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Abstract
This paper considers the first passage times to constant boundaries and the two-sided exit problem for Lévy process
with a characteristic exponent in which at least one of the two jumps having rational Laplace transforms. The joint
distribution of the first passage times and undershoot/overshoot are obtained. The processes recover many models
that have appeared in the literature such as the compound Poisson risk models, the perturbed compound Poisson
risk models, and their dual ones. As applications, we obtain the solutions for popular path-dependent options such
as lookback and barrier options in terms of Laplace transforms.

1. Introduction

In this paper, we suppose that (Ω,F ,F = {Ft : t ≥ 0}, P) is a filtered probability space with F =

{Ft : t ≥ 0} satisfies the usual conditions. On this space, we define a real valued Lévy process X =

(Xt)t≥0. For x ∈ R, let us denote by Px the law of X when it starts at x and for simplicity we write
{Px : x ∈ R} probabilities such that under Px, X (0) = x with probability one and for a special case
P = P0. Furthermore, we shall denote the expectation operator associated to Px and P by Ex and E. For
u ∈ R, the Lévy-Khintchine formula states that E(eiuXt ) = etΨ(u) , where the characteristic exponent of
the process is given as:

Ψ(u) = i`u − 1
2
f2u2 +

∫
R
(eiux − 1 − iux1{ |x | ≤1})Π(dx), (1.1)

here ` ∈ R, f > 0, and Π is called the Lévy measure concentrated on R \ {0} satisfying:∫ ∞

−∞
(1 ∧ x2)Π(dx) < ∞.

The triple (`,f,Π) is known as the generating triplet of X. It will be useful to refer to Bertoin [8], Sato
[42], and Kyprianou [32, 33] for more information account on Lévy processes. It is usually to assume
that the process does not degenerate, i.e. f ≠ 0 or Π ≠ 0.

Given two constant barriers h and H (h<H), let g+H and g−h denote the first upwards passage time
over H and the first downwards passage time under h, respectively, as follows:

g+H := inf{t ≥ 0 : X (t) ≥ H}, g−h := inf{t ≥ 0 : X (t) ≤ h}.

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0269964824000032 Published online by Cambridge University Press

https://orcid.org/0009-0009-0683-8334
mailto:ccyin@qfnu.edu.cn
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/S0269964824000032


Probability in the Engineering and Informational Sciences 645

The overshoot and undershoot through the boundaries H and h, are given by TH = X (g+H) − H and
Th = h − X (g−h ), respectively.

We introduce the first exit time g of {X (t)} to the interval (h, H), i.e.

g = inf{t ≥ 0 : X (t) ∉ (h, H)}.

Clearly, g = g−h ∧ g+H . Note that it may either hit h (H) or jump over h (H) when crossing h (H) from
above (below) depending on the components of the process. Further, we use

Y = (X (g) − H)1AH + (−X (g) + h)1Ah

that is a nonnegative random variable, to model the size of the jump of the process cross the boundary
at the first-exit time from the interval (h, H), where

AH = {X (g) ≥ H}, Ah = {X (g) ≤ h}.

Throughout this paper, we define an exponential random variable by e(q) with parameter q> 0, which
is independent with X, and for the special case of q= 0, denote e(0) = ∞. Moreover, for q> 0, the
running supremum and running infimum of X killed at rate q is expressed by:

Xe(q) := sup
0≤u≤e(q)

Xu, Xe(q) := inf
0≤u≤e(q)

Xu.

When q → 0, the random variables (possibly degenerated) X∞ and X∞ can arrive at the supremum and
infimum of the processes, respectively. In regard to the case in which q= 0, it is always assumed that
E(X1) < 0, therefore, the process tends to −∞. In other words, when P(X∞ = −∞) = 1, the random
variable X∞ is suitable. Their characteristic functions are given by:

Ψ+(u) = E(eiuXe(q) ), Ψ− (u) = E(eiuXe(q) ).

It follows from Tauberian theorem that Ψ+(−∞) = P(Xe(q) = 0) and Ψ− (∞) = P(Xe(q) = 0). The
Wiener-Hopf factorization states that (see Lewis and Mordecki [37]) Xe(q) − Xe(q) is independent of
Xe(q) and Xe(q) − Xe(q) is independent of Xe(q) . Moreover,

Xe(q) − Xe(q) =
d −Xe(q) , Xe(q) − Xe(q) =

d Xe(q) .

As a consequence, for u ∈ R,

E(exp(iuXe(q) )) = q(q − Ψ(u))−1 = Ψ+(u)Ψ− (u).

The explicit integral expressions for the Wiener–Hopf factors Ψ+ and Ψ− are rather complex, if needed,
please refer to Lewis and Mordecki [37]. It is worth noting that the Wiener–Hopf factors can be deter-
mined clearly in some cases. For example, when Ψ(u) is a rational function. In this case, Kuznetsov [29]
pointed out q(q − Ψ(u))−1 is also a rational function, and thus it has a finite number of zeros/poles in
the complex plane C. Since Xe(q) (Xe(q) ) is positive (negative) and infinitely divisible, Ψ+ (respectively,
Ψ−) admits the analytic continuation into the upper half-plane C+ = {z ∈ C : Im(z) > 0} (respectively,
lower half-plane C− = {z ∈ C : Im(z) < 0}) and does not vanish there. Therefore, one can uniquely
identify both Ψ+ and Ψ− as a rational function, which has values one at z = 0 and whose poles/zeros
coincide with poles/zeros of q(q − Ψ(u))−1 in C+ and C− , respectively.

The integral transforms of the joint distribution of {g+H , TH} and {g−h , Th} were obtained by Pehcerskii
and Rogozin [41], one can find a simple proof in Kadankov and Kadankova [22] and Alili and
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Kyprianou [3]. According to those joint distributions of one-boundary functionals, Kadankov and
Kadankova [22] determined the Laplace transform of the joint distribution of {g, Y}. Closed form
expressions are obtained for a particular class of Lévy processes, see for example, Kou and Wang
[27] considered a double exponential jump-diffusion process; Kuznetsov, Kyprianou and Pardo [30]
for Meromorphic Lévy Process; Cai [9] for a hyper-exponential jump diffusion process; Kadankova
and Veraverbeke [23], Chi [13] and Chi and Lin [14] for the two-sided jump-diffusion process with an
exponential component; Villarroel and Vega [44] for a compound renewal process. In the applied proba-
bility, the passage time problems for Lévy processes have also been studied, related to theory theories of
insurance risks, queues, mathematical finance, dams, etc. For instance, in the theory of actuarial math-
ematics, the problem of first exit from a half-line concerning the classical ruin problem, the expected
discounted penalty function, and the expected total discounted dividends until ruin, have attracted much
attention and many research results appeared. See e.g., Avram, Palmowski & Pistorius [7], Klüppelberg
et al. [25], Mordecki [40], Xing et al. [46], Cai et al. [10], Zhang et al. [49], Chi [13], Chi and Lin [14],
Yin et al. [47], Hu et al. [20]. In the context of mathematical finance, the first passage time is crucial
for the pricing of many path-dependent options, American-type and Russian-type options, such as Kou
[26], Kou and Wang ([27], [28]), Asmussen et al. [6], Alili and Kyprianou [3], Cai et al. [10], Cai and
Kou [11], Jeannin and Pistorius [21], Kim et al. [24] and together with certain credit risk models, see,
for example, Hilberink and Rogers [19], Le Courtois and Quittard-Pinon [34], Dong et al. [16], and
Leippold and Vasiljevic [35]. Cai and Sun [12] investigate pricing problems of both infinite- and finite-
maturity stock loans under a hyper-exponential jump diffusion model. Many optimal stopping strategies
have also been demonstrated to come down to first passage problems for jump diffusion processes, see
e.g. Mordecki [39], and Alvarez et al. [4]. Many of these have been established for some specific sub-
classes of Lévy processes, but very little is known in the general case. For the passage problem, we
generalize the results of Kou and Wang [27], where the double exponential jump-diffusion process was
considered. In a recent paper by Ai et al. [1] further results were obtained, in particular for a refracted
jump diffusion process with hyper-exponential jumps. It can only be solved for certain kinds of jump
distributions. In this paper, we study a more complex Lévy process with a characteristic exponent of
the form (1.1) in which at least one of the two jumps having rational Laplace or Fourier transforms.

