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Refined Motivic Dimension

Su-Jeong Kang

Abstract. We deûne a reûnedmotivic dimension for an algebraic variety bymodifying the deûnition
of motivic dimension by Arapura. We apply this to check and recheck the generalized Hodge con-
jecture for certain varieties, such as uniruled, rationally connected varieties and a rational surface
ûbration.

1 Introduction

Given a complex smooth projective variety X, singular cohomology with rational
coeõcients carries two natural ûltrations, the coniveau ûltration N● and the level
ûltration F●. Roughly speaking, N pH i(X ,Q) is the space of cycles supported on
subvarieties of codimension at least p, and FpH i(X ,Q) is the largest sub-Hodge
structure of H i(X ,Q) contained in F pH i(X ,C) ∩ H i(X ,Q). _ey generalize the
space of algebraic cycles and that of Hodge cycles; N pH2p(X ,Q) = H2p(X ,Q)alg
and FpH2p(X ,Q) = H2p(X ,Q)hodge. We say that the generalized Hodge conjecture
GHC(H i(X ,Q), p) holds ifFpH i(X ,Q) = N pH i(X ,Q) [G]. If the two spaces coin-
cide for all i and p,we simply say that the generalizedHodge conjecture (GHC) holds
for X.
Arapura [A] introduced the notion ofmotivic dimension µ(X) for an algebraic va-

riety X that can be a tool in checking the (G)HC of certain varieties. For a smooth
projective variety X, this is the length of the coniveau ûltration on H∗(X ,Q). In par-
ticular, µ(X) = 0 for X when all the cohomology of X are generated by algebraic
cycles. He observed that theHodge conjecture holds for X if µ(X) ≤ 3 and the GHC
holds for X if µ(X) ≤ 2 [A, corollary 4.10]. However, we note that the deûnition of
motivic dimension is too strong to be used to check GHC(H i(X ,Q), p) for speciûc
i and p. For example, for a uniruled variety X, the motivic dimension provides an
easy proof of the Hodge conjecture for X up to dimension four, but no information
on GHC(Hdim X(X ,Q), 1) for X of dimension higher than four. _e purpose of this
note is tomodify the deûnition ofmotivic dimension so that it can be used for check-
ing a partial generalized Hodge conjecture. By applying Arapura’s idea to a speciûc
level FmH∗(X ,Q), we obtain a notion of the m-th reûnedmotivic dimension µm(X)
for a smooth projective complex variety X, and we show that GHC(H i(X ,Q),m)
holds if and only if µm(X) ≤ i − 2m + 1. We apply this notion to recheck the (gen-
eralized) Hodge conjecture for a number of well-known examples. _e last section
contains a proof of GHC(Hdim X(X ,Q), 2) for a rational surface ûbration X → Y
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under assumption on the conjecture for the base. _e decomposition of the diagonal
class by Bloch and Srinivas [BS] is the key idea for this section. All varieties in this
paper are deûned over C.

2 Refined Motivic Dimension

As we noted earlier, the p-th level ûltration FpH i(X ,Q) is deûned to be the largest
sub-Hodge structure of H i(X ,Q) contained in F pH i(X ,C) ∩ H i(X ,Q), where F●
is the Hodge ûltration on H i(X ,C). Alternatively, FpH i(X ,Q) is exactly the largest
rational sub-Hodge structure of H i(X ,Q) of level at most i − 2p. Here, the level of a
pure Hodge structure H = ⊕Hpq is max{∣p − q∣ ∣ dimHpq /= 0}. _e p-th coniveau
ûltration N pH i(X ,Q) is

N pH i(X ,Q) = ∑
codim(S ,X)≥p

ker[H i(X ,Q)→ H i(X − S ,Q)]

≅ ∑
codim(S ,X)=q≥p

im[H i−2q(S̃ ,Q(−q))→ H i(X ,Q)] ,

where the sum is taken over all subvariety S of X of codim(S , X) ≥ p and S̃ → S is
a desingularization. _e second description of the coniveau ûltration, due toDeligne
[D1], implies that N pH i(X ,Q) ⊂ FpH i(X ,Q) since the Gysin map is a morphism
of Hodge structures. _e generalized Hodge conjecture states the two ûltrations co-
incide [G,Le]:

GHC(H i(X ,Q), p) ∶ N pH i(X ,Q) = FpH i(X ,Q).

