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ON THE CALVING OF ICE FROM FLOATING GLACIERS
AND ICE SHELVES

By NieLs REEH

(Laboratoriet for Hydraulik, Polyteknisk Lareanstalt, Danmarks Tekniske Hojskole,
Kobenhavn K, Denmark)

Asstracr. The deformation and the state of stress in the (rontal part of a floating glacier is analysed by a
method analogous with the beam theory, applied in engineering practice for determining stresses and
deflections of a beam of an elastic material. Very rough approximations are made, the most severe being that
of assuming the viscosity of the ice constant. Curves showing the progress in time of the deflections and the
stresses in the frontal part of the glacier are given for the case of an infinitely wide glacier. The curves show,
that the stresses are greatest at a cross-section situated at a distance of about the thickness of the glacier from
the front, and that the stresses are of a magnitude which very likely will lead to fracture, resulting in the
formation of an iceberg. It is shown that the magnitude of the icebergs as well as the frequency of the calving
is a function of the thickness, the density, and the temperature of the glacier. Observations from nature
supporting the theory are described. Finally other calving mechanisms for floating glaciers are briefly
discussed.

RisuMme. Sur le vélage des glaciers flottants el des ice-shelves. La déformation et 'état des contraintes de la
partie frontale d’un glacier flottant sont analysés avec une méthode analogue a la théorie des poutres,
utilisée par les ingénieurs pour déterminer les contraintes et courbures d’une poutre élastique. De tres fortes
approximations sont faites dont la plus sévére est d’admettre que la viscosité de la glace est constante. Des
courbes montrent le changement avec le temps des déviations et les contraintes dans la partie frontale du
glacier sont données pour le cas d’un glacier infiniment large. Les courbes montrent que les contraintes sont
les plus fortes dans une coupe située a une distance du front d’environ I'épaisseur du glacier, et que les
contraintes sont d’un ordre de grandeur amenant plus que probablement la rupture et la formation d’un
iceberg. I est montré que la grandeur des icebergs, aussi bien que la fréquence du vélage, est une fonction
de Pépaisseur, de la densité et de la température du glacier. Des observations réelles, décrites dans le rapport,
soutiennent la théorie. Finalement d’autres mécanismes de vélage de glaciers flottants sont briévement
discuteés.

ZUSAMMENFASSUNG. Uber das Kalben des Eises von schwimmenden Gletschern und Eisschelfen. Die Delormation
und der Spannungszustand im Frontbereich eines schwimmenden Gletschers werden mit Hilfe einer zur
Balkentheorie analogen Methode untersucht, wie sie im Ingenieurwesen zur Bestimmung der Spannung und
Verbiegung eines elastischen Balkens angewandt wird. Es werden sehr grobe Niherungsannahmen getroffen,
deren schwerwiegendste die Voraussetzung einer konstanten Viscositit des Eises ist. Fiir den Fall eines
unbegrenzten Gletschers werden Kurven angegeben, welche die zeitabhingige Verinderung der Verbie-
gungen und die Spannungen im Frontbereich des Gletschers darstellen. Die Kurven zeigen, dass die grossten
Spannungen in einem Querschnitt aufireten, dessen Entfernung von der Gletscherfront ungefihr des Eisdicke
entspricht. Sie zeigen weiter, dass die Spannungen von einer Gréssenordnung sind, die sehr leicht zum Bruch
und damit zur Bildung eines Eisbergs [iihrt. Es wird gezeigt, dass die Grosse der Eisberge und die Hiufigkeit
der Kalbungen Funktionen der Dicke. der Dichte und der Temperatur des Gletschers sind. Beobachtungen
in der Natur, welche die Theorie stiitzen, werden beschrieben. Schliesslich werden kurz andere Kalbungs-
vorgange an schwimmenden Gletschern diskutiert.