The aim of this paper is two-fold. First, motivated by Lewis and Mordecki [36, 37], we study explicit
discounted densities of overshoot and undershoot to the one-sided and two-sided first-exit problems for
the Lévy process with a characteristic exponent of the form (1.1) in which at least one of the two jumps
having rational Laplace or Fourier transforms. Second, we obtain analytical solutions to the pricing
problem of one barrier options and lookback options.

The rest of the paper is organized as follows. In Sections 2 and 3, we consider one-sided passage
problems from below or above and the two-sided exit problems from a finite interval for the Lévy
process with a characteristic exponent of the form (1.1). Section 4 gives the analytical solutions for the
pricing problem of one barrier options and lookback options.

2. The overshoot and undershoot at first passage

In this section, we study the overshoot and undershoot of a Lévy process at first passage time, based on
the assumption in Lewis and Mordecki [37]. Let X be a Lévy process and its jump measure is given by:

Π(dx) =
{

c+(dx) = _p(x)dx, if x > 0,
c− (dx), if x < 0,

(2.1)

where c− is an arbitrary Lévy measure supported on (−∞, 0) characterizing the behavior of nega-
tive jumps of the process. The positive jumps of the process have finite intensity _ > 0 and magnitude
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distributed on the basis of the probability density given by:

p(x) =
a∑

k=1

nk∑
j=1

ckj
Uk

jxj−1

(j − 1)!e
−Ukx, x > 0, (2.2)

where the parameters ckj and 0 < U1 ≤ <(U2) ≤ · · · ≤ <(Ua) are constants, <(Uk) is the real part of
Uk , k = 2, · · · , a. This is the general form of the density of a random variable whose Fourier transform
is a rational function:

p̂(u) =
∫ ∞

0
eiuxp(x)dx =

a∑
k=1

nk∑
j=1

ckj

(
iUk

u + iUk

) j
.

We denote the characteristic exponent of X by:

k1(u) := log E [exp(iuX1)] = k−
1 (u) + _(p̂(u) − 1),

where

k−
1 (u) = i`u − 1

2
f2u2 +

∫ 0

−∞
(eiux − 1 − iux1{ |x | ≤1})c− (dx),

is the characteristic exponent of a Lévy process X− that has no positive jumps.
As pointed out by Lewis and Mordecki [37], the characteristic exponent k1(u) extend analytically to

the complex atrip −U < Im(z) < 0, and continuous in −U < Im(z) ≤ 0, under the formula:

k1(z) = k−
1 (z) + _(p̂(z) − 1),

that satisfying log E [exp(izX1)] = k1 (z). Moreover, k1(z) is a meromorphic function in the set Im(u) <
0, with poles −iU1, · · · ,−iUa and respective multiplicities n1, · · · , na . The total pole count is n :=
n1 + · · · + na .

Moreover, based on the assumption in Lewis and Mordecki [36], we introduce a Lévy process X′

whose jump measure is given by:

Π′ (dx) =
{

c′+(dx), if x > 0,
c′− (dx) = _′q(x)dx, if x < 0,

(2.3)

where c′+ is an arbitrary Lévy measure supported on (0,∞) characterizing the behavior of positive
jumps of the process, the negative jumps of the process have finite intensity _′ > 0 and magnitude
distributed on the basis of the probability density given by:

q(x) =
a∑

k=1

nk∑
j=1

ckj
Uk

j (−x)j−1

(j − 1)! eUkx, x < 0, (2.4)

where ckj and 0 < U1 ≤ <(U2) ≤ · · · ≤ <(Ua) are constants, <(Uk) is the real part of Uk , k =

2, · · · , a. This is the general form of the density of a random variable whose Fourier transform is a

https://doi.org/10.1017/S0269964824000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000032


648 H. Gao and C. Yin

rational function:

q̂(u) =
∫ 0

−∞
eiuxq(x)dx =

a∑
k=1

nk∑
j=1

ckj

(
−iUk

u − iUk

) j
.

We denote the characteristic exponent of X by:

k2(u) := log E [exp(iuX1)] = k+
2 (u) + _(q̂(u) − 1),

where

k+
2 (u) = −i`u − 1

2
f2u2 +

∫ ∞

0
(eiux − 1 − iux1{ |x | ≤1})c+(dx),

is the characteristic exponent of a Lévy process X+ that has no negative jumps. Observe that k2(u)
can analytic continuation into the strip 0 ≤ Im(u) < U1, and more generally, it can be continued to a
meromorphic function k2 (z) defined in the set Im(z) > 0, with the poles iU1, · · · , iUa and respective
multiplicities n1, · · · , na .

In this section, we obtain a fluctuation identity for overshoot up a given level and undershoot below
a given level of a Lévy process. To a fixed level a> 0, we define the first strict passage time g+a up a by:

g+a = inf{t > 0 : Xt ≥ a},

and the overshoot Xg+a − a. The first passage time g−−a below −a by

g−−a = inf{t > 0 : Xt < −a},

and define the undershoot by: −Xg+−a − a. We shall only provide proof about the fluctuation identity
for overshoot up a given level of a Lévy process because the fluctuation identity for undershoot can be
obtained by using −X in place of X.

Theorem 2.1. (i) For q, s > 0, we have:

E
(
e−qg+a −s(Xg+a −a)1{g+a <∞}

)
=

N∑
k=1

mk∑
j=1

dj,ke−Vka

(j − 1)!

j∑
l=1

(aVk)l−1Δk,j,l (s); (2.5)

(ii) For y ≥ 0, we have:

E
(
e−qg+a 1{Xg+a −a∈dy}

)
= X0(z)

N∑
k=1

mk∑
j=1

fk0
dj,ke−Vka

(j − 1)! (aVk)j−1dy

+
N∑

k=1

mk∑
j=1

dj,ke−Vka

(j − 1)!

j∑
l=1

(aVk)l−1f(k,j,l)dy, (2.6)

where X0 (x) is the Dirac delta at x= 0, V1, · · · , VN are the roots of k1(z) = q (see Lewis and Mordecki
[37] (Lemma 1.1)) and the coefficients d0, d1,1 and dj,k are given by:

d0 =

{
0, if − X− is a not subordinator,∏N

j=1 V
mj
j

∏a
k=1 U

−nk
k , if − X− is a subordinator,

(2.7)
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d1,1 =

a∏
j=1

(
Uj − V1

Uj

)nj N∏
k=2

(
Vk

Vk − V1

)mk

, (2.8)

and for k = 2, · · · , N and j = 0, 1, · · · , mk − 1,

dk,mk−j =
1

j!Vmk−j
k

[
mj

muj
(
q+(−u) (u + Vk)mk

) ]
|u=−Vk (2.9)

where

q+(−u) := E [e−uXe(q) ] =
a∏

k=1

(
u + Uk

Uk

)nk N∏
j=1

(
Vj

u + Vj

)mj

. (2.10)

Δk,j,l (s) =
ΠN

i=1,i≠k (1 + s
Vi
)mi (1 + s

Vk
)mk−j+l−1

Πa
r=1 (1 + s

Ur
)nr

, (2.11)

fk0 =

{
0, if − X− is a subordinator,
Vk

∏a
i=1 U

ni
i /

∏N
j=1 V

mj
j , if − X− is not a subordinator,

(2.12)

f(k,j,l) =
a∑

k1=1

nk1∑
j1=1

f (k,j,l)
k1,j1

yj1−1e−Uk1 y

(j1 − 1)! .

Here

f (k,j,l)
k1,nk1−j1

=
1

j1!U
nk1−j1
k1

[ mj1

msj1

(1 + s
Uk1

)nk1

(1 + s
Vk
)j−l+1q+(−s)

] ��
s=−Uk1

, (2.13)

k1 = 1, · · · , a, j1 = 0, 1, · · · , nk1 .

