RIEMANN SPACE WITH TWGO-PARAMETRIC
HOMOGENEOUS HOLONOMY GROUP

MINORU KURITA

The rotational part of the holonomy group of a Riemann space is called its
homogeneous holonomy group. A Riemann space, whose homogeneous holonomy
group is one-parametric, was investigated by Liber and an alternative treatment
of the same problem was given by S. Sasaki [1]. I will treat here a Riemann
space with two-parametric homogeneous holonomy group and prove the follow-
ing theorem by the method analogous to that of [11 I thank Prof. T. Ootuki
for his kind advice.

THEOREM. If the homogeneous holonomy group of an n-dimensional Riemann
space is two-parametric, the space is a direct sum of two non-flat two-dimensional
Riemann spaces and a n-— A-dimensional flat space; namely the line-element of
our space is given by

n .
ds’ = do} + dob+ > (dx')*
i=

where
doi= X, 2gzj(x‘, )de'dy’, dos= ) gi(x*, x")dx'dx’,

i, £ 5=3,4

.
i

0. Let the line element of a general Riemann space be given by
ds’ = 5__‘, (wi)>
i=1
If we take a rectangular frame in the tangent euclidean space at any point of
the Riemann space, a Riemannian connection is given by
(1) dA = wie;, de;=wije; (wij= — wj).
If we denote the outer derivative of w by dw, we have
(2) do; = [wjw;il.
Taking the outer derivative of both sides, we get
(3) Lwill;:1=0
where II;; is given by
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(4) I;; = dwij — Lwirwr] .

In general we define a product of two matrices 2 = (w;») and IT= (np) with
Pfaffians or differential forms as coefficients by a matrix

Lem] = (Loipmpul)
and an outer derivative of £ by a matrix
dR = (dwip) .
Then putting
w=(wy ..., 0n), 2= (wi), O=IT;),
(2), (4), (3) can be written as
(5) do=[ew2], T=d2-[22],
(6) [wIT]l=0.

If we rotate a rectangular frame, a new frame is given by e; = pije;. Our Rie-
mannian connection is for this new frame determined by

o=wP, 2@=PQP' +dP-P,
where P is the orthogonal matrix (p;;). If P is a constant matrix, we have
(7) 2=PQP .
Next we state lemmas which are used repeatedly in our treatment.

LemMma 1. Let we (a=1,..., k) be linearly independent Pfaffians with n
variables x', . . ., x". If there exist Pfaffians ws such that

d(.()a = [(Dg{, (0341], Wag = = W3a (f(, ﬁ = 1, s e ey k),
k
then by suitable choice of variables y' =y(x',...,s") (i=1,..., n), E(wa)z

can be written as a quadratic differential form in k variables y', . . ., y*, namely
k
S wa)? = g3y« . ., YA .
a=1

This is seen in E. Cartan [2] p. 296.

LEMMA 2. If the rotational part 2 = (wij) of our connection (1) is a direct
sum of two matrices, our Riemann space is a direct sum of two Riemann spaces.
In other words if wy =0 (a=1,...,k;A=k+1,..., n) then by a suitable
choice of coordinates

as’ = ga(x', . . ., AB)dx’dx’ + @ (xF, .. ., x")dx’dxt
(a, B=1,2,...,k; Ay p=k+1,..., 70

Proof. By virtue of we =0 and (2) we have
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dwo = [(Ua(l)sa] + [LL)}\C())«:] = [(1)3(.03:1]
doy = [wawa%] + [ﬂ)uwu)\.—] = [wuwu)\] .
Using lemma 1 we get lemma 3.
LemMA 3. If a Riemann space S is a dirvect sum of two Riemann spaces
S and Ss, the homogeneous holonomy group g of S is the direct product of the
homogencous holonomy group g of S. and g of S.. Especially if g and g are
k- and ke-parameiric, then g is ki+ k-parametric.
1. Now we consider a Riemann space whose homogeneous holonomy group
g is two-parametric. For such a space we can take rectangular frame at each
point such that 2 = (w;;) is an infinitesimal rotation belonging to our homogencous
holonomy group & This is evident by the fundamental theorem of E. Cartan
about the holonomy group. As g is two-parametric, we have

€3] 0= (a)ij) = Cim+ Comra,
where 71 and 7 are Pfaffians whose ratio is not a constant and C: and C: are
constant skew symmetric matrices such that
[CiCo]=CiCs — CoCr= AiC1+ ACo.