For a ûxed integer m, we consider a non-negative integer µm(X), which is the
smallest integer n, such that any α ∈ FmH i(X ,Q) vanishes on a Zariski closed set all
of whose components have codimension at least (i − n)/2. When m = 0, it is exactly
Arapura’s deûnition ([A]) of themotivic dimension µ(X).

Lemma 2.1 Let X be a smooth projective variety of dimension d. For each m ≥ 0,
(i) µm(X) ≥ µm+1(X),
(ii) µm(X) ≥ ℓm

set= level(FmH∗(X ,Q)) def= max{∣p − q∣ ∣ hpq /= 0, p ≥ m}, where
the equality holds if GHC(H i(X ,Q),m) holds for all i ≥ 2m.

Proof (i) follows immediately, because F● is a descending ûltration. For (ii), let
α ∈ FmH i(X ,Q) and let S be aZariski closed set of codim(S , X) = p ≥ (i−µm(X))/2
such that

α ∈ ker[H i(X ,Q)→ H i(X − S ,Q)] ≅ im[H i−2p( S̃ ,Q(−p)) → H i(X ,Q)]

where σ ∶ S̃ → S is a desingularization. Since i − 2p ≤ µm(X), we have

level(FmH i(X ,Q)) ≤ µm(X)

for each i, and we get the inequality in (ii). Now, suppose that GHC(H i(X ,Q),m)
holds for all i ≥ 2m. _en for any α ∈ FmH i(X ,Q) = NmH i(X ,Q), there exists a
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Zariski closed set S of codim(S , X) = p ≥ m such that

α ∈ ker[H i(X ,Q)→ H i(X − S ,Q)].
_is implies that ℓm ≥ level(FmH i(X ,Q)) ≥ i−2p; equivalently, p ≥ (i− ℓm)/2. _e
deûnition of µm(X) implies ℓm ≥ µm(X).

Let X be an algebraic variety of dimension d and let H i(X ,Q) be the Borel–
Moore homology. _e isomorphism H i(X ,Q) ≅ H i

c(X ,Q)∗ endows a mixed
Hodge structure on H i(X ,Q) whose weights are concentrated on [−i , 0] ([D1]), and
W−iH i(X ,Q) is a pure Hodge structure of weight −i. For a non-negative integer m,
we denote

FmW−iH i(X ,Q) def= F−mW−iH i(X ,Q),
i.e., the largest sub-Hodge structure ofW−iH i(X ,Q) of level at most ∣ − i − 2(−m)∣.
Similarly in [A], we may consider µ̄m(X), the smallest non-negative integer n such
that any α ∈ FmW−iH i(X ,Q) lies in im[W−iH i(Y ,Q) → W−iH i(X ,Q)], where Y
is a Zariski closed set and any irreducible component of Y has dimension at most
(i + n)/2. In particular, if X is smooth and projective, we have a relation

(2.1) µ̄d−m(X) = µm(X)

by dualities FmH i(X ,Q) ≅ (Fm−dH2d−i(X ,Q))(d) = (Fd−mH2d−i(X ,Q))(d).
We have that µ̄m satisûes properties in [A, proposition 1.1] as well.

Proposition 2.2
(i) If f ∶X′ → X is proper and surjective, then µ̄m(X) ≤ µ̄m(X′).
(ii) If Z ⊂ X is Zariski closed, then µ̄m(X) ≤ max{µ̄m(Z), µ̄m(X − Z)}.
(iii) If X̃ is a desingularization of a partial compactiûcation X̄ of X, then µ̄m(X) ≤

µ̄m(X̄) ≤ µ̄m(X̃).
(iv) µ̄m(X1 × X2) ≤ max{µ̄t(X1) + µ̄s(X2), t + s = m}.