Proof. (i). Using (2.6) in Lewis and Mordecki [37], we get:

E(e−s(Xe(q)−a)1{Xe(q)>a}) =

∫ ∞

a
e−s(y−a) fXe(q)

(y)dy

=

N∑
k=1

mk∑
j=1

dj,kV
j
ke

−Vka

(j − 1)!

j∑
l=1

al−1

(s + Vk)j−l+1 ,

this, together with (2.2) in Lewis and Mordecki [37], yields:

E(e−s(Xe(q)−a)1{Xe(q)>a})

E(e−sXe(q) )
=

N∑
k=1

mk∑
j=1

dj,ke−Vka

(j − 1)!

j∑
l=1

(aVk)l−1Δk,j,l (s), (2.14)

where Δk,j,l (s) is given by (2.11). The result (2.5) follows from the following well-known formula:

E
(
e−qg+a −s(Xg+a −a)1{g+a <∞}

)
=

E(e−s(Xe(q)−a)1{Xe(q) ≥a})

E(e−sXe(q) )
, (2.15)

which is due to Pecherskii and Rogozin [41], see also Kadankov and Kadankova [22] and Alili and
Kyprianou [3] for a simple proof.
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(ii). By the fractional expansion,

Δk,j,l (s) =
a∑

k1=1

nk1∑
j1=0

f (k,j,l)
k1,j1

(
1 + s

Uk1

)−j1
, (2.16)

where
a∑

k1=1
f (k,j,l)
k1,0 =


0, m = n,
Vk

∏a
i=1 U

ni
i /

∏N
j=1 V

mj
j , m = n + 1, l = j,

0, m = n + 1, l ≠ j,
(2.17)

and
f (k,j,l)
k1,nk1−j1

=
1

j1!U
nk1−j1
k1

[ mj1

msj1

(
Δk,j,l (s) (1 + s

Uk1

)nk1

) ] ��
s=−Uk1

, (2.18)

k1 = 1, · · · , a, j1 = 0, 1, · · · , nk1 .

Substituting (2.16)-(2.18) into (2.5), we can obtain (2.6) immediately by inverting it on s. This ends
the proof of Theorem 2.1. �

Remark 2.2. The class of rational type densities of form (2.2) are a wide class of probability densities,
including exponential, combinations and mixtures of exponentials, Erlang and Cox distributions and
phase type distributions; See Asmussen and Albrecher [5], Yin et al. [47], and Yin et al. [48].

Corollary 2.3. Assume the process X = {Xt}t≥0 has the Lévy triplet (`,f2,Π) with Laplace exponent
q1, where Π is given by (2.1) with p is a combination of a exponential distributions

p(x) =
a∑

k=1
bkVke−Vkx, x > 0,

for some 0 < V1 < · · · Va < ∞ and the b1 + · · · + ba = 1. This is different from a mixture because some
of the bk values can be negative so long as p(x) ≥ 0. Then

(i) for q, s > 0,

E
(
e−qg+a −s(Xg+a −a)1{g+a <∞})

)
=

J∑
k=1

Bk

∏J
i=1,i≠k (1 + s

ri
)∏a

i=1(1 + s
Vi
) e−rka, (2.19)

(ii) for q > 0, y ≥ 0,

E
(
e−qg+a 1{Xg+a −a∈dy}

)
=

J∑
k=1

Bk

(
Ak0X0(y) +

a∑
l=1

AklVle−Vly

)
e−rkady,

(iii) for q> 0,

E
(
e−qg+a 1{Xg+a =a}

)
=

J∑
k=1

BkAk0e−rka,

(iv) for q> 0,

E
(
e−qg+a 1{Xg+a >a}

)
=

J∑
k=1

Bk

(
a∑

l=1
Akl

)
e−rka =

J∑
k=1

Bk (1 − Ak0) e−rka,

where r1, · · · , rJ are the positive roots of the equation q1 (r) = q, and

J =

{
a + 1, f > 0, or f = 0 and ` > 0,
a, f = 0 and ` ≤ 0,
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Bj =

∏a
k=1(1 − rj

Vk
)∏J

k=1,k≠j (1 − rj
rk
)
, j = 1, · · · , J,

Ak0 =

{ ∏a
i=1 Vi∏J

i=1,i≠k ri
, f > 0, or f = 0 and ` > 0,

0, f = 0 and ` ≤ 0,

Akl =

∏J
i=1,i≠k (1 − Vl/ri)∏a
i=1,i≠l (1 − Vl/Vi)

, l = 1, 2, · · · , a.

Remark 2.4. The result (2.19) extended the result of Theorem 3.3 in Cai and Kou [11] in which only
the system of linear equations is obtained for a mixed-exponential jump diffusion.

Example 2.5. Letting a = 1 in Corollary 2.3, when f > 0 or f = 0 and ` > 0, we recover the result (3.1)-
(3.3) and the result of Corollary 3.3 in Kou and Wang [27], and (3.3) in Chi and Lin [13] (see also Yin
et al. [48]):

E(e−Xg+a 1{Xg+a =a}) =
V1 − r1

r2 − r1
e−r1a + r2 − V1

r2 − r1
e−r2a,

E
(
e−Xg+a 1{X (g+a )−a∈dy}

)
= e−V1y (V1 − r1) (r2 − V1)

(r2 − r1)
(e−r1a − e−r2a)dy, y > 0,

E(e−Xg+a ) = r2(V1 − r1)
V1(r2 − r1)

e−r1a + r1(r2 − V1)
V1(r2 − r1)

e−r2a,

E
(
e−Xg+a −s(X (g+a )−a)1{g+a <∞}

)
=

(r2 + s) (V1 − r1)
(V1 + s) (r2 − r1)

e−r1a + (r1 + s) (r2 − V1)
(V1 + s) (r2 − r1)

e−r2a,

where 0 < r1 < V1 < r2 < ∞.
When f = 0 and ` ≤ 0, we have:

E(e−Xg+a ) = E
(
e−Xg+a 1{X (g+a )−a>0}

)
=

V1 − r1

V1
e−r1a,

E
(
e−Xg+a −s(X (g+a )−a)1{g+a <∞}

)
=

V1 − r1

V1 + s
e−r1a,

E
(
e−Xg+a 1{X (g+a )−a>l}

)
= e−V1l V1 − r1

V1
e−r1a, l ≥ 0,

where 0 < r1 < V1 < ∞.

Theorem 2.6. The (generalized) probability density function of Xe(q) is given by:

fXe(q) (y) = d0X0(y) + d1,1V1eV1y +
N∑

k=2

mk∑
j=1

dj,k (Vk)j (−y)j−1

(j − 1)! exp(Vky), y ≤ 0, (2.20)

where X0(y) is the Dirac delta at y= 0, V1, · · · , VN are the roots ofk2 (z)−q = 0 (see Lewis and Mordecki
[36] (Lemma 1.2)) and d0, d1,1, · · · , dj,k are given in Theorem 2.1.
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Theorem 2.7. (i) For q, s > 0, we have:

E
(
e−qg−

−a−s(−Xg−−a−a)1{g−
−a<∞})

)
=

N∑
k=1

mk∑
j=1

dj,ke−Vka

(j − 1)!

j∑
l=1

(aVk)l−1Δk,j,l (s); (2.21)

(ii) For q > 0, y ≥ 0, we have:

E
(
e−qg−

−a1{−Xg−−a−a∈dy}
)

= X0 (y)
N∑

k=1

mk∑
j=1

fk0
dj,ke−Vka

(j − 1)! (aVk)j−1dy

+
N∑

k=1

mk∑
j=1

dj,ke−Vka

(j − 1)!

j∑
l=1

(aVk)l−1f(k,j,l)dy, (2.22)

where

Δk,j,l (s) =
ΠN

i=1,i≠k (1 + s
Vi
)mi (1 + s

Vk
)mk−j+l−1

Πa
r=1(1 + s

Ur
)nr

, (2.23)

fk0 =

{
0, if X+ is a subordinator,
Vk

∏a
i=1 U

ni
i /

∏N
j=1 V

mj
j , if X+ is not a subordinator,

(2.24)

f(k,j,l) =
a∑

k1=1

nk1∑
j1=1

f (k,j,l)
k1,j1

yj1−1e−Uk1 y

(j1 − 1)! .

Here

f (k,j,l)
k1,nk1−j1

=
1

j1!U
nk1−j1
k1

[ mj1

msj1

(1 + s
Uk1

)nk1

(1 + s
Vk
)j−l+1q+(−s)

] ��
s=−Uk1

, (2.25)

k1 = 1, · · · , a, j1 = 0, 1, · · · , nk1 .

Remark 2.8. The similar results as (2.20) and (2.21) for a general phase-type Lévy process are also
obtained in Asmussen et al. [6] and Alili and Kyprianou [3].

The following results are generalized the corresponding results in Yin et al. [48].

