-A,A3)a
2 (xz3-xV)dF(x) 1
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where

h(z) = 2 I x(l-F{x))dx- I (x2-xz)dF(x)
Jo Jo

+ [ (1-F(x))dx- I (xz2-x3)dF(x).
Jo Jo

It is easily checked that h(0) = 0 and that dh{z)/dz5*0 so that h(z)5*0 for z =s 0.
That dy/dz is strictly positive for x o <z<x , then follows from assumptions

(2.1.1) and (2.1.2). The proof that dCV/dz>0 is similar to that given above but
is somewhat simpler and does not require assumptions (2.1.1) and (2.1.2). The
remaining part of (ii) now follows immediately and (iii) follows from (ii).

REMARKS. The equivalence of problem 1 and 2, and of problems 3 and 4,
follows from part (iii) of the above result.

A further implication of the result is that the locus of points (a, M) satisfying
the relation y[ Y(a, M)] = constant, or CV[ Y(a, M)] = constant, is a straight line
passing through the origin in the (a, M)-plane, a higher value of the constant
giving a line with steeper slope.

3.3. hocost Curves

In this section we consider the locus of points (a, M) satisfying the relation
E[W(a, M)] = B which is equivalent to

(3.3.1) P{c-e) + a(P(l-c)-\lE(X))-C(a,M) = B.

Where B is the constant appearing in the definition of the sets T and F,. (See
Section 3.1). It can be regarded as the set of points with a fixed reinsurance price,
since (3.3.1) is equivalent to

(3.3.2) (l-a)[P(\-c)-\lE(X)]+C(a,M) = P(l-e)-\lE(X)-B.

Where the left-hand side represents the total reinsurance cost of the arrangement
(a, M).

We make the following assumptions about the parameters involved in our
problems:

(3.3.3) P ( l - c ) - A , E ( X ) > 0

(3.3.4) B<P(l-e)-XlE(X)

(3.3.5) B>P(c-e)

(3.3.6) B>max{E[W(a,M)]: 0<a=s 1, 0«M«ax o } .

Assumption (3.3.3) implies that the cost of the quota-share arrangement
[(1 -a)(P( l - c) - A,E(X))] is positive for 0« a < 1 and also that the cost of this
arrangement decreases with the retention a. Then (3.3.3) together with (2.2.6)
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and (2.2.7) implies that the total reinsurance cost of the arrangement (a, M) is
non-negative, and is zero if and only if a = 1 and M 5= *,. Assumption (3.3.4) is
then natural since the right hand side represents the insurer's expected profit
after expenses but without any reinsurance. Assumptions (3.3.5) and (3.3.6) imply
that points such that a = 0 or M =s ax0 respectively are not feasible solutions to
our problems, i.e., we do not consider solutions where the whole risk is passed
to the reinsurer through the quota-share arrangement or where the excess of loss
retention is less than the smallest possible claim (net of quota-share reinsurance).

The following result discusses the shape of the isocost curves.

RESULT 2. Let

p(a, M) = E[W(a, M)]-B for any a, M > 0

A = {a: 0<a=£ 1 and there exist at least one M, M <ax{, such that p(a, M) = 0}.

Then(i) A = (a0,1].
(ii) For each aeA there is a unique M such that p(a, M) = 0 i.e., there is a

function 4> mapping A into (0, oo) such that M = <J>(a) is equivalent to p(a, M) = 0.
(iii) O(a) €<<?,.
(iv) lima^a+<f>(a) = aox,.
(v) lima^a;#'(a) = -°o.
(vi) <I>(a) is convex and is strictly convex if C(a, M) is strictly convex.

PROOF. First note that p(a, M) = 0 is equivalent to

p(a, M) = P(c-e) + a(P(l-c)-klE(X))-C(a, M)-B = 0.

(i) Let a ̂  a0. It follows from the definition of a0 and from (2.2.6) and (2.2.7)
that p(d, M)<0 for any M<ax{. Hence aiA. Now let de(a0,1]. p(d,M),
considered as a function of M, is continuous since C(a,M) is assumed con-
tinuous. Also

M -
lim p(d,M) = P(c-e) + d(P(l-c)-\lE(X))-B>0

l imp(a , M)<0 by (3.3.6).