Owing to the skewness of C; and C; two constants 4; and 4, are zero. In fact
let A, be not zero, then putting 41Ci+ A4C»=Cy and Cs/di = C, we have

[CiC:1=C..
For an orthogonal matrix P PCiP! and PC,P' are skew symmetric matrices
and moreover

(9) [PC.P!, PC,P']1= PC.P'.
If we select P suitably, we have
A
_ * Al
10 PC\P' = 0

where

Ai=( 0 ai)’ (xi:\:o. (i::l,Z,...,l).
- a; 0

Hence calculating the elements of the first row and the second colomn we get
by (10) «y=0, which contradicts the assumption a;=%0. Thus we get 4; =0,
and similarly 4:=0. So we have

(11) [Cl, Cz]ﬁo-
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Now we state one lemma.

LemMma 4. Let Ci and C; be skew symmetric matrices such that [Ci, C21=0
and we assume there exists a constant m for which the matrix mCi+ C: is singu-
lar. Then the Riemann space with 2 = (wij) = Cimi+ Cans decomposes into the
direct sum of Riemann spaces.

Proof. Put C;=mC;+ C.. For suitably chosen orthogonal matrix P we have

__ A 0
(3 )

where A is non-singular. Let the corresponding formula for PC:P' be

K L
! — ?
PGP (M N)

namely K and A have the same number of rows and colomns. Then by the

relation [PCP!, PC:P']=0 we have AL=0 and MA=0. As A is non-singular
we get L=0 and M =0. Hence

2 = PQP' = PC\P'ni+ PC:P'nz
_ K+ (A - mK)n'z 0
- 0 Nry— mNms

and by lemma 2 and (7) we get the result.
Now we treat the case when C; is non-singular. Then for a suitable or-
thogonal matrix P we have

xQ 0 1
PC\P' = . , where Q=
. -1 0
aQ
and moreover all «;>0. Put
(Jll .. l]u
PC,P =} ..... ,
Uu...Uy

where Ujj’s (4, j=1,2,..., 1) are square matrices of degree 2. Then by virtue
of [PC\P!, PC.P']=0 we have

aiQUij — UijaiQ =0  (ixj),
where double indices do not mean summation.

u v
) we get
P4

Putting U;;= ( w

aju—aiz=0, aiu—ajz=0, apv+aiw=0, av+ajw=0.

As a;>0, a; % a;j means a; a; and then #=v=w=2=0, namely U;;=0. For
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ai=aj (ixj) we get w=2 and w= —v. Thus by suitable change of the order
of axes of the frame the rotational part of Riemannian connection (w;;) decom-
poses into a direct sum of the matrices of the form

Q (]11-..171!

where
. - o
U,-,-=< i ") (G, j=1,2...,D.
- Vij Uij
Now we take 7, for am and put

Q U]l...(]ll
C1= ’ . . Cg= .....
Q (jll...[]ll

If U, ..., Uy are all zero matrices, our Riemann space decomposes by virtue
of 2 =Cim+ Gome and lemma 2. Hence if we treat an indecomposable space,
we can assume without loss of generality U is not zero matrix. We put

U = ( “ :: ) and take Ca/ V%2 + ¢ for C,. Then we can assume #°+ = 1.

Now we transform C; and C: by an orthogonal matrix

10 )
(01

\ "1
0
Then PC\P' =C,, and taking PC.P’' — qC, for C; where Un =( —q ‘(1)) we get

the reduced formulas

0 1 0 0ig hiw E

210 0 0i0 li—zw

| =R | =107 0 pr 1

(12) C. = PR s G 0 —1-p0i-1 k
101 |
10 ?

Moreover we can assume
(13) det. | mCi+C: | %0,

because in the alternative case our space decomposes by lemma 4.
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2. Now we investigate the space for which
£ =Curi+ Conz,,
where C; and C: are given by (12) satisfying the relation (13). We get by (5)
II=d2 —[22] = Cidni+ Cedrz — [C1C21 [mim] ,
which by (11) reduces to
(14) I = Cidm + Codns .
Hence we have by (6)
(15) [wCi, dr ]+ [wCs, dr]1=0.
Here we state one more lemma, which is evident.

LemMmA 5. Let w1, ..., wn be linearly independent Pfaffians and let
2= ‘%aij[wimj], 2= é— bijloiw,] (aij= — aji, bij= — bji)

and moreover
[0:121] + [w:2:1=0,
then we have
aij=0, bij=0 (ix1,2; j*1,2)
and
ai=b; (i=3,4,...,n).
Now by (12) we have

a)Cl=(—wz, W1, —W4 W3y « .),

wCz=("P, T, =& 7,.. .,
where

p=ws+wws+2ws+ . . .
(16) T= —wit+ 205 —Wwe+ . ..

§= —wo+post+ kos+ los+ . . .

N=w:+pws+ lws— kws+ ... .

So by virtue of (15)

(17) Lowdr 1+ [pdral =0, [wdmd+[edr1=0
(18) [wdr ]+ 6dn:1=0, L[wdrd+Iydr.]=0.