1. INTRODUCTION

In order to give an answer to the important question of whether the big ice sheets of the
world, in Greenland and the Antarctic, are decreasing, increasing or even in equilibrium,
several attempts have been made to set up total mass balance equations. The debit side of
these budgets contains two items, (a) Loss due to melting and evaporation (ablation), (b) Loss
due to calving. Approximate values of the total loss and the loss due to calving per year for
Greenland and Antarctica are shown in Table I. The values given in this table are attended
with great uncertainty, but what can be deduced with certainty is that the loss due to calving
constitutes a large part of the total loss (about 50 per cent for Greenland and about go per cent

T'aBLE [. AppPrOXIMATE VALUES OF THE L0sSs OF ICE FROM THE
(GREENLAND AND ANTARCTIC ICE SHEETS

Greenland Antarctica
Total loss km3/year 500 1 100
Loss by calving km3/vear 250 1 000
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for Antarctica). Consequently, a necessary condition for finding a reliable mass balance for
the big ice sheets is to obtain a rather accurate value of the loss of ice by calving.

Seen in this context, the importance of throwing some light on the factors influencing the
calving process is obvious. The considerations put forward in this paper are an attempt to do
this.

2. DEFORMATION AND STRESS IN A FLOATING GLACIER

In the following, the term “floating glacier” will be applied to the subject discussed, but it
should be pointed out that floating ice shelves are also included.

. fy
hydrostatic
| pressure h water |
' pressure
GLACIER

pi gh
Fig. 1. Longitudinal section of floating glacier

Consider a portion of a floating glacier of constant thickness £ (cf. Fig. 1). In order to
keep an arbitrary proportion of the glacier in equilibrium in the sense that the rates of strain
in all directions are equal to zero, the stress distribution must be purely hydrostatic, i.e. all
shear stresses must be equal to zero, and all normal stresses equal to pjgy, where p; is the
density of the ice (assumed constant), g the acceleration due to gravity, and y the vertical
distance from the upper surface. At the front of the floating glacier (which for simplicity is
assumed vertical) the normal stress is equal to the water pressure and distributed as shown in
Figure 1, i.c. it varies linearly from zero at water level to the value pygh' — pigh at the bottom
surface. Comparing this stress distribution with that necessary for keeping the ice in equili-
brium, it is seen that the actual stresses are insuflicient to maintain equilibrium. The deviation
between the hydrostatic pressure and the actual pressure is a tensile force N, and consequently
the ice must expand in the direction of the tensile force, i.e. in the direction perpendicular to
the front. This expansion has been considered by Weertman (1957).

As will be seen from Figure 1, the deviation between the actual pressure and the hydro-
static pressure increases from the bottom to the top of the glacier, which means that the
tensile force acts eccentrically. In other words, the floating glacier is subject to bending as
well. Consequently, the upper layers will be stretched more than the lower layers, so that the
front of the ice begins to rotate, overhanging more and more. This rotation cannot proceed
without a simultaneous downward movement of the frontal part. This, in turn, causes upward-
directed buoyancy forces to act on the front section of the glacier. I the front of the glacier is
situated far from bedrock contact, then the necessary reaction to this upward-directed force
must come from the neighbouring section of the glacier, which starts moving upwards for this
reason. Applying this argument to consecutive sections of the floating glacier, it will be
realised that in this way a series of undulations with their axes parallel to the ice front are
developed. The amplitude of the undulations decreases according to the distance from the ice
front. This procedure takes place at the same time as the glacier is expanding. At some
distance from the front the vertical deflection has in practice disappeared, and here the glacier
is in a state of pure expansion. This is the state considered by Weertman, who also pointed
out that his theory is valid only at some distance from the ice front.

The assumption that the ice front is situated far from bedrock contact is correct with
regard to the big ice shelves of Antarctica. Elsewhere, the number of undulations developed
depends on the distance between the front and the bedrock in the direction perpendicular to
the ice front.

https://doi.org/10.3189/50022143000031014 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031014

CALVING FROM FLOATING GLACIERS 2L

Now let us turn to the stress distribution in the glacier, proceeding with the descriptive
account followed so far. A more precise treatment of the subject is given in section 3, where
the theory is put in a mathematical form. It has already been stated that when stress deviation
from hydrostatic pressure is considered, the glacier is subject to a tensile force acting on the
front, and that the tensile stresses are greatest at the upper surface of the glacier. As the
frontal part moves downwards, transverse forces start acting on the glacier, inducing shear
stresses in the ice body. In this way a rather complex state of stress is developed in the frontal
part of the glacier.