Hence there is at least one M, M < dxu such that p(d, M) = 0.
(ii) Suppose p(a, M,) = 0 = p(a, M2) for some a, M{ and M2. Then C(a, M,) =

C(a, M2) and hence, using (2.2.4), M, = M2.
(iii) This follows from the Implicit Function theorem. See, for example,

APOSTOL (1963).
(iv) Let {an} be a sequence such that an > a0, limbec an = a0 and

limn<oo<l>(an) = fc^+oo. By continuity we have p(a0, fc) = 0, which implies that
fcs= aox, using the definitions of p and a and (2.2.6) and (2.2.7). But using part
(i) above, <£>(an)<anxl and (iv) follows.
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(v) If x{ = +00 this is obvious. If xt < +00 we have only to notice that, using
(2.2.3) and (2.2.4), both dC/da and dC/BM are zero at the point (a0, ao*i)-
Hence dp/dM is zero and dpi da is strictly positive at (a0, aoxt).

(vi) Let au a2eA and 0«£ A « 1. p(a, M) is concave since C(a, M) is convex,
so we have

Using the proof of part (i) above we have

It is clear that $ is strictly convex if the same is true for C(a, M).

3.4. The Variance as a Function of (a, M).

We shall find the following result useful when proving our main results in the
next section.

RESULT 3

(i) dV[Y(a,M)yda>OfoTX0<M/a<xu

(ii) dV[Y(a, M)]/dM>0 for x o < M / a

PROOF. We have already seen that V[Y(a, M)]e c€x for a, M > 0 (see proof
of result l(i)). Differentiating (3.2.1) we have:

CM/a

dV/da = 2Xxa x2 dF(x)
Jo

+ 2(A2-A,) xdF(x) axdF{x) + M{\-F{M/a))\

I" CM/a "I

dV/dM = 2\i(l-F(M/a))\ MF(M/a)-\ axdF(x)\

T j-M/a -I

+ 2A2(1 -F{M/a))\ I axdF(x) + M(\-F(M/a))\

(ii) follows directly and (i) follows from (2.1.1).

3.5. The Solution

In this section we solve our problems in general terms.
RESULT 4. (i) The non-negative constraints are redundant in our problems,

(ii) The constraint E[W(a, M)] s=fl is active in the optimum of our problems,
i.e., in the optimum of our problems this constraint holds as an equality.

https://doi.org/10.2143/AST.15.1.2015034 Published online by Cambridge University Press

https://doi.org/10.2143/AST.15.1.2015034


58 CENTENO

PROOF, (i) Follows directly from assumptions (3.3.5) and (3.3.6).
(ii) We shall prove the result for problem 1, and hence problem 2. The proof

for problems 3 and 4 is similar but simpler. Let (au M, ) er be such that
E[ W(a,, M,)] > B. From the proof of result 2 we know that there exists M*<M,
where a 1 x 0 <M*<a,x 1 and E\_W(au M*)] = B. Using result 3(ii) and result l(ii)
we see that

and

r [y (a 1 ,M*) ]<y[y (a , ,M, ) ] .

Let us now consider the solution to problem 3 (and hence to problem 4). We
know that the solution lies on the isocost curve M = <t>(a) and information about
the shape of this curve is contained in result 2. Figure 1 gives three examples of

Af

FIGURE 1. Isocost curves in the (a, M)-plane.

isocost curves, labelled Iu I2 and 73. We know that each curve has slope -oo at
the point (a0, aoxt) and we have assumed x, is finite for convenience. We also
know that each curve is convex although not necessarily strictly convex. From
result 1 we know that straight lines through the origin in fig. 1 represent points
of constant skewness, the larger the slope the higher the skewness. Hence it is
clear that the solution to problem 3 is the point, or set of points, where the
straight line through the origin with the smallest slope intersects the isocost curve.
If the isocost curve is decreasing, as in /, , this point will be (1, $(1)), i.e., pure
excess of loss reinsurance will be optimal. (Note that LEMAIRE, REINHARD and
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VINCKE (1981), by making assumptions about the calculation of the reinsurance
premiums different to ours, were able to assume that the isocost curves were
decreasing and hence that, in terms of our problem, excess of loss reinsurance
was optimal.) Even if the isocost curve is not decreasing, as in J2, the point
(1, <!>( 1)) may still be the solution to problem 3. Isocost curve I3 shows a case
where the solution is not (1, 3>(1)).

It is clear that in general the solution to problem 3 will be (1, $(1)) unless we
can find a point on the isocost curve such that the gradient of the isocost curve
at that point equals the slope of the line joining that point to the origin. Such a
point may not be unique since the isocost curve may not be strictly convex.