Corollary 2.9. Assume the process X = {Xt}t≥0 has the Lévy triplet (−`,f2,Π) with Laplace exponent
q2, where Π is given by (1.1) with q is a combination of a exponential distributions:

q(x) =
a∑

k=1
bkVkeVkx, x < 0,

for some 0 < V1 < · · · Va < ∞ and b1 + · · · + ba = 1. Then
(i) for q, s > 0,

E
(
e−qg−

−a−s(−Xg−−a−a)1{g−
−a<∞})

)
=

J∑
k=1

Bk

∏J
i=1,i≠k (1 + s

ri
)∏a

i=1(1 + s
Vi
) e−rka, (2.26)

(ii) for q > 0, y ≥ 0,

E
(
e−qg−

−a1{−Xg−−a−a∈dy}
)
=

J∑
k=1

Bk

(
Ak0X0(y) +

a∑
l=1

AklVle−Vly

)
e−rkady, (2.27)
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(iii) for q> 0,

E
(
e−qg−

−a1{Xg−−a=−a}
)
=

J∑
k=1

BkAk0e−rka,

(iv) for q> 0,

E
(
e−qg−

−a1{Xg−−a<−a}
)
=

J∑
k=1

Bk

(
a∑

l=1
Akl

)
e−rka =

J∑
k=1

Bk (1 − Ak0) e−rka,

where −r1, · · · ,−rJ are the negative roots of the equation q2(r) = q, and

J =

{
a + 1, f > 0, or f = 0 and ` > 0,
a, f = 0 and ` ≤ 0,

Bj =

∏a
k=1(1 − rj

Vk
)∏J

k=1,k≠j (1 − rj
rk
)
, j = 1, · · · , J,

Ak0 =

{ ∏a
i=1 Vi∏J

i=1,i≠k ri
, f > 0, or f = 0 and ` > 0,

0, f = 0 and ` ≤ 0,

Akl =

∏J
i=1,i≠k (1 − Vl/ri)∏a
i=1,i≠l (1 − Vl/Vi)

, l = 1, 2, · · · , a.

Remark 2.10. The result (2.27) extended the results (3.2) and (9.3) in Albrecher, Gerber and Yang [2]
in which only for special c+ is considered. By (iii) and (iv), we get:

E
(
e−qg−

−a
)
=

J∑
k=1

Bke−rka,

which generalizes the main result of Mordecki [40] (Theorem 1.1), where only the case f > 0 and bi ≥ 0
(i = 1, · · · , a) is considered.

Example 2.11. Letting a = 1 in Corollary 2.9, when f > 0 or f = 0 and ` > 0, we get:
E(e−qg−

−a1{Xg−−a=−a}) =
V1 − r1

r2 − r1
e−r1a + r2 − V1

r2 − r1
e−r2a,

E
(
e−qg−

−a1{−X (g−
−a )−a∈dy}

)
= e−V1y (V1 − r1) (r2 − V1)

(r2 − r1)
(e−r1a − e−r2a)dy, y > 0,

E(e−qg−
−a) = r2(V1 − r1)

V1(r2 − r1)
e−r1a + r1(r2 − V1)

V1(r2 − r1)
e−r2a,

E
(
e−qg−

−a+s(X (g−
−a )+a)1{g−

−a<∞}
)
=

(r2 + s) (V1 − r1)
(V1 + s) (r2 − r1)

e−r1a + (r1 + s) (r2 − V1)
(V1 + s) (r2 − r1)

e−r2a,

where 0 < r1 < V1 < r2 < ∞.
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When f = 0 and ` ≤ 0, we have:
E(e−qg−

−a) = E
(
e−Xg−

−a1{X (g−
−a )<−a}

)
=

V1 − r1

V1
e−r1a,

E
(
e−qg−

−a+s(X (g−
−a )+a)1{g−

−a<∞}
)
=

V1 − r1

V1 + s
e−r1a,

E
(
e−qg−

−a1{−X (g−
−a )−a>l}

)
= e−V1l V1 − r1

V1
e−r1a, l ≥ 0,

where 0 < r1 < V1 < ∞.

3. The overshoot and undershoot at first exit

The two sided exit problem has been an interesting problem in Lévy process theory for a long time and
it is rare to extract explicit identities for the overshoot and/or undershoot at first exit from an interval
(see for example [23, 30, 47]). In this section, we derive the joint distributions of the first exit time and
the values of the overshoot and undershoot at the first exit from a finite interval for a Lévy process X
with linear drift ` ∈ R and diffusion coefficients f ≥ 0, the intensity and the density of jumps are,
respectively, _ > 0, and

p(x) =
a∑

j=1

nj∑
i=1

pij
di

jx
i−1

(i − 1)!e
−djxI{x>0} +

â∑
j=1

n̂j∑
i=1

p̂ij
d̂i

j |x |
i−1

(i − 1)! e
d̂jxI{x<0} , (3.1)

where a, â, pij, p̂ij ∈ R+, <(dj) > 0, <( d̂j) > 0, <(dj) is the real part of dj. and that di ≠ dj, d̂i ≠ d̂j
for all i≠ j. Moreover,

a∑
j=1

nj∑
i=1

pij +
â∑

j=1

n̂j∑
i=1

p̂ij = 1.

Clearly the process X can be identified as:

Xt = fBt + `t +
Nt∑
i=1

Yi, (3.2)

where {Nt} is a Poisson process with intensity _ and {Yi} are iid random variables with density p, {Bt} is
the Brownian motion with B0 = 0. Additionally, it is supposed that {Nt}, {Bt} and {Yi} are independent.
A similar model with f = 0 was studied by Wen and Yin [45].

It is fairly easy to find out that the infinitesimal generator of {Xt}t≥0 is given by:

(Lu) (x) = 1
2
f2u′′ (x) + `u′ (x) + _

∫ ∞

−∞
[u(x + y) − u(x)]p(y)dy,

for any twice continuously differentiable function u(x) and the Lévy exponent g(z) = ln E [exp(zX1)] is
given by:

g(z) = 1
2

z2f2 + z` + _
©«

a∑
j=1

nj∑
i=1

pij (dj)i

(dj − z)i +
â∑

j=1

n̂j∑
i=1

p̂ij ( d̂j)i

( d̂j + z)i − 1ª®¬ .
By analytic continuation, the function g(z) can be extended to the complex plane except at finitely

many poles. In the following, we consider the resulting extension G(z) of g(z), i.e.,

G(z) = 1
2

z2f2 + z` + _
©«

a∑
j=1

nj∑
i=1

pij (dj)i

(dj − z)i +
â∑

j=1

n̂j∑
i=1

p̂ij ( d̂j)i

( d̂j + z)i − 1ª®¬ , z ∈ C \ {dj, d̂j}.
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Let us denote M =
∑a

j=1 nj and M̂ =
∑â

j=1 n̂j.
Kuznetsov and Pardo [31] have studied the roots of the equation G(z) = \. However, for this particular

Lévy process X, we will give a simple proof for the roots of this equation.

Lemma 3.1. Assume that \ > 0.
(i). If f > 0, then the equation: G(z) = \ has M + M̂ + 2 complex roots W1(\), W2(\), . . . , WM+1(\)

with <(Wi (\)) > 0 for i = 1, 2, . . . , M + 1 and −Ŵ1(\),−Ŵ2(\), . . . ,−ŴM̂+1(\) with <(Ŵi (\)) > 0 for
i = 1, 2, . . . , M̂ + 1.

(ii). If f = 0 and ` > 0, then the equation G(z) = \ has M + M̂ + 1 complex roots
W1(\), W2(\), . . . , WM+1(\) with <(Wi (\)) > 0 for i = 1, 2, . . . , M + 1 and −Ŵ1(\),−Ŵ2(\), . . . ,−ŴM̂ (\)
with <(Ŵi (\)) > 0 for i = 1, 2, . . . , M̂.

(iii). If f = 0 and ` < 0, then the equation G(z) = \ has M + M̂ + 1 complex roots
W1(\), W2(\), . . . , WM (\) with <(Wi (\)) > 0 for i = 1, 2, . . . , M and −Ŵ1(\),−Ŵ2(\), . . . ,−ŴM̂+1(\)
with <(Ŵi (\)) > 0 for i = 1, 2, . . . , M̂ + 1.

(iv). If f = 0 and ` = 0, then the equation G(z) = \ has M+M̂ complex roots W1(\), W2(\), . . . , WM (\)
with <(Wi (\)) > 0 for i = 1, 2, . . . , M and −Ŵ1(\),−Ŵ2(\), . . . ,−ŴM̂ (\) with <(Ŵi (\)) > 0 for i =

1, 2, . . . , M̂.