As shown in section 4, the tensile stresses, as well as the shear stresses, reach their maximum
at a cross-section situated at a distance from the front approximately equal to the thickness of
the glacier. Since the combination of tensile stress and shear stress is very dangerous, from the
point of view of fracture, it seems reasonable to assume that the mechanism described here will
lead to fracture developing from the upper surface of the glacier, where the tensile stresses are
greatest.

Several simplifications and inaccuracies have been made in the above considerations. "The
most important simplifications are discussed below.

The deviation between the hydrostatic pressure and the actual pressure acting at the front
was claimed (o be an eccentrically acting, tensile force. As the frontal part of the glacier moves
downwards, however, the magnitude of the force, as well as the eccentricity, varies con-
tinuously. In fact, the force acting on the front becomes a compressive force from a certain
moment, but an essential point is that the bending moment at the front increases slightly
during the downward movement and, consequently, keeps the process going.

It was also assumed that the front was vertical. This is in practice the case as regards that
part of the front above sea-level. According to Swithinbank and Zumberge (1965), p. 201
the shape of the front below sea-level may differ considerably from the vertical. Therefore,
let us examine the effect of the front shapes shown in Figure 2. In addition to the normal force
N, the action of which was considered above, the cross-section marked with the dotted line is
now influenced also by a vertical force Q, downward or upward, depending on whether the
front is overhanging or not (Fig. 2a and b). This causes a movement of the frontal part in the
direction of the force. By this movement, however, the force is decreased and, consequently,
the glacier would approach a state of equilibrium in which the force had disappeared if the
force Q were the only force acting on it. This shows that whatever the shape of the frontal part
of the glacier, it will only modify, but not prevent, the deformation process previously
described.

GLACIER GLACIER

a) b)

Fig. 2. Forces acting al the front of the glacier

3. DEvELOPMENT OF Basic EQuaTions
3.1. General remarks

In this section the equations for the stresses and deformations of the floating glacier are
set up. The theory developed is analogous to beam theory used for determining stresses and
deflections of a beam of an elastic material. As is most frequently the case when dealing with a
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problem from nature, a correct treatment, if possible at all, will involve enormous mathe-
matical troubles. In order to avoid these troubles a simplified system-—a model—has to be
introduced. Before describing the model adapted for the calculation, mention of the system
proper would be appropriate.

GLACIER -
h
dx
s -
L L

Fig. 3. Longitudinal section of floating glacier

We are dealing with a glacier which moves from land out into the sea (Fig. 3). At the
point where the depth of the sea is equal to dih, (di = pi/pw) the frontal part of the glacier
comes afloat. Observations, as well as theoretical considerations, indicate that the velocity is
practically constant over the entire thickness of the glacier. If the extension of the glacier in
the direction parallel to the front, i.e. normal to the plane of the paper (Fig. 3), is supposed
large, the glacier may therefore with good approximation be regarded as moving into the sea
as a rigid body. If the inclination of the ground over which the glacier moves is supposed
slight, then the buoyancy forces resulting from the oblique, downward movement of the front
into the sea, will be compensated by a simultaneous upward movement of the frontal part of
the glacier (compare the remarks in connection with Figure 2, section 2). This means that,
apart from the vertical deflections caused by the bending moment acting at the front, the
glacier will move into the sca as a free-floating body. The extent of the floating part of the
glacier increases in course of time, partly due to the supply of ice from the tributary of the
glacier, which causes a translational movement, and partly due to the extension of the glacier
itself owing to the tensile force mentioned in section 2.

I'rom time to time a piece of the frontal part of the glacier will break off, and in this way a
state of equilibrium is attained in which the loss by calving balances the supply of ice from
behind. If the supply of ice is supposed constant, the front of the glacier will fluctuate around
a state of equilibrium.