Proof Statements (i) through (iii) can be proved by simple modiûcation of argu-
ments in [A, Proposition 1.1]. We present a proof of (ii) as an example. Let d = dimX
and Z be a Zariski closed subset of X. Since the level ûltration F● is an exact functor
from the category of polarizedHodge structures with a ûxed weight to itself, an exact
sequence of pureHodge structure of weight −i

⋅ ⋅ ⋅→W−iH i(Z ,Q)→W−iH i(X ,Q)→W−iH i(X − Z ,Q)→ 0,

gives rise to an exact sequence

⋅ ⋅ ⋅→ FmW−iH i(Z ,Q)→ FmW−iH i(X ,Q) ϕ→ FmW−iH i(X − Z ,Q)→ 0.

Let α ∈ FmW−iH i(X ,Q). _en there exists a Zariski closed set Y in X − Z of
dimension at most (i + µ̄m(X − Z))/2 such that

ϕ(α) = g∗(β) ∈ im[ g∗∶W−iH i(Y ,Q)→W−iH i(X − Z ,Q)] ,

where g∶Y ↪ X − Z. Let Ȳ be the Zariski closure of Y in X and ḡ∶ Ȳ → X. A sur-
jection W−iH i(Ȳ ,Q) →W−iH i(Y ,Q) extends β to a cycle β̄ ∈ W−iH i(Ȳ ,Q). Since
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ϕ(ḡ∗(β̄)) = g∗(β) = ϕ(α), we have

α − ḡ∗(β̄) ∈ ker(ϕ) = im[FmW−iH i(Z ,Q)→ FmW−iH i(X ,Q)] ,

and hence α − ḡ∗(β̄) ∈ im[W−iH i(Y1 ,Q) →W−iH i(Z ,Q) →W−iH i(X ,Q)] where
Y1 is a closed set of dimY1 ≤ (i + µ̄m(Z))/2. By combining all, this implies that
α ∈ im[W−iH i(T ,Q) → W−iH i(X ,Q)] for some reducible Zariski closed set T of
dimension at most (i +max{µ̄m(X − Z), µ̄m(Z)})/2. _is ûnishes a proof of (ii).

Nowwe prove (iv). By applyingweight and level ûltration to theKünneth formula,
we have

FmW−iH i(X1 × X2 ,Q) = ⊕
j+ℓ=i

Fm(W− jH j(X1 ,Q)⊗W−ℓHℓ(X2 ,Q))

= ⊕
j+ℓ=i

⊕
t+s=m

(FtW− jH j(X1 ,Q)⊗ FsW−ℓHℓ(X2 ,Q)) .

Hence, any α ∈ FmW−iH i(X1 × X2 ,Q) has a decomposition

α = ∑
j,ℓ ,t ,s

α jt ⊗ αℓs , where α jt ⊗ αℓs ∈ FtW− jH j(X1 ,Q)⊗ FsW−ℓHℓ(X2 ,Q).

For each j, ℓ, t, and s satisfying j+ ℓ = i and t + s = m, let Yjt ×Yℓs be a Zariski closed
subset of X1 × X2 such that

α jt ∈ im[W− jH j(Yjt ,Q)→W− jH j(X1 ,Q)] ,
αℓs ∈ im[W−ℓHℓ(Yℓs ,Q)→W−ℓHℓ(X2 ,Q)]

and dimYjt ≤ ( j + µ̄t(X1))/2 and dimYℓs ≤ (ℓ + µ̄s(X2))/2. Since

dim(Yjt × Yℓs) ≤
j + ℓ + µ̄t(X1) + µ̄s(X2)

2
= i + µ̄t(X1) + µ̄s(X2)

2
,

we have µ̄m(X1 × X2) ≤ µ̄t(X1) + µ̄s(X2) for t + s = m, and we are done.

Proposition 2.3 Let σ ∶Y = BlZ X → X be the blow-up of a smooth projective variety
X along a smooth center Z. _en

µ̄m(Y) ≤ max{ µ̄m(X), µ̄m(Z)} ,

or equivalently, if c = codim(Z , X),

(2.2) µm(Y) ≤ max{ µm(X), µm−c(Z)} .