Proof. We prove (i) only, since the rest can be proved similarly. We denote

G1(z) =
1
2

z2f2 + zc − _ − \, z ∈ C,

G2(z) = _
©«

a∑
j=1

nj∑
i=1

pij (dj)i

(dj − z)i +
â∑

j=1

n̂j∑
i=1

p̂ij ( d̂j)i

( d̂j + z)i
ª®¬ , z ∈ C.

Firstly, we prove that for given \ > 0, G(z) = \ has M̂ + 1 roots with negative real parts. Set C−
r =

{z : |z| = r, z ∈ C−} with r > Y + max1≤j≤ â{| d̂j |}, where Y is an arbitrary positive constant. Applying
Rouchés theorem on the semi-circle C−

r , consisting of the imaginary axis running from −ir to ir and
with radius r running clockwise from ir to −ir. We let r → ∞ and denote by C− the limiting semi-circle.
It is known that both

(∏â
j=1( d̂j + z)n̂j

)
G1 (z) and

(∏â
j=1( d̂j + z)n̂j

)
G2(z) are analytic in C− . We want to

show that: ������©«
â∏

j=1
( d̂j + z)n̂jª®¬ G1(z)

������ >
������©«

â∏
j=1

( d̂j + z)n̂jª®¬ G2(z)

������ , z ∈ C− .

Notice that |G1(z) | → ∞ for <(z) → −∞, and

|G2(z) | ≤ _

a∑
j=1

nj∑
i=1

|pij | |dj |i

Yi + _

â∑
j=1

n̂j∑
i=1

|p̂ij | | d̂j |i

Yi ,

is bounded for <(z) → −∞. Hence, for <(z) → −∞,������©«
â∏

j=1
( d̂j + z)n̂jª®¬ G1(z)

������ >
������©«

â∏
j=1

( d̂j + z)n̂jª®¬ G2(z)

������
on the boundary of the half circle in C− . For a ∈ R, we have |G2(ia) | < _ (see Lewis and Mordecki
[37]). On the other hand,

|G1(ia) | ≥ −<(G1(ia)) =
1
2
f2a2 + _ + \ > _.
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Thus, we have |G1(ia) | > |G2(ia) |. Since
(∏â

j=1( d̂j + z)n̂j
)

G1 (z) has M̂+1 roots with negative real parts,

so equation G(z) = \ has M̂ + 1 roots with negative real parts. Similarly, we can prove G(z) = \, \ > 0
has M + 1 roots with positive real parts. This ends the proof of Lemma 3.1. �

We assume that N of Wi (\)’s are distinct and denote by Wi (i = 1, 2, . . . , N) with respective mul-
tiplicities 1, m2, · · · , mN , ordered such that 0 < W1 ≤ <(W2) ≤ · · · ≤ <(WN ). Furthermore,

M =

{ ∑N
i=2 mi, f > 0, or f = 0 and ` > 0,

1 + ∑N
i=2 mi, f = 0 and ` ≤ 0.

Likewise, we assume that N̂ of Ŵi (\)’s are distinct and denote by Ŵi (i = 1, 2, . . . , N̂) with respective
multiplicities 1, m̂2, · · · , m̂N , ordered such that 0 < Ŵ1 ≤ <(Ŵ2) ≤ · · · ≤ <(ŴN̂ ). Furthermore,

M̂ =

{ ∑N̂
i=2 m̂i, f > 0, or f = 0 and ` < 0,

1 + ∑N̂
i=2 m̂i, f = 0 and ` ≥ 0.

For 0 < u < b (b> 0 is a constant), define

g = inf{t ≥ 0 : Xt ∉ (−u, b − u)},

to be the first exit time of X from the interval (−u, b−u). We consider the random events Ab−u = {Xg ≥
b − u} and Au = {Xg ≤ −u} meaning that the process exits the interval through the upper and lower
boundary, respectively. Further, define the overshoot and undershoot of the process over the boundaries
at the first exit time by:

j = (Xg − b + u)1Ab−u + (−Xg − u)1Au .

For y ≥ 0, define
Ty = Xg+y − y, Ty = −Xg−

−y − y,

where as before:
g+y = inf{t ≥ 0 : Xt ≥ y}, g−y = inf{t ≥ 0 : Xt ≤ −y}.

Using a general result on Lévy processes (see Kadankov and Kadankova [22] (Theorem 1), or
Kadankova and Veraverbeke [23] (Lemma 1)), the joint distribution of random variables {g, j} can
be expressed in terms of distributions of the one-boundary functionals {gx, Tx} and {gx, Tx}, we give
the following Theorem 3.2. For convenience, we now introduce some notions. Denote

Φ(−u) =
a∏

k=1

(
u + dk

dk

)nk N∏
j=1

(
Wj

u + Wj

)mj

,

Φ̂(u) =
â∏

k=1

(
−u + d̂k

d̂k

) n̂k N̂∏
j=1

(
Ŵj

−u + Ŵj

) m̂j

,

K+(v, dy, \) =
∫ ∞

0
E [e−\g−

−v−b ; Tv+b ∈ dl]E [e−\g+l+b ; T l+b ∈ dy],

K− (v, dy, \) =
∫ ∞

0
E [e−\g+v+b ; Tv+b ∈ dl]E [e−\g−

−l−b ; Tl+b ∈ dy] .

We introduce the sequences K (n)
± (v, dy, \), n ∈ N by means of recurrence relation:

K (1)
± (v, dy, \) = K±(v, dy, \),

https://doi.org/10.1017/S0269964824000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000032


Probability in the Engineering and Informational Sciences 657

K (n+1)
± (v, dy, \) =

∫ ∞

0
K (n)
± (v, dl, \)K±(l, dy, \), n ∈ N,

Theorem 3.2. Let {Xt}t≥0 be a jump-diffusion process defined by (3.2). For \ > 0 and y ≥ 0, the Laplace
transforms of the joint distribution of random variables {g, j} satisfy the equations

E [e−\g ; j ∈ dy, Ab−u] = f \+ (b − u, dy) +
∫ ∞

0
f \+ (b − u, dv)K \

+ (v, dy),

E [e−\g ; j ∈ dy, Au] = f \− (u, dy) +
∫ ∞

0
f \− (u, dv)K \

− (v, dy),

where
f \+ (b − u, dy) = E [e−\g+b−u ; Tb−u ∈ dy] −

∫ ∞

0
E [e−\g−

−u ; Tu ∈ dv]E [e−\g+v+b ; Tv+b ∈ dy],

f \− (u, dy) = E [e−\g−
−u ; Tu ∈ dy] −

∫ ∞

0
E [e−\g+b−u ; Tb−u ∈ dv]E [e−\g−

−v−b ; Tv+b ∈ dy],

and

K \
± (v, dy) =

∞∑
n=1

K (n)
± (v, dy, \), v ≥ 0.

Here

E
(
e−qg+a ; Ta ∈ dy

)
= X0(z)

N∑
k=1

mk∑
j=1

fk0
dj,ke−Wka

(j − 1)! (aWk)j−1dy

+
N∑

k=1

mk∑
j=1

dj,ke−Wka

(j − 1)!

j∑
l=1

(aWk)l−1f(k,j,l)dy,

where

d1,1 =

a∏
j=1

(
dj − W1

dj

)nj N∏
k=2

(
Wk

Wk − W1

)mk

,

dk,mk−j =
1

j!Wmk−j
k

[
mj

muj (Φ(−u) (u + Wk)mk )
]
|u=−Wk

for k = 2, · · · , N and j = 0, 1, · · · , mk − 1,

fk0 =

{
0, if f = 0 and ` ≤ 0,
Wk

∏a
i=1 d

ni
i /

∏N
j=1 W

mj
j , if f > 0, or f = 0 and ` > 0,

f(k,j,l) =
a∑

k1=1

nk1∑
j1=1

f (k,j,l)
k1,j1

yj1−1e−dk1 y

(j1 − 1)! ,

f (k,j,l)
k1,nk1−j1

=
1

j1!d
nk1−j1
k1

[ mj1

msj1

(1 + s
Uk1

)nk1

(1 + s
Wk
)j−l+1Φ+(−s)