The co-ordinate system used in the calculation forms part of the translational movement of
the glacier. The velocity resulting from the extension of the glacier itself is neglected. Mathe-

. : s c o @ .
matically, this means that total derivatives ——are replaced by local derivatives ,—£ Viewed
0

dt )
from the moving co-ordinate system, the transition point between the grounded part of the
glacier and the floating part moves at a velocity of the same magnitude, but directed opposite
to the translational velocity of the glacier. At the point of transition, the deflection and the
slope of the deflection curve are equal to zero. So the point where these boundary conditions
should actually be applied, moves relative to the co-ordinate system.

As shown by the calculations (see section 4), the position of the point of transition may
vary considerably without influencing the deformation of the frontal part very much. For
this reason, the point of transition is considered fixed, in relation to the co-ordinate systern.
This is tantamount to assuming the extent of the floating part of the glacier to be constant.

To sum up, the following approximations are made:

(a) The extent of the glacier in the direction parallel to the front is supposed large, i.c.

we are dealing with the case of plane strain.
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(b) Apart from the vertical deflections caused by the bending moment acting on the front,
the glacier floats freely.
(¢) The extent of the floating part of the glacier is assumed constant.
To these assumptions we add one more, viz.
(d) The thickness of the glacier is supposed constant. Actually, the thickness varies, due to
melting—possibly deposition of snow or ice—and also due to the extension creep
which may cause thinning of the glacier.

3.2. The co-ordinale system

An x;-axis is located at the middle surface of the undeflected glacier (parallel to sea-level),
directed perpendicular to the ice front. The deviation of the middle surface of the glacier
from the horizontal plane containing the x,-axis is denoted ». The deflection u is positive in
the upward direction. The x,-direction is normal to the middle surface of the undeflected
glacier with origin at the middle surface of the deflected glacier, and positive downwards (see
Fig. 3).

3.9. Forces acting on a cross-section of the glacier

Consider a section of unit width in the direction normal to the plane of the paper. The
stresses acting on a cross-section normal to the x,-axis may be reduced to three forces, which can
statically replace the stresses (see Fig. 4) viz.

Lh

bending moment M = J o X das g (1)
—1h
th

normal force N — J o das; (2)
“1h
h

transverse force () = J 012 dxz; (3)
—zh

o and o1: denote normal stress and shear stress, respectively. The sign-convention for forces
and stresses will appear from Figure 4.

dxq

M+ dM x|
N+dN
N Q+dQ
dX2 e “—"511
012

l 012
922
b

Fig. 4. Forces acting on an element of the glacier

https://doi.org/10.3189/50022143000031014 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031014

220 JOURNAL OF GLACIOLOGY
3.4. Lquations of equilibrium

Since all movements are very slow, inertial forces may be neglected. Consequently, the
equations of equilibrium used in statics can be applied. Neglecting the small contributions to
the moment from the normal force and the horizontal component of the water pressure, the

application of these equilibrium conditions to an element of the glacier leads to the well-
known equations

dQ .
= — (4)
dM
wnd P 5)
In these equations ¢ denotes the transverse load on the glacier, i.e.
g = pwgl. (6)
Substituting Equation (6) into Equation (4) and introducing dimensionless variables
u Xy N
H’:_) x;:__y Q__’: Q;J N':—z',
h L pw gh tpw gh
M
and M = e,
12pw &h

where L is the length of the floating part of the glacier, and the other symbols are as explained
above, Equations (4) and (5) are rewritten

dQ’ Lu' ’
d_Jd ==y (7)
dM’  12L0Q’

A ®)

Differentiating Equation (8) once with respect to x; and substituting dQ’/dx; from Equation
(7) leads to
d*M’ 12l

dx? e o (9)
The dimensionless normal force, obtained from an equilibrium condition, may be expressed
by
N = —di+ad . (10)

3.5. Stress—strain relationship

So far, only statical conditions have been applied, which are independent of the rheological
properties of the ice. In order to proceed further, the relationship between stress and strain
for the ice must be considered. Ice is known to possess viscous as well as elastic properties.
If, however, stress variations take place very slowly, as in the case here considered, the elastic
terms occurring in the stress—strain relationship are negligible, and consequently ice may in
this connection with good approximation be treated as a purely viscous material. Hence,
applying the notation of Cartesian tensors the stress—strain relationship may be expressed by
the equation