Summarizing we have the following result:

RESULT 5. Let

H = {(a, 4>(a)): ao< a « 1, d®(a)/da = <J>(a)/a}.

Then
(i) if H is empty the solution to problems 3 and 4 is the point (1,4>(1)).
(ii) if H is not empty, all the points in H are solutions to problems 3 and 4.

REMARKS, (i) We have given a geometrical proof of result 5 but it is possible
to give a more formal proof using the Kuhn-Tucker conditions and the facts that
E[W(a, M)] is a concave function and y[Y(a, M)], or CV[Y(a, M)], is a
quasi-convex function of (a, M). See ARROW and ENTHOVEN (1961).

(ii) Using the definition of <fr the set H can be defined as

(3.5.1) H = {(a,M):a^\ and E[W(a, M)] = B

and B + P(e-c)+C(a, M)-a dC/da-M dC/dM = 0}.

We are now in a position to solve problems 1 and 2.

RESULT 6. Let

a, = inf {a: (a, <I>(a)) is a solution to problem 3}.

Then
(i) if VtY^H^a,))]*? D, (a1,<I>(a1)) is a solution of problem 1 and every

solution of problem 1 is a solution of problem 3.
(ii) if V[Y(au «l>(a1))]> D the solution to problem 1 is (a0,4>(a0)) where

a° = sup{a: a=s 1, E[W(a, M)] = B and V[Y(a, M)] = D}.

In this case a°<al.

PROOF, (i) If (a,,O(a,)) is a solution of problem 3 and V[Y(au <f>(a,))]=£D
then clearly (a,, &(ai)) is a solution of problem 1. If (a, <J>(a)) is another solution
to problem 1 we must have y[Y(a,3>(a))] = >y[Y(a1,<l>(ai))] and so (a,<l>(a))
solves problem 3.
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(ii) Using geometrical arguments and result 3, it is clear that for any a such
that a,=sa=£l we have, assuming V[ Y(a,, $(a,))]> D, <£(a,)=£<I>(a) and D<
V[Y(au$(aM*i V[Y(a, 3>(a))]. This shows that a°<ax.

On the other hand, y[Y(a, $(0))] is a strictly decreasing function of a for
ao<a< au as is clear when we consider the geometrical proof of result 5.

So for any point (a, <I>(a)) such that ao< a < a0 we will have y[Y(a, 4>(a))]>
y[Y(a°,4>(a0))] and for any point such that a°<a=£l we will have
V[y(a, 4>(a))]> D, otherwise these woull be a contradiction to the definition
of a0 or to the mean value theorem.

4. THE SOLUTION IN SOME SPECIAL CASES

In this section we give, briefly, the solution to problems 3 and 4 when the excess
of loss reinsurance premium is calculated according to the expected value prin-
ciple, the standard deviation principle or the variance principle.

RESULT 7. (i) If the excess of loss reinsurance premium is calculated using
the expected value principle or standard deviation principle, the solution to
Problems 3 and 4 is (1, <&(1)), i.e., a pure excess of loss arrangement.

(ii) If the excess of loss reinsurance premium is calculated using the variance
principle, the solution to problem 3 and 4 is (a, 4>(a)) where

, 1}.

PROOF, (i) The proof is immediate since for both cases

(4.1) B + P(e-c) + C(a,M)-a M—=B + P(e-c)
da dm

which is positive by assumption (3.3.5) and so the set H is always empty (although
the relevantisocost curve is not necessarily decreasing). The result follows from
result 5(i).

(ii) In this case the left-hand side of (4.1) is equal to

P(e-c)-C{a,M).

Hence the set H is

and the result follows from result 5.

5. DISCUSSION

We have assumed throughout Sections 2, 3 and 4 that assumptions (2.1.1) and
(2.1.2) hold for the claim number distribution TV. It is clear that all our results
relating to the coefficient of variation, in particular the solutions to problem 2
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and 4, are valid without making assumption (2.1.2), since this assumption was
used only in the proof of result l(ii), and then only in relation to the skewness
coefficient.