] ��
s=−dk1

,

k1 = 1, · · · , a, j1 = 0, 1, · · · , nk1 ,

https://doi.org/10.1017/S0269964824000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000032


658 H. Gao and C. Yin

and

E
(
e−qg−

−a ; Ta ∈ dy
)

= X0 (y)
N̂∑

k=1

m̂k∑
j=1

f̂k0
d̂j,ke−Ŵka

(j − 1)! (aŴk)j−1dy

+
N̂∑

k=1

m̂k∑
j=1

d̂j,ke−Ŵka

(j − 1)!

j∑
l=1

(aŴk)l−1 f̂(k,j,l)dy,

where

d̂1,1 =

â∏
j=1

(
d̂j − Ŵ1

d̂j

) n̂j N̂∏
k=2

(
Ŵk

Ŵk − Ŵ1

) m̂k

,

d̂k,mk−j =
1

j!Ŵm̂k−j
k

[
mj

muj

(
Φ̂(u) (u + Wk)m̂k

)]
|u=Wk

for k = 2, · · · , N̂ and j = 0, 1, · · · , m̂k − 1,

f̂k0 =

{
0, if f = 0 and ` ≥ 0,
Ŵk

∏â
i=1 d̂

n̂i
i /

∏N̂
j=1 Ŵ

m̂j
j , if f > 0, or f = 0 and ` < 0,

f̂(k,j,l) =
â∑

k1=1

n̂k1∑
j1=1

f̂ (k,j,l)
k1,j1

yj1−1e−d̂k1 y

(j1 − 1)! .

Here

f̂ (k,j,l)
k1,n̂k1−j1

=
1

j1!d̂
n̂k1−j1
k1

[ mj1

msj1

(1 + s
d̂k1

)n̂k1

(1 + s
Ŵk
)j−l+1Φ̂(s)

] ��
s=d̂k1

,

k1 = 1, · · · , a, j1 = 0, 1, · · · , n̂k1 .

Proof. The proof is similar to the one of Kadankov and Kadankova [22] (Theorem 1). Therefore, it
is omitted here.

Corollary 3.3. Consider the special case of (3.1) in which nj = n̂j = 1. Then

(i) f \+ (b − u, dy) = r1(u)X0(y)dy +
J∑

k=1
Ck

(
a∑

l=1
Dkldle−dly

)
e−Wk (b−u)dy

− ©«
Ĵ∑

i=1
ĈiD̂i0e−Ŵiuª®¬ ©«

J∑
j=1

Cje−Wjb
a∑

l=1
Djldle−dyª®¬ dy

−
Ĵ∑

i=1

J∑
j=1

ĈiCje−Ŵiue−Wjb
â∑

l1=1

a∑
l2=1

D̂i,l1Dj,l2
d̂l1dl2e

−dl2 y

Wj + d̂l1
dy, (3.3)

where

J =

{
a + 1, f > 0, or f = 0 and ` > 0,
a, f = 0 and ` ≤ 0,
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Cj =

∏a
k=1(1 − Wj

dk
)∏J

k=1,k≠j (1 − Wj
Wk
)
, j = 1, · · · , J,

Dk0 =

{ ∏a
i=1 di∏J

i=1,i≠k Wi
, f > 0, or f = 0 and ` > 0,

0, f = 0 and ` ≤ 0,

Dkl =

∏J
i=1,i≠k (1 − dl/Wi)∏a
i=1,i≠l (1 − dl/di)

, l = 1, 2, · · · , a,

r1(u) =

J∑
k=1

CkDk0e−Wk (b−u) −
Ĵ∑

i=1

J∑
j=1

ĈiD̂i0CjDj0e−Ŵiue−Wjb

−
Ĵ∑

i=1

J∑
j=1

ĈiCjDj0e−Ŵiue−Wjb
â∑

l=1
D̂il d̂l

1
d̂l + Wj

. (3.4)

(ii) f \− (u, dy) = r2(u)X0 (y)dy +
Ĵ∑

k=1
Ĉk

(
â∑

l=1
D̂kl d̂le−d̂ly

)
e−Ŵkudy

− ©«
J∑

j=1
CjDj0e−Wj (b−u)ª®¬ ©«

Ĵ∑
i=1

Ĉi

â∑
l=1

D̂il d̂le−d̂yª®¬ e−Ŵibdy

−
Ĵ∑

i=1

J∑
j=1

ĈiCje−Ŵibe−Wj (b−u)
â∑

l1=1

a∑
l2=1

D̂i,l1Dj,l2
dl2 d̂l1e

−d̂l1 y

Ŵi + dl2
dy, (3.5)

where

Ĵ =

{
â + 1, f > 0, or f = 0 and ` < 0,
â, f = 0 and ` ≥ 0,

Ĉj =

∏â
k=1(1 − Ŵj

d̂k
)∏Ĵ

k=1,k≠j (1 − Ŵj
Ŵk
)
, j = 1, · · · , Ĵ,

D̂k0 =


∏â

i=1 d̂i∏Ĵ
i=1,i≠k Ŵi

, f > 0, or f = 0 and ` < 0,

0, f = 0 and ` ≥ 0,

D̂kl =

∏Ĵ
i=1,i≠k (1 − d̂l/Ŵi)∏â
i=1,i≠l (1 − d̂l/d̂i)

, l = 1, 2, · · · , â,

r2(u) =

Ĵ∑
k=1

ĈkD̂k0e−Ŵku −
Ĵ∑

i=1

J∑
j=1

ĈiD̂i0CjDj0e−Ŵibe−Wj (b−u)

https://doi.org/10.1017/S0269964824000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964824000032


660 H. Gao and C. Yin

−
Ĵ∑

i=1

J∑
j=1

ĈiCjD̂i0e−Ŵibe−Wj (b−u)
a∑

l=1
Djldl

1
dl + Ŵi

. (3.6)

Proof. From Corollary 2.3 (ii), we get for \ > 0, y ≥ 0,

E
(
e−\g+b−u , Tb−u ∈ dy

)
=

J∑
k=1

Ck

(
Dk0X0(y) +

a∑
l=1

Dkldle−dly

)
e−Wk (b−u)dy. (3.7)

From Corollary 2.9 (ii), we get for \ > 0, y ≥ 0,

E
(
e−\g−

−u , Tu ∈ dy
)
=

Ĵ∑
k=1

Ĉk

(
D̂k0X0(y) +

â∑
l=1

D̂kl d̂le−d̂ly

)
e−Ŵkudy. (3.8)

It follows that: ∫ ∞
0 E

(
e−\g−

−u , Tu ∈ dv
)

E
(
e−\g+b+v , Tb+v ∈ dy

)
=

©«
Ĵ∑

i=1

J∑
j=1

ĈiD̂i0CjDj0e−Ŵiue−Wjbª®¬ X0(y)dy

+ ©«
Ĵ∑

i=1
ĈiD̂i0e−Ŵiuª®¬ ©«

J∑
j=1

Cje−Wjb
a∑

l=1
Djldle−dyª®¬ dy

+X0(y)dy
Ĵ∑

i=1

J∑
j=1

ĈiCjDj0e−Ŵiue−Ŵjb
â∑

l=1
D̂il d̂l

1
d̂l + Wj

+
Ĵ∑

i=1

J∑
j=1

ĈiCje−Ŵiue−Wjb
â∑

l1=1

a∑
l2=1

D̂i,l1Dj,l2
d̂l1

Wj + d̂l1
dl2e

−dl2 ydy. (3.9)

The relation (3.3) follows from (3.7) and (3.9).
Similarly, ∫ ∞

0 E
(
e−\g+b−u , Tb−u ∈ dv

)
E

(
e−\g−

−b−v , Tb+v ∈ dy
)

= X0 (y)dy ©«
Ĵ∑

i=1

J∑
j=1

ĈiD̂i0CjDj0e−Ŵibe−Wj (b−u)ª®¬
+ ©«

J∑
j=1

CjDj0e−Wj (b−u)ª®¬ ©«
Ĵ∑

i=1
Ĉi

â∑
l=1

D̂il d̂le−d̂yª®¬ e−Ŵibdy

+X0(y)dy
Ĵ∑

i=1

J∑
j=1

ĈiCjD̂i0e−Ŵibe−Wj (b−u)
a∑

l=1
Djldl

1
dl + Ŵi

+
Ĵ∑

i=1

J∑
j=1

ĈiCje−Ŵibe−Wj (b−u)
â∑

l1=1

a∑
l2=1

D̂i,l1Dj,l2
dl2

Ŵi + dl2
d̂l1e

−d̂l1 ydy, (3.10)

and thus the relation (3.5) follows from (3.8) and (3.10). This ends the proof of Corollary 3.3. �
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Corollary 3.4. Consider the special case of (3.1) and (3.2) in which f = 0, ` = 0 and, when x> 0,
p(x) = p11d1e−d1x . Then

K \
+ (v, dy) = E(e−\g−

−v−b−W1Tv+b)E(e−\g+b )
1 − E(e−\g+b )E(e−\g−

−b−b−W1Tb+b)
d1e−d1ydy, (3.11)

K \
− (v, dy) =

E(e−\g−
−b−b , Tb+b ∈ dy)E(e−\g+b )

1 − E(e−\g+b )E(e−\g−
−b−b−W1Tb+b)

e−W1v, (3.12)

where b is an exponential random variable with parameter d1.