Proof Let α ∈ FmH i(Y ,Q). Since

FmH i(Y ,Q) = σ∗(FmH i(X ,Q)) + ι∗(Fm−1H i−2(E ,Q)(−1)) ,

where E is the exceptional divisor and ι∶ E ↪ Y , there is a decomposition

α = σ∗(β) + ι∗(γ), where β ∈ FmH i(X ,Q), γ ∈ Fm−1H i−2(E ,Q).

Let S and T be Zariski closed sets such that β ∈ ker[H i(X ,Q) → H i(X − S ,Q)] and
γ ∈ ker[H i−2(E ,Q)→ H i−2(E − T ,Q)] and any irreducible component S′ (resp. T ′)
of S (resp. T) has codimension at least (i − µm(X))/2 (resp. (i − 2 − µm−1(E))/2) in
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X (resp. in E). Since E is a divisor of Y , codimension of an irreducible components
of T in Y is at least (i − 2 − µm−1(E))/2 + 1 = (i − µm−1(E))/2. _is implies

(2.3) µm(Y) ≤ max( µm(X), µm−1(E)) .

In order to estimate µm−1(E), recall ([Le, proposition 8.23])

H i−2(E ,Q) =
c−1
⊕
s=0

hs ∪ σ∗H i−2−2s(Z ,Q),

where h = c1(OE(1))) is an algebraic cycle in H2(E ,Q). By taking Fm−1, we get

Fm−1H i−2(E ,Q) =
c−1
⊕
s=0

hs ∪ σ∗(Fm−1−sH i−2−2s(Z ,Q)) .

Hence, α ∈ Fm−1H i−2(E ,Q) has a decomposition

α =
c−1
∑
s=0

(hs ∪ σ∗(αs)) , where αs ∈ Fm−1−sH i−2−2s(Z ,Q).

Let
αs ∈ ker[H i−2−2s(Z ,Q)→ H i−2−2s(Z − B,Q)]

for a Zariski closed subset B of Z such that any irreducible component B′ of B has
codim(B′ , Z) at least (i − 2 − 2s − µm−1−s(Z))/2. Since hs ∪ σ∗(αs) is supported on
a closed set P = σ−1(B) ∩ Hs where Hs is a s-th iterated hyperplane section of E and
σ ∶ E → Z is a Pc−1-bundle, dimension counting argument implies that any irreducible
component of P has codimension equal to codim(B′ , Z)+ s ≥ (i − 2 − µm−1−s(Z))/2
in E. _is observation and Lemma 2.1 implies

(2.4) µm−1(E) ≤ max{µm−1−s(Z) ∣ s = 0, 1, . . . , c − 1} = µm−c(Z)

Now (2.3) and (2.4) imply the second estimate (2.2). Moreover, since X ,Y , Z are all
smooth and projective, relation (2.1) gives rise to an equivalent inequality

µ̄d−m(Y) ≤ max{ µ̄d−m(X), µ̄(d−c)−(m−c)(Z)} = max{µ̄d−m(X), µ̄d−m(Z)},

where d = dimX = dimY .

Corollary 2.4 Given birationally equivalent smooth projective varieties X and Y , we
have

µ̄m(Y) ≤ max{ µ̄m(X), dimX − 2} for any m.

Proof Let f ∶X → Y be a birational morphism. _en by resolution of singularities,
there exist a smooth projective variety Z, a generically ûnitemorphism g∶ Z → Y and
h∶ Z → X a composition of ûnitelymany blow ups along smooth centers of codimen-
sion at least 2. We may assume that h∶ Z → X is a single blow up along a smooth
center B. Now Lemma 2.1 and Propositions 2.2 and 2.3 imply

µ̄m(Y) ≤ µ̄m(Z) ≤ max{ µ̄m(X), µ̄m(B)} ≤ max{ µ̄m(X), µ(B)} .