1 I
€ij =2—'Haij—'6? okk Oij (l!)
where €;; are the strain-rate components, oj; the stress components, p the viscosity, and
81 the Kronecker delta, defined by 8;; = 1ifi = jand o0if # j, and the Einstein convention
of summing repeated suffices is employed. Numerous experiments indicate that the viscosity
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of ice is strongly dependent on stress and temperature. For effective shear stresses (defined
below) of the order of magnitude of 1—2 bar, the following formula seems to tally reasonably
well with various experimental results (Lliboutry, 196465, p. 86-87)

p o exp (—o.250) /77 (12)
where  is the temperature in degrees Celsius, and 7 the effective shear stress defined by the
equation:

2 = éai}ﬂ'i_’p“- [lIS_}
where ¢/; is the deviatoric stress (a5 = 05— Yomdy)-

The effective shear stress varies considerably throughout the glacier. Moreover, the
temperature varies in the vertical direction through the glacier. Evidence of such a variation
is given for the Antarctic ice shelves (see Bender and Gow (1961)), for which the temperature
difference between the upper and lower surfaces may amount to 20 deg or more. A similar
temperature variation, perhaps not so marked, may be expected for the big ice streams of
Greenland.

From these remarks, in conjunction with Equation (12), it follows that a correct treatment
of the problem would require consideration of the great variation (by a factor ten or more) of
the viscosity. This, however, would involve enormous mathematical troubles. Since a funda-
mentally correct solution may be obtained assuming the viscosity constant, and since the
mathematical treatment is greatly facilitated by this assumption, the viscosity of the ice is
supposed constant, although with this assumption the results obtained by the calculation (e.g.
the width of the icebergs produced by calving or the time interval between two calvings)
cannot be expected to agree with nature. On the other hand, the results will give an indication
of the variation of these quantities with the mean temperature, density and thickness of the
glacier.

3.6, Differential equation for the deflection curve

According to beam theory, the curvature of a beam of an elastic material having a narrow

rectangular cross-section may to a first approximation be expressed by

d*u 1eM _

= == (I

dd ~ Eb i
where £ is Young’s modulus of elasticity. Equation (14) is based on the assumption that plane
cross-sections remain plane during the deformation.

Comparing the stress—strain relationships for the elastic material with that for the viscous
material, it can be shown that the corresponding equation for an infinitely wide beam of a
viscous material is expressed by
G ('?f:u ) g M ,
=l 0r, (15)
ot \ Ox3 uh’ \15)
In this equation d/d¢ has been replaced by @/6 in accordance with the remarks on p. 218,

In section 2 it was mentioned that only deviations of stress from the hydrostatic pressure
will result in deformations. For this reason the moment forming part of the right-hand side of
Equation (15) equals the moment of the stress deviation between the actual normal stresses
and the hydrostatic pressure. Since the quantity previously denoted by M is the moment of
the actual stresses, it may be realised that M in Equation (15) should be replaced with
M-+ L pigh’, the latter term being the moment of the hydrostatic pressure.

Substituting this expression into Equation (15) and introducing dimensionless variables,
this equation is rewritten

qph @ ( F:u') o
e s = M'{-d;. (16)
pwel’T 77 \ o i oL

Xy
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The dimensionless time is introduced as ¢" = ¢/ T, where T is a fixed time interval.

2 ]

Differentiating Equation (16) twice with respect to x; and substituting W from Equa-
Xy

tion (g) gives

9 (o4 Spwgl AT | Iaa .
aele) = — v = ) 0

where ¢ = pyghT|p is a dimensionless constant. Equation (17) is the differential equation
for the deflection curve of the floating glacier, and is analogous with the differential equation
for the deflection curve of a beam on an elastic foundation.