Assumption (2.1.1) was used in relation to the coefficient of variation to show
that C(a, M), and hence the isocost curve M = 3>(a), is convex when the excess
of loss reinsurance premium is calculated according to the standard deviation
principle or the variance principle (see Section 2.3). If (2.1.1) does not hold it
is not hard to find examples where P(a, M) is calculated according to either the
standard deviation principle or the variance principle and where the isocost curve
is no longer convex. (One particular example assumes N to be a degenerate
random variable always equal to 1, which is equivalent to assuming a combination
of quota-share and stop-loss reinsurance). However if (2.1.1) does not hold we
can still state result 7(i), relating to the coefficient of variation, since this result
is an immediate consequence of result 5(i), and it is easy to see that this result
is independent of the convexity of the isocost curves. Assumption,(2.1.1) was
also used for the proof of result 3(i), which was later applied in the proof of
result 6(ii). It is not difficult to see that if (2.1.1) does not hold, but ax = 1 in
result 6, this result is still true. So we can conclude that when P(a, M) is calculated
using the expected value or standard deviation principle, the main results relating
to the coefficient of variation [i.e., result 7(i) and result 6], hold without the
assumption (2.1.1) being fulfilled.

When P(a, M) is calculated according to the variance principle the proofs of
Results 5(ii), 6(ii) and 7(ii), relating to the coefficient of variation, are no longer
valid without (2.1.1), although it may be possible to prove some of these results
without this assumption.

Furthermore (2.1.1) is not a necessary condition for the proof of result 1 relating
the skewness coefficient, since this result still holds when AT is a degenerate
random variable and when the distribution function of the individual claim
amounts is absolutely continuous [see LEMAIRE, REINHARD and VINCKE (1981)].
In this particular case all the comments relating to the coefficient of variation
apply to the skewness coefficient.

We have already mentioned in Section 2.1 that both (2.1.1) and (2.1.2) hold
if JV has a Poisson or a Negative Binomial distribution. It is also worth mentioning
that (2.1.1), but not (2.1.2), holds for any mixed Poisson distribution and that
(2.1.2), but not (2.1.1), holds if JV has a binomial distribution or is a degenerate
random variable.

6. AN EXAMPLE

In this section we discuss a numerical example that illustrates the results in the
previous sections.

We assume the gross aggregate claims are generated by a compound negative
binomial distribution with

A, = 10; A2 = 20; A3 = 60
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and

F(x)

CENTENO

_fO if
" l l - x - 4 ifi fx> l

so that individual claims have a Pareto distribution. We assume

P = 24; = 0.35; B=\.l

and the premium loading factor, f, used in the calculation of the excess of loss
reinsurance premium is 0.8, 0.45 and 0.4 when the premium calculation used is
the expected value principle, the standard deviation principle and the variance
principle respectively. Table 1 gives the point (a, M) which is the solution to
problems 1 and 2 for various values of c and D. Note that from table 1, we can
see that when c - 0.4 the isocost curves for the three premium calculation prin-
ciples are not decreasing functions with a.

TABLE 1

Excess of loss premium
calculation principle

Expected value principle

Standard deviaton
principle

Variance principle

c

0.4

0.3

0.4

0.3

0.4

0.3

D

33
27

33
27

33
27

33
27

33
27

33
33

(1; 1.676)
(0.908; 1.57)

(1; 1.676)
(0.863; 2.53)

(1; 1.497)
(0.921; 1.48)

(1; 1.497)
(0.846; 18.6)

(0.9375; 1.47)
(0.926; 1.46)

(1; 1.575)
(0.854; 3.42)

V[W(a, M)]

32.38
27

32.38
27

30.77
27

30.77
27

27.7
27

31.54
27

y[Y(a,M)-\

0.6763
0.677

0.6763
0.6886

0.6743
0.6755

0.6743
0.7153

0.6751
0.6751

0.6752
0.6952

CV[(fl, M)]

0.4507
0.4511

0.4507
0.4562

0.4495
0.4502

0.4495
0.4609

0.4500
0.4500

0.4500
0.4580

Let us now consider in more detail the case where c = .3 and the standard
deviation principle is used for the excess of loss reinsurance premium. Figure 2
shows the variance and the skewness coefficient for seven different isocost curves,
starting with B = 32/15 and decreasing B in steps of 4/30 until we get B = 4/3.
Points with the same subscript correspond to points on the same isocost curve
and the smaller the subscript, the higher the value of B. The points Ix, I2, •.., /7

correspond to pure excess of loss treaties and these points together with the
points on the solid lines represent solutions of Problem 1 for some value of D.
The dotted lines correspond to points that are never solutions to problem 1,
although they are on the isocost curved considered. This is because, for example,
points between J5 and I'$ have both greater skewness and greater variance than Is.
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y(Y(a,M))
I' / ' I ' / ' T'
' 1 '6 *5 *4 '}

•+-
15 20 25 30 35 V(Y(a,M))

FIGURE 2. lsocost curves in the (V, y)-plane.
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