Now the claimed inequality follows from [A, corollary 0.2].
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3 Application to the Generalized Hodge Conjecture

In this section, a�er establishing useful lemmas,we use µm to recheck the generalized
Hodge conjecture forwell-known varieties such as uniruled and rationally connected
varieties.

Lemma 3.1 GHC(H i(X ,Q),m) holds if and only if µm(X) ≤ i − 2m + 1.

Proof Suppose µm(X) ≤ i − 2m + 1 and let α ∈ FmH i(X ,Q). _en α lies in
ker[H i(X ,Q)→ H i(X − Z ,Q)] for some Zariski closed set Z such that any compo-
nent Z′ of Z has codim(Z′ , X) ≥ (i − µm(X))/2 ≥ m− 1/2. Hence, α ∈ NmH i(X ,Q)
and GHC(H i(X ,Q),m) holds. _e converse holds, because GHC(H i(X ,Q),m)
implies that any irreducible α ∈ FmH i(X ,Q) = NmH i(X ,Q) lies in theGysin image
[H i−2p(Z ,Q(−p))→ H i(X ,Q)] for a smooth Zariski closed set Z of codim(Z , X) =
p ≥ m = (i − (i − 2m))/2. Hence, µm(X) ≤ i − 2m < i − 2m + 1.

Lemma 3.2 ([Le, 13.6 Lemma]) Let f ∶X → Y be a surjective holomorphic map
of smooth projective varieties of the same dimension d. _en for any i and m,
GHC(H i(Y ,Q),m) holds if GHC(H i(X ,Q),m) holds.

Proof It follows from Proposition 2.2 and Lemma 3.1, since

µm(Y) = µ̄d−m(Y) ≤ µ̄d−m(X) = µm(X) ≤ i − 2m + 1.

Lemma 3.3 Let Y = BlZ X be a blow up of a smooth projective variety X along a
smooth subvariety Z of codimension c at least 2. _en for any i, GHC(H i(X ,Q), 1)
holds if and only if GHC(H i(Y ,Q), 1) holds.

Proof Suppose GHC(H i(X ,Q), 1) holds. _en Lemma 3.1 and (a proof of) Propo-
sition 2.3 imply that any α ∈ F1H i(Y ,Q) lies in ker[H i(Y ,Q) → H i(Y − T ,Q)]
for a Zariski closed set T of codimension at least (i − max{µ1(X), i − 2})/2 in Y .
Hence, α ∈ N 1H i(Y ,Q) and GHC(H i(Y ,Q), 1) holds. _e converse follows from
Lemma 3.2.

Corollary 3.4 Let X and Y be birationally equivalent smooth projective varieties.
_en for any i, GHC(H i(X ,Q), 1) holds if and only if GHC(H i(Y ,Q), 1) holds.

Proof It is an immediate consequence of Lemmas 3.2 and 3.3.

Lemma 3.5 ([S]) GHC(H2p(X ,Q), p − 1) implies GHC(H2p(X ,Q), p).

Proof SupposeGHC(H2p(X ,Q), p−1) holds and let α ∈ FpH2p(X ,Q) be aHodge
cycle. Since F● is a descending ûltration, α ∈ Fp−1H2p(X ,Q) = N p−1H2p(X ,Q).
Hence there exists a Zariski closed set S of codim(S , X) = q ≥ p − 1 such that
α = g∗(β) ∈ im[g∗∶H2p−2q(S̃ ,Q(−q)) → H2p(X ,Q)], where S̃ → S is a desingu-
larization of S. If q = p, then we are done. If q = p− 1, then β ∈ H2(S̃ ,Q(−p+ 1)) is a
Hodge cycle, since theHodge ûltration is strictly preserved by amorphism ofHodge
structure. Now the Lefschetz (1,1)-theorem implies the lemma.
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Proposition 3.6 ([S]) Let X be a uniruled d-fold. _en GHC(Hd(X ,Q), 1) holds.