Proof. From (3.7), we get for \ > 0, y ≥ 0,

E
(
e−\g+b−u , Tb−u ∈ dy

)
= C1D11d1e−d1ye−W1 (b−u)dy,

this, together with the definition of the kernel we have:

K+(v, dy, \) =

∫ ∞

0
E [e−\g−

−v−b ; Tv+b ∈ dl]E [e−\g+l+b ; T l+b ∈ dy]

= C1D11d1E(e−\g−
−v−b−W1Tv+b)e−d1ye−W1bdy. (3.13)

Similarly,
K (2)
+ (v, dy, \) = (C1D11e−W1b)2d1e−d1yE(e−\g−

−v−b−W1Tv+b)E(e−\g−
−b−b−W1Tb+b)dy.

The successive iterations K (n)
+ (v, dy, \), n ∈ N, of kernel K+(v, dy, \) are found by induction:

K (n)
+ (v, dy, \) = (C1D11e−W1b)nE(e−\g−

−v−b−W1Tv+b) (E(e−\g−
−b−b−W1Tb+b))n−1d1e−d1ydy.

From which and note that E(e−\g+b ) = C1D11e−W1b, we get (3.11) easily. Equation (3.12) can be
proved similarly. The proof is complete.

The following theorem is a direct consequence of Theorem 3.1. �

Theorem 3.5. Consider the special case of (3.1) and (3.2) in which f = 0, ` = 0 and, p(x) =

p11d1e−d1x1{x>0} +
∑â

j=1 p̂1j d̂jed̂x1{x<0} . Then

E [e−\g ; j ∈ dy, Ab−u] = −Δ(\)−1 (Ee−\g+b ) ©«
Ĵ∑

i=1
Ĉie−Ŵiu

â∑
l=1

D̂i,l
d̂l

W1 + d̂l

ª®¬ d1e−d1ydy

+Δ(\)−1 (Ee−\g+b )d1e−d1yeW1udy, (3.14)

E [e−\g ;X ∈ dy, Au] = −Δ(\)−1(Ee−\g+b )
( Ĵ∑

i=1
Ĉie−Wiu

â∑
l=1

D̂il
d̂l

W1 + d̂l
dle−dlydy

)
+

Ĵ∑
i=1

Ĉie−Ŵiu
â∑

l=1
d̂le−d̂lydy,

where
Δ(\) = 1 − Ee−\g+b E(e−\g−

−b−b−W1Tb+b).

Corollary 3.6. Let b= 0 in Theorem 3.5, we have

E [e−\g] = −Δ(\)−1C1D11
©«

Ĵ∑
i=1

Ĉie−Ŵiu
â∑

l=1
D̂i,l

d̂l

W1 + d̂l
+

Ĵ∑
i=1

ĈieWiu
â∑

l=1
D̂il

dl

Ŵ1 + dl
− 1ª®¬
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+
Ĵ∑

i=1
Ĉie−Ŵiu

â∑
l=1

D̂il,

when \ → ∞, Δ(\) = 1, we can get:

P(g < ∞) = −C1D11
©«

Ĵ∑
i=1

Ĉie−Ŵiu
â∑

l=1
D̂i,l

d̂l

W1 + d̂l
+

Ĵ∑
i=1

ĈieWiu
â∑

l=1
D̂il

dl

Ŵ1 + dl
− 1ª®¬

+
Ĵ∑

i=1
Ĉie−Ŵiu

â∑
l=1

D̂il .

Example 3.7. Letting a = â = 1 in Corollary 3.3, when f > 0 or f = 0 and ` > 0, we get:

f \+ (b − u, dy) = (d1 − W1) (W2 − d1)
W2 − W1

(e−W1 (b−u) − e−W2 (b−u) )e−d1ydy

− d̂1 − Ŵ1

Ŵ2 − Ŵ1
(e−Ŵ1u − e−Ŵ2u)

(
(d1 − W1) (W2 − d1)

W2 − W1
(e−W1b − e−W2b)

)
e−d1ydy

− ( d̂1 − Ŵ1) (Ŵ2 − d̂1)
Ŵ2 − Ŵ1

(e−Ŵ1u − e−Ŵ2u) (d1 − W1) (W2 − d1)
W2 − W1(

e−W1b e−d1y

W1 + d̂1
− e−W2b e−d1y

W2 + d̂1

)
dy,

f \− (b − u, dy) = ( d̂1 − Ŵ1) (Ŵ2 − d̂1)
Ŵ2 − Ŵ1

(e−Ŵ1u − e−Ŵ2u)e−d̂1ydy

− d1 − W1

W2 − W1
(e−W1 (b−u) − e−W2 (b−u) )

(
( d̂1 − Ŵ1) (Ŵ2 − d̂1)

Ŵ2 − Ŵ1
(e−Ŵ1b − e−Ŵ2b)

)
e−d̂1ydy

− ( d̂1 − Ŵ1) (Ŵ2 − d̂1)
Ŵ2 − Ŵ1

(e−W1 (b−u) − e−W2 (b−u) ) (d1 − W1) (W2 − d1)
W2 − W1(

e−Ŵ1b e−d̂1y

Ŵ1 + d1
− e−Ŵ2b e−d̂1y

Ŵ2 + d1

)
dy.

4. Pricing path-dependent options

In this section, we aim to study the price of barrier and lookback options. These options have a fixed
maturity T and yield a payoff contingent upon the maximum (or minimum) of the asset price on [0, T].
Under a risk-neutral probability measure P, the asset price process {St : t ≥ 0} is supposed as St = S0eXt ,
where X is given by (1.1), S0 = eX0 . Let the risk-free interest rate be r > 0. Further, to ensure that the
asset price of St has finite expectation, we have occasion to assume d1 > 1. We will use the results
obtained in Section 2 to develop the pricing formulae for standard single barrier options and lookback
options.

4.1. Lookback options

The value of a lookback option hinges on the maximum or minimum of the stock price during the entire
life span of the option. With a strike price K and the maturity T, it is proverbial that (see e.g. Schoutens
[43]) applying risk-neutral valuation and after selecting an equivalent martingale measure P the initial
(i.e. t = 0) price of a fixed-strike lookback put option is given by:

LP
fix (K , T) = e−rTE

(
sup

0≤t≤T
S(t) − K

)+
.
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The initial price of a fixed-strike lookback call option is given by

LC
fix (K , T) = e−rTE

(
K − inf

0≤t≤T
S(t)

)+
;

The initial price of a floating-strike lookback put option is given by:

LP
floating(T) = e−rTE

(
sup

0≤t≤T
S(t) − ST

)+
;

The initial price of a floating-strike lookback call option is given by:

LC
floating(T) = e−rTE

(
ST − inf

0≤t≤T
S(t)

)+
.

In the standard Black-Scholes setting, Merton [38] and Goldman et al. [18] deduced closed-form
solutions for lookback options. Cai and Kou [11] obtained the Laplace transforms of the lookback put
option price as a function of the maturity T for the double mixed-exponential jump diffusion model,
however, the coefficients do not determinated explicitly. Yin et al. [48] presented the analytical solutions
for lookback options in terms of Laplace transforms for mixed-exponential jump diffusion processes.

We shall only consider lookback put options by reason of the calculation for the lookback call option
follows similarly.

Theorem 4.1. Suppose X is a Levy process with jump measure given by (2.1). For all sufficiently large
X > 0, then

(i) for K ≥ S0,∫ ∞

0
e−XTLP

fix (K , T)dT

=
S0

r + X

n+1∑
i=1

mk∑
j=1

dji

(j − 1)!

j∑
l=1

l∑
t=1

Vl−1
i,r+X (l − 1)!