By (16) we can take wi, ws, p, 7, ws, ws, . . . as base. Then by virtue of (17)
and lemma 5 dr; and dr» can not have terms containing ws, ws, . . . , and these
are of the form

(19) Alwi0:]1+ Blwipl + Clwsr1+ Dlpr].
On the other hand by (18) dr; and dn, are represented by ws, w4, §, 7 only, and
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80 by ws, wy, &' =&~ pwy, 3’ =7 — pw:. Now by (16)

p=w+wws+ws+ . . .

T= —wi+Zws—Wws+ . ..
o= —&' +hos+lwog+ ...
wr =7 —los+kos+ . ...

(20)

We put these into (19), and equating the coefficients of [wsws), [wewel, Lo wsl,
Lwiws], [&'ws], [&'ws], [9'ws], and [9'ws] to zero we get

(21) Bk — Dz =0, Bl+ Dw =0
(22) —-Cl+Dw=0, Ck+Dz2=0
(23) - Al+Bw=0, Ak+Bz=0
(24) Ak —Cz =0, Al+Cw=0,

From each row of these we get

(25) B(E+1*) = D(kz — lw), 0= D(lz+ kw)

(26) = — DUz + kw), C(E+1°) = — D(kz—lw)
(27) Bw’+2") = — Altkz —lw), 0= AUz+kw)
(28) 0=Alz+kw), Cwl+2%) =Alkz-lw).

If #4+0%0 and w=2=0, we get by (25) and (26) B=C =0, hence by (23)
A=0. If w'+2°50and k=1=0, we get by (27) (28) and (22) B=C=D=0.
If ¥+7%0 and 0+ 2*% 0, we get
A B ___Cc D
Wi T Tkt ka—h o = (BT

In any way A:B:C:D is determined when at least one of %, [, w, 2 is not zero.
We treat this case in the first. Then (19) is determined except for a multiplier,
and as dr; and dr. are of this form, we have two cases, namely either dr;=0
or dm =mdnr: (drax0). If dr=0, we get by (17) and (18) dm =0, and our
space is flat and so this case may be omitted. If dri=mdr,, we get by (17)

and(18)
(29) [p+ mws, dr21=0, [v+ mw;, dra]l=0
(30) [&+ mws, drel=0, [9+ maws, dr1=0.

Now we have by (16)

0+ Mwr=Mmwe+ w3+ Wws+ 2w+ . . .
T+ My = Moy — O3+ 2ws — Wws -+ .« o .

which shows that ¢ -+ mw: and 7+ mw; are independent. Hence by (29)
(31) drs = Wl + maws, v+ mod=h(...—=Lowd+mlow]l+ ...).

Here terms containing wi, ws, w; only are written. Putting this and
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Etmus= — o1+ P+ mos+ kos+ log+ . . .

into (30) we get from the consideration of the term [wiwsw:] the relation
1—-m(p+m)=0. Hence m=(—p+~ p°+4)/2, namely m is a constant. So
by (14)

T = Cidry+ Codres = (mC1+ Co)dr .
By virtue of [wII1=0

(32) Lw(mC:i+ C2), dr]1=0.

By (31) and (32) each element of the matrix w(mC;+ C.) must be a linear
combination of p+ mw: and t -+ mw;, hence the rank of the matrix mCi+ C: is
two. So by the assumption (13) C: and C: are square matrices of degree 2
an¢ our Riemann space is of dimension 2. Next we treat the case k=Il=w
=2z=0. Then we can assume that in C; all the elements of the first four rows
except first four colomns are zero, for in the contrary case we can treat as in
the above case already treated, namely the case when one of %, I, w, z is not
zero. Thus our space decomposes into a 4-dimensional space and another space,

and it is sufficient to consider this 4-dimensional part. For this part C; and Ci
have components

0
C; ) — , céO) =

lcoco

0
0
L
0

co !l o
cCoOo

Hence
det. |mC” + C"! = (m(p+m) —1)2
This is zero for a real number m = ( — p = ~$*+4)/2. Hence det.| mCi+ C:| = 0.

This contradicts the assumption (13).
Thus we get the result that the Riemann space, for which

2 =Cim+ Conz,
where C; and C: are given by (12) satisfying the relation (13), is two-dimensional.
3. Thus we obtain the result that the Riemann space with two-parametric
homogeneons holonomy group decomposes into a certain number of two-dimen-

sional non-flat Riemann spaces and a euclidean space. By lemma 3 the number
of these two-dimensional spaces is two, and our proof concludes.

REFERENCES

[1] S. Sasaki: An alternative proof of Liber’s theorem, Proc. Japan Acad, Vol. 27 (1951).
[2] E. Cartan: Legon sur la géométrie des espaces de Riemann (Paris, Gathier-Villars. 1946).

Mathematical Institute,
Nagoya University

https://doi.org/10.1017/50027763000022960 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000022960