Proof Since X is uniruled, there is a dominant rational map f ∶P1×Y ⇢ X,where Y
is a smooth projective variety of dimension d − 1. _en we have a smooth projective
variety Z and morphisms g∶ Z → P1 × Y and h∶ Z → X, where g is a composition
of ûnitely many blow-ups and h is a generically ûnitemorphism. By Proposition 2.2,
Lemma 2.1 and [A, corollary 0.2],

µ1(Z) = µ̄d−1(Z) ≤ max{ µ̄d−1(P1 × Y), d − 2}
≤ max{d − 1, d − 2} = d − 1,

since µ̄d−1(Y × P1) ≤ max{µ0(P1) + µ1(Y), µ1(P1) + µ0(Y)} = µ0(Y) ≤ dimY . By
Lemma 3.1 GHC(Hd(Z ,Q), 1) holds; so doesGHC(Hd(X ,Q), 1) by Lemma 3.2.

Corollary 3.7 ([CM]) Hodge conjecture holds for uniruled 4-fold.

Proof It follows from Lemma 3.5 and Proposition 3.6.

Now we turn our attention to the generalized Hodge conjecture for a rationally
connected variety. A key idea is using the decomposition of the diagonal class [B,BS,
E]. We consider the following version [La,P] taken from [V].

_eorem 3.8 Let X be a smooth complex projective variety of dimension d. Assume
that for k ≤ k0, themaps

cl∶CHk(X)⊗Q→ H2d−2k(X ,Q)
are injective. _en there exist a decomposition

(3.1) m ⋅ ∆X = Z0 + ⋅ ⋅ ⋅ + Zk0 + Z′ ∈ CHd(X × X)
where m /= 0 is an integer, Zℓ is supported in W ′

ℓ ×Wℓ with dimWℓ = ℓ and dimW ′

ℓ =
d − ℓ, and Z′ is supported in T × X, where T ⊂ X is a closed algebraic subset of codi-
mension ≥ k0 + 1.

Proof [V, theorem 10.29].

Proposition 3.9 Let X be a smooth projective variety satisfying the assumption in
_eorem 3.8, and let σℓ ∶ W̃ℓ → Wℓ (resp. τ∶ T̃ → T) be an desingularization ofWℓ for
k ≤ k0 (resp. T). _en for each m,

(3.2) µm(X) ≤ max{MW , µm−c(T̃)},
where

c = codim(T , X) ≥ k0 + 1 and MW = max{µm(W̃ℓ) + 2ℓ − 2d ∣ ℓ = 0, 1, . . . , k0}.

Proof We use the same notation in _eorem 3.8. Since the diagonal class [∆X] in
CHd(X×X) induces the identitymap on cohomology, (3.1) induces a decomposition

H i(X ,Q) = [∆X]∗H i(X ,Q) = (ι ○ τ)∗H i−2c(T̃ ,Q(−c)) +
k0
∑
ℓ=0

[Z̃ℓ]∗H i(W̃ℓ ,Q)
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where Z̃ℓ = (1 × σℓ)−1(Zℓ) ⊂ X × W̃ℓ and ι∶T ↪ X is an inclusion. Now let

α ∈ FmH i(X ,Q) = (ι ○ τ)∗(Fm−cH i−2c(T̃ ,Q))(−c) +
k0
∑
ℓ=0

[Z̃ℓ]∗(FmH i(W̃ℓ ,Q)),

which can be decomposed α = (ι ○ τ)∗(γ)+∑k0
ℓ=0 [Z̃ℓ]∗(βℓ), where γ (resp. βℓ) van-

isheson the complementof aZariski closed setC (resp.Bℓ) in T̃ (resp. W̃ℓ) all ofwhose
component has codimension at least (i − 2c − µm−c(T̃))/2 (resp. (i − µm(W̃ℓ))/2).
Since codim(T , X) = c and codim(Wℓ , X) = d−ℓ, the dimension counting argument
implies that α lies in the Gysin image of a Zariski closed set of codimension at least
(i −max{µm−c(T̃), MW})/2, where

MW = max{µm(W̃ℓ) + 2ℓ − 2d ∣ ℓ = 0, 1, ⋅ ⋅ ⋅ , k0}.

We have (3.2).