(Vi,r+X − 1)t (l − t)!

(
ln

K
S0

) l−t (S0

K

)Vi,r+X−1
,

(ii)
∫ ∞

0
e−XTLP

floating(T)dT =
S0

r + X

n+1∑
i=1

mk∑
j=1

dji

(j − 1)!

j∑
l=1

Vl−1
i,r+X (l − 1)!
(Vi,r+X − 1)l + S0

r + X
− S0

X
,

where V1,r+X , · · · , Vn+1,r+X are the (n + 1) positive roots of the equation k1(z) = r + X and dij is defined
by (2.8) and (2.9).

Proof. (i). Set k = ln K
S0

≥ 0, then

LP
fix (K, T) = S0e−rT

∫ ∞

k
eyP

(
sup

0≤s≤T
X (s) ≥ y

)
dy.

It follows that:∫ ∞
0 e−XTLP

fix (K , T)dT = S0
∫ ∞
k ey

[∫ ∞
0 e−(r+X )TP

(
sup0≤s≤T X (s) ≥ y

)
dT

]
dy

=
S0

r+X
∫ ∞
k eyE(e−(r+X )g+y )dy.

(4.1)

From Theorem 2.1 and (4.1), we can get:∫ ∞

k
eyE(e−(r+X )g+y )dy =

n+1∑
i=1

mk∑
j=1

dji

(j − 1)!

j∑
l=1

∫ ∞

k
e(1−Vi,r+X )y (yVi,r+X)l−1dy. (4.2)

After a series of partial integrals of (4.2), the result can be proved.
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(ii). Since

LP
floating(T) = S0e−rTE

[
exp

(
sup

0≤t≤T
X (t)

)]
− S0,

consequently, it can be deduced that:∫ ∞
0 e−XTLP

floating(T)dT = S0
∫ ∞
0 e−(r+X )TE

[
exp

(
sup0≤t≤T X (t)

) ]
dT − S0

X

=
S0

r+XE
[
exp

(
sup0≤t≤e(r+X ) X (t)

)]
− S0

X

=
S0

r+X

[
1 +

∫ ∞
0 eyP

(
sup0≤s≤e(r+X ) X (s) ≥ y

)
dy

]
− S0

X

=
S0

r+X

[
1 +

∫ ∞
0 eyE(e−Xg+y )dy

]
− S0

X
.

(4.3)

The result follows from Theorem 2.1 and (4.3) by a similar calculation of (4.2). �

Example 4.2. Letting a = â = 1, when f > 0 or f = 0 and ` > 0, we get:∫ ∞

0
e−XTLP

fix (K , T)dT

=
S0

r + X

V2 (U1 − V1)
U2(V2 − V1) (V1 − 1)

(
S0

K

)V1−1
+ S0

r + X

V1(U1 − V2 − U2)
U1(V2 − V1) (V2 − 1)

(
S0

K

)V2−1
,

∫ ∞

0
e−XTLP

floating(T)dT =
S0

r + X

[
1 + V2 (U1 − V1)

U2(V2,r+X − V1) (V1 − 1) +
V1 (U1 − V2 − U2)

U1(V2 − V1) (V2 − 1)

]
− S0

X
,

where V1, V2 are the positive roots of the equation k1(z) = r + X and 1 < V1 < U1 < V2 < ∞. By
Laplace transform inversion, we can get:

LP
fix (K , T)dT =

[
SV1

0 V2(U1 − V1)
U2KV1−1 (V2 − V1) (V1 − 1)

+
SV2

0 V1(U1 − V2 − U2)
U1KV2−1 (V2 − V1) (V2 − 1)

]
e−rT ,

LP
floating(T) = S0

[
1 + V2(U1 − V1)

U2(V2 − V1) (V1 − 1) +
V1(U1 − V2 − U2)

U1(V2 − V1) (V2 − 1)

]
e−rT − S0.

When f = 0 and ` ≤ 0, we have:∫ ∞

0
e−XTLP

fix (K , T)dT =
S0

r + X

U1 − V1

U1(V1 − 1)

(
S0

K

)V1−1
,

∫ ∞

0
e−XTLP

floating(T)dT =
S0

r + X

[
1 + U1 − V1

U1(V1 − 1)

]
− S0

X
,

where 1 < V1 < U1 < ∞.
By Laplace transform inversion, we can easily get:

LP
fix (K , T) =

SV1,r+X
0 (U1 − V1)

U1KV1−1(V1 − 1)
e−rT ,

LP
floating(T) = S0

[
1 + U1 − V1

U1(V1 − 1)

]
e−rT − S0.

4.2. Barrier options

The common term barrier options refers to the type of options whose payoff is determined by whether
the maximum or minimum of the underlying asset hits the barrier level over a maturity T. There are
eight classes of (one dimensional, single) barrier options: up (down)-and-in (out) call (put) options. For
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more comprehensive information on the barrier options, we suggest readers refer to Schoutens [43].
The closed-form price of up-and-in call barrier option for a double exponential jump diffusion model is
shown in Kou and Wang [28]; the closed-form expressions of the up-and-in call barrier option under a
double mixed-exponential jump diffusion model are obtained in Cai and Kou [11]. The analytical solu-
tions for barrier options in terms of Laplace transforms for mixed-exponential jump diffusion processes
are presented in Yin et al. [48]. Here, we only demonstrate how to handle the down-and-out call barrier
option as the methodology is also valid for the other seven barrier options. Under the risk-neutral prob-
ability measure P, the price of a down-and-out call option with a strike price K and a barrier level U is
expressed as:

DOC = exp(−rT)E[(ST − K)+1(inf0≤t≤T St>U ) |S0], U < S0.

Let h = ln U
S0

and k = − ln K . Then
DOC(k, T) := DOC = exp(−rT)Ex [(S0eXT − e−k)+1(g−

h >T ) ] .

Theorem 4.3. Suppose X is a Levy process with jump measure given by (2.3). For any 0 < q < \1 − 1
and r + i > k1(q + 1), then∫ ∞

0

∫ ∞
−∞ e−qk−iTDOC(k, T)dkdT =

Sq+1
0

q (q+1) (i+r−k1 (q+1) ) {1−∑n+1
i=1

∑mk
j=1

dji
(j−1)!

(
S0
U

)Vi,r+q+q+1∑j
l=1(hVi,r+q)l−1Δi,j,l (q + 1)

}
,

where −V1,r+q , · · · ,−Vn+1,r+q are the (n + 1) negative roots of the equation k2(z) = r + q and Δi,j,l (s)
is defined by (2.23).

Proof. Using the same argument as that of the proof of Theorem 5.2 in Cai and Kou [11], we get:∫ ∞
0

∫ ∞
−∞ e−qk−iTDOC(k, T)dkdT =

∫ ∞
0

∫ ∞
−∞ e−qk−(r+i)TEx [(S0eXT − e−k)+1(g−

h >T ) ]dkdT

=
Sq+1

0
q (q+1)

1
i+r−k1 (q+1)

(
1 − Ex [e−(r+i)g−

h +(q+1)X (g−
h ) ]

)
,

and the result is obtained from Theorem 2.7 (i). �

Example 4.4. Letting a = â = 1, when f > 0 or f = 0 and ` > 0, we get:∫ ∞

0

∫ ∞

−∞
e−qk−iTDOC(k, T)dkdT

=
Sq+1

0
q(q + 1)

1
i + r − k1(q + 1)

(
1 − (V2 + q + 1) (U1 − V1)

(U1 + q + 1) (V2 − V1)

(S0

U

)V1+q+1

+ (V1 + q + 1)(V2 − U1)
(U1 + q + 1)(V2 − V1)

(S0

U

)V2+q+1
)
,

where −V1,−V2 are the negative roots of the equation k2 (z) = r + q and 1 < V1 < U1 < V2 < ∞.
When f = 0 and ` ≤ 0, we have:∫ ∞

0

∫ ∞

−∞
e−qk−iTDOC(k, T)dkdT =

Sq+1
0

q(q + 1)
1

i + r − k1(q + 1)

(
1 − (U1 − V1)

U1 + q + 1

(S0

U

)V1+q+1
)
,

where 1 < V1 < U1 < ∞.
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