3.7. Boundary conditions

At the transition from the grounded part of the glacier to the part afloat, i.e. for x; = o,
the deflection and the slope of the deflection curve are put equal to zero (cf. Fig. 3),

[u']o = 0 (18)
d oul
an el 0. (19)

Fig. 5. Boundary conditions al the front of the glacier

At the front of the glacier, the bending moment and the shear force are known. If small
quantities are neglected, the following expressions for the dimensionless forces acting on a
vertical cross-section at the front, are obtained (Fig. 5).

Ni = —di+edi[u],, (20)
Q: = o, (21)
M; & —3di+2di4-6(di—d)[u'].. (22)
Substituting in Equation (16) from Equation (22) gives
o [eu' cl?
el il = —(di—ad> 3 i—d) [u
[7(55) |, = Srtr—sdi i sty 1w (23)
Differentiating Equation (16) with respect to x; and substituting 9M’/2x; from Equation (8)
leads to
4uh* @ 63:1’) 4 .
pwel’ T a:*(ax'j =
Putting x; = 1 and making use of Equation (21) we get

). - e
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3.8. Method of solution of the differential equation

It would lead too far to discuss in detail the method applied for solving the differential
Equation (17). In short, the following method has been used.

The solution is written in the form

w (x5, 1) = uh(xr) fur(ar) ¢4+ ... Fuplxr) "+ .. (25)
where the u,-functions are functions of x; only. Substituting Equation (25) into Equation (17)
leads to a set of differential equations for the u,-functions. If uy(x}) is supposed to be known,
(up(xy) is the deflection curve at the time (" = o), then all u,-functions may be determined
successively by integration. The arbitrary constants introduced by the integrations are deter-
mined by the boundary conditions Equations (18), (19), (23) and (24).

When in this way the deflections of the glacier have been determined, the forces Q', M’
and N’ are calculated from Equations (7), (8) and (10), respectively. Since the convergence
of the series equation (25) is rather slow, (especially for large ¢’s) a computer program
written in the ALGOL I1I language has been worked out to calculate the coeflicients of the
polynomials u, (x;). The program also calculates the values of «’, N’, Q’, and M’ for different
values of x. The calculations were carried out on the Danish medium-size computer GIER.

3.9. Calculation of stresses

From the forces M', N, and Q’, the stresses are calculated by means of the formulae
from beam theory. Application of more exact formulae is unreasonable owing to the approxi-
mations introduced. The stress components made dimensionless by division by pygh are
expressed in terms of the dimensionless forces M’, N" and Q’ as follows:

oy = N+ ML, (26)
oh = —(di—u')(3+2), (27)
oy, = 1.5Q7 (1 —4x3%). (28)
For the state of plane strain, the effective shear stress (see Equation (13)) may be expressed
by
7 = /{(oh—o) ol (20)

In order to obtain a representative value applicable for comparing the effective shear
stress from one glacier to another, let us consider the state of pure expansion. In this case
o) —as — 3(di—d?) and of, = o. Hence the dimensionless effective shear stress for this
case Is

v = Hdi—d}) (30)
Due to the bending and shearing action, the actual value of 7" may in the frontal part of the
glacier attain values two to three times the value indicated by Equation (30).

4. REsuLTS OF THE CALCULATIONS

From the differential equation (17) and the boundary conditions, Equations (18), (19),
(23) and (24), it can be seen that the problem is governed by the dimensionless quantities
L/h, dyand ¢ = pwghT/p. Since ¢ is the only quantity containing the scale of time T, ¢ may be
used for converting the scale of time from one case to another. If L/h and d; are identical for
two glaciers, and the progress in time of the deformation procedure has been calculated for one
of them (1), then the results (in dimensionless form) are transferable to the other glacier (2)
merely by changing the scale of time by a factor determined by the demand that ¢ is the same
for the two glaciers. This factor becomes

e

where suffices 1 and 2 refer to glaciers (1) and (2), respectively.

hz Hr

hr,u-:
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The influence of L/h has been investigated by performing calculations with L/h = 5 and
Lk = 10, respectively. The calculations showed that the deformation procedure of the frontal
part of the glacier (and with that the state of stress in this part) was in practice independent
of L/h. The influence of d; has also been investigated, leading to the result that in the interval
0.8 << d; << 0.9, the influence can be taken into account by applying the factor d,—3d’+2d}
to the results.