Corollary 3.10 Let X be a rationally connected d-fold. _en GHC(H i(X ,Q), 1)
holds for any i.

Proof Since k0 = 0 in the case of rationally connected varieties, MW = 0 in the
Proposition 3.9 and the identitymap on H i(X ,Q) factors through H i−2c(T̃ ,Q(−c))
and codim(T , X) = c = (i−(i−2c))/2 ≥ 1. Hence, µm(X) ≤ i−2c ≤ i−2. Lemma 3.1
implies GHC(H i(X ,Q), 1).

Corollary 3.11 ([La]) _e Hodge conjecture holds for a rationally connected variety
up to dimension ûve.

Proof It follows immediately from Lemma 3.5 and Corollary 3.10.

4 Application to the GHC of a Rational Surface Fibration

In this section, we consider a surjective morphism f ∶X → Y of smooth projective
varieties whose ûbers are rational surfaces. In this setting X is uniruled, so Proposi-
tion 3.6 implies that GHC(Hdim X(X ,Q), 1) holds. _e purpose of this section is to
prove GHC(Hdim X(X ,Q), 2) under the GHC assumption on the base Y . First we
establish the following theorem.

_eorem 4.1 Let f ∶X → Y be a surjective morphism of smooth projective varieties
such that ûbers are rational surfaces. _en

(4.1) µ̄m(X) ≤ max(µ̄m−1(Y), dimX − 3).

Proof Since rational surfaces are rationally connected, there exist a nonempty open
set V ⊂ Y , a relative zero cycle ξ ∈ Z0(X ×Y V/V), a proper closed subset Z ⊂ XV =
X ×Y V , and a cycle Γ supported on X ×Y Z such that for any y ∈ V ,

(4.2) N ⋅ ∆∣Xy×Xy = (ξ × X)∣Xy×Xy + Γ∣Xy×Xy ∈ CH2(Xy × Xy),
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where ∆ is the relative diagonal in XV×V XV andN is a nonzero integer [A1, Corollary
1] . Let Y1 = Y − V and X1 = f −1(Y1).

X1 = f −1(Y1)

f1
��

� � // X

f
��

XV?
_oo

fV
��

Z? _oo

��
Y1 = Y − V �

� // Y V? _oo

By Proposition 2.2, we have

(4.3) µ̄m(X) ≤ max(µ̄m(XV), µ̄m(X1)) for each m.

Claim 1: µ̄m(X1) ≤ d − 3.

Let σ ∶ X̃1 → X1 (resp. τ∶ Ỹ1 → Y1) be a desingularization of X1 (resp. Y1). Applying
the base change by desingularization ofY1 to the composition f1○σ ,we get a surjective
smooth morphism h∶ X̄1 → Ỹ1 of smooth projective varieties with rational surface
ûbers.

X̄1 = X̃1 ×Y1 Ỹ1 //

h
��

X̃1

f1○σ

��
Ỹ1

τ // Y1

_en by (2.1), Proposition 2.2 and Lemma 2.1, (recall dim X̄1 = dimX1 = d − 1)

µ̄m(X1) ≤ µ̄m(X̄1) = µd−1−m(X̄1) ≤ µ(X̄1)

Since h−1(y) is a smooth rational surface, µ(h−1(y)) = 0 for any y ∈ Ỹ1 [A, corollary
0.2] and [A, theorem 2.1] implies the claimed inequality:

µ(X̄1) ≤ max
y∈Ỹ1(C)

µ(h−1(y)) + dim Ỹ1 ≤ d − 3.

Claim 2: µ̄m(XV) ≤ µ̄m−1(Y).

First consider the Leray spectral sequence associated with fV ∶XV → V

E i , j
2 = H i

c(V , R j fV∗Q)Ô⇒ H i+ j
c (XV ,Q).

Since it degenerates at E2 [D] we have an exact sequence

(4.4) 0→ Hd−2
c (V , R2 fV∗Q)→ Hd

c (XV ,Q)
Hd
c (V , R0 fV∗Q) → Hd−4

c (V , R4 fV∗Q)→ 0.

By the same argument in the proof of Proposition 3.9, (4.2) induces a decomposition

H j(Xy ,Q) = [∆Xy ]∗H j(Xy ,Q) = (i ○ σ)∗H j(∣̃ξ∣y ,Q) + [Γ̃y]∗H j−2(Z̃y ,Q(−1))

where σ ∶ ∣̃ξ∣ → ∣ξ∣ is a desingularization of the support ∣ξ∣ of the zero cycle ξ, ∣ξ̃∣y =
∣ξ̃∣∣ Xy

, and Γ̃ = (1 × τ)−1(Γ) with τ∶ Z̃ → Z a desingularization of Z. Here we use the
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observation that codim(Zy , Xy) = 1 for each y ∈ V , since the ûber Zy is a proper
subset of a surface Xy and Zy cannot be a zero cycle.

H j(Xy ,Q) = im[H j−2(Z̃y ,Q(−1))→ H j(Xy ,Q)] for each y ∈ V and for j > 0.

By using the semi-simplicity of monodromy action [D1], we get a split surjection of
local systems

R j−2g∗Q(−1)↠ R j fV∗Q
where g∶ Z̃ → Z → V , and a surjection on cohomology with compact support

(4.5) H i
c(V , R j−2g∗Q(−1))↠ H i

c(V , R j fV∗Q) for j > 0.

By combining (4.4), (4.5) and duality, we get an injection

FmW−dHd(XV ,Q)↪ FmW−d (
Hd(V ,Q)⊕ (Hd−2(V ,Q)⊗H2(Z̃y ,Q))

⊕(Hd−4(V ,Q)⊗H4(Xy ,Q)) )

Via a surjection Hd(Y ,Q) ↠ W−dHd(V ,Q), any class in W−dHd(V ,Q) can be
li�ed to a class in Hd(Y ,Q) ≅ Hd−4(Y ,Q(d−2)) ≅ Hd(Y ,Q(d)) ≅ Hd−4(Y ,Q(2))
by the Poincaré duality and the Lefschetz isomorphism. By restricting the cycle to
W−d+4Hd−4(V ,Q), we can combine the ûrst and the third spaces in the summand:

FmW−dHd(XV ,Q)↪
⎛
⎜
⎝

Fm−1W−d+2Hd−2(V ,Q)⊗H2(Z̃y ,Q)
⊕

Fm−2W−d+4Hd−4(V ,Q)⊗H4(Xy ,Q)

⎞
⎟
⎠

_is shows that any class α ∈ FmW−dHd(XV ,Q) lies in an image ofW−dHd(T ,Q)→
W−dHd(XV ,Q) for some Zariski closed set T such that

dimT ≤ max( (d − 2) + µ̄m−1(V)
2

+ 1,
(d − 4) + µ̄m−2(V)

2
+ 2)

≤ max( d + µ̄m−1(Y)
2

,
d + µ̄m−2(Y)

2
) = d + µ̄m−1(Y)

2
since Y is a smooth compactiûcation of V (Proposition 2.2) and µ̄m ≤ µ̄m+1 by
µ̄m(Y) = µdim Y−m(Y) and Lemma 2.1. _erefore µ̄m(XV) ≤ µ̄m−1(Y), and the the-
orem follows from (4.3), and Claims 1 and 2.

Corollary 4.2 Given a surjective morphism f ∶X → Y of smooth projective varieties
with rational surface ûbers, GHC(Hd(X ,Q), 2) holds if GHC(Hd−2(Y ,Q), 1) holds
where d = dimX.

Proof Since X (resp. Y) is a smooth projective variety of dimension d (resp. d − 2),
(4.1) is equivalent to

µd−m(X) ≤ max( µ(d−2)−(m−1)(Y), d − 3) = max( µd−m−1(Y), d − 3) .

Now GHC(Hd−2(Y ,Q), 1) implies GHC(Hd(X ,Q), 2) immediately by Lemma 3.1,
since µ2(X) ≤ max(µ1(Y), d − 3) = d − 3.
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