From these remarks it may be concluded that within the simplified theory advanced in
this paper (constant ), the progress in time of the deformation and the state of stress of the
frontal part of all infinitely wide floating glaciers, may be represented by one and the same
set of curves.

Figures 6, 7 and 8 show the progress in time of the dimensionless deflection, transverse
force, and bending moment, respectively.

u
__h
3d2—d; - 2d;3
e 0.2
-.--”“ﬁ’i::{——___—‘-‘\\
1 e i, %5
ok 3 2 -1 h
——— 12,6 ¢ \\-02
T ek
e B S EF W N-04
e & 125% ;
e o 1)
s . e \ -06
Scale of time: f= Rugh (see table2)
-0.8

Fig. 6. Progress in time of dimensionless deflection of the frontal part of an infinitely wide floating glacier
Q
—_Puoh?
3d;%-d;—2d;?

o +0.02

-4 -3 e 2 -1 B
—-—t=12.5f % / //..~-0.04

—_t- g5f N\ f
— g \~/? o
—-—t= 125 W, T-0.12
— Wiy

Scale of time: f=‘5‘v:l—g[.,— (see table 2) 1-016

|x

Fig. 7. Progress in time of dimensionless transverse force in the frontal part of an infinitely wide floating slacier
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M
Tpagnd i
3di¢-d; - 2d;°

a1 OF
— = B5f

cwrenees B e B

i} 125F
t=0

: K
Scale of time: f-ngh (see table 2)

-16

Fig. 8. Progress in time of dimensionless momenl in the frontal part of an infinitely wide floating glacier

The scale of time T of the deformation progression varies from one glacier to another
proportional to u/h, i.e.
e (
— 5 ar)
pwih 31)
Substituting u from Equation (12), where = and # are now regarded as representative mean

values for the glacier, and substituting 7 = }(di—d})pwgh (see section 3.9), Equation (31)
is written

o P (—0/4) (52)
(pw g3 (di— &)} ;
(where the constant of proportionality is 1 bar3 year), which shows that the thinner and colder
a floating glacier is, the greater is the time scale T, i.e. the longer the periods that pass until a
certain state of the deformation progression is attained.
In order to get an idea of the periods required for producing considerable deflections, let us
calculate some representative values of the factor

64 exp (—0/4)

(pw gh)3(di—d})™

Putting d; — 0.9, the values for f shown in Table IT are obtained. If di = 0.8, the values in
the table should be divided by about 3.

Tasre IT, Trmeractor [ 1IN YEARS as Funcrion oF
TuickNess k AND TEMPERATURE 6

h m 200 400 6oo 700
°C
o 0.26 0.032 0.0096 0.0061
—4 0.71 0.088 0.026 0.0165
—8 1.9 0.24 0.071 0.045
=12 5.2 0.65 0.19 o.122

By means of the values in Table 11 and the curves in Figure 6 it can be seen that a 600-m
thick glacier having a mean temperature of —4°C and a relative density of 0.9 (this glacier
represents the ice streams of West Greenland) will attain a deflection of 30 m (a twentieth of
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the thickness) after about 0.29 year = 3.5 months, while a 200-m thick glacier having a mean
temperature of —12°C—and a relative density of 0.8—(representing an Antarctic ice shelf)—
will attain a relative deflection of the same magnitude only after about 19 years. These
values are, of course only to be taken as orders of magnitude.

From Equations (26), (27) and (10) we get the following expression for the stress difference
o1 — Uz’z

ol —os, = ydi—di+(2di—1) &) +x;(M'+di—u').

From this equation and Figures 6 and 8 the progress in time of o,,—0.; may be obtained.
Putting di = 0.9 and putting x; = —} and +}, the curves given in Figure g showing the
stress difference at the upper and the lower surface of the glacier, respectively, are obtained.
Choosing another value of d;, another set of curves are found. It will be seen that the stress
difference is greatest at the upper surface of the glacier at a distance from the front of between
half the thickness and the whole thickness of the glacier, and that, in practice, the stress
difference at this place is constant.

Oyq—0
L ——— t= 4.5f o

d; =0.9 —--— t= 85f L
0.10
t=0
| ' Upper =surface B Oezﬂ
-4 -3 -2 -1 & h
s a7 |
e 8 i " 3 ogh 10.06
t =0 Lower surface S, 0.02
— - + } = ] 1‘[
I : Z , ; = , :
-4 =3 =2 -1 g h

Brle i b T p_ub'ﬁ (see table 2)
w

Fig. 9. Progress in time of the dimensionless stress-difference o11— o1 in the frontal part of an infinitely wide floating glacier

As seen from Equation (28), the maximum value of the shear stress o(; occurs at the middle
surface of the glacier (xi = o) and has the magnitude 1.5Q0". The progress in time of the
maximum shear stress may consequently be obtained by multiplying the values given by the
curves in Figure 7 by the factor 1.5. Figure 7 shows that the shear stress is maximum at a
cross-section situated at a distance of about half the thickness of the glacier from the front,
and that the shear stress at this cross-section increases in time. From the above considerations,
in conjunction with Equation (29) it will be seen that the effective shear stress attains the
greatest values at a cross-section situated at a distance from the front of about the thickness of
the glacier.

6. FracTURE CRITERION

As introduction to a discussion of where and when the state of stress in the glacier becomes
critical, from the point of view of fracture, some general remarks on the fracture criterion for
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ice would be appropriate. A reasonable criterion for the fracture of ice is that the ultimate
strength is attained when the effective shear stress 7 has reached a certain critical value, which
is a function of the mean normal stress p = 4(or1+0224033). Investigations supporting this
assumption are reported in Zumberge and others (1960, p. 69). Morcover, it is a well-known
fact that the time during which a specimen of any material will carry a given load is dependent
on the magnitude of this load (see, e.g. Nadai, 1950, p. 188). This behaviour has been proved
for ice by Jellinek (1957). Temperature also affects the strength of ice. From the remarks
above it will be seen that the establishment of a fracture criterion for ice is a rather complicated
problem, in which factors like temperature, effective shear stress, mean normal stress and the
time during which the stresses act are involved.

At present a formula expressing the fracture criterion cannot be set up, but the criterion
can be given the following general formulation: the higher the temperature, the greater the
effective shear stress and the greater the mean normal stress (tensile positive), the shorter will
be the time until fracture occurs.

As stated above, the effective shear stress is greatest at a cross-section situated at a distance
from the front of about the thickness of the glacier. At the upper surface the mean normal
stress is greatest, and consequently the ice will fracture at the surface, at which a crack starts
opening. Consequently, the stresses in the uncracked part of the cross-section increase,
resulting in increased deformation rates. After some time, this procedure will lead to total
fracture, resulting in the formation of an iceberg. The width of the iceberg produced is of the
same order of magnitude as the thickness of the glacier. The magnitude of the maximum
effective shear stress may be obtained from Equation (29) and Figure (g). It is approximately

7 — kb,

where k depends on d;. The Table 111 shows values of 7 for different values of d; and h. The
two rows correspond to d; = 0.9 (an approximate value for the ice streams of West Greenland)
and d; = 0.8 (an approximate value for the ice shelves of Antarctica). The thickness of the
ice streams of West Greenland is of the order of magnitude of 200700 m, that of the fronts of
the Antarctic ice shelves of the order of magnitude of 200-300 m. From Table I11 the maxi-
mum effective shear stress is found to be 1-3 bars in both cases.

Tasre I1I. Maximum ErFecTive Suear STrEss (1N Bars) as A Funcrion
oF RELATIVE DENSITY di AND THICKNESS /i

hm 200 400 6oo 8oo

di
0.9 0.8 1.6 2.4 2.8
0.8 1.6 9.2 4.8 5.6

According to Pounder (1965, p. 96) the tensile strength of ice, as obtained from short-time
tests, is 15 bars. The test results may be larger or smaller than this value by a factor of two or
three. Due to inhomogeneities, which must exist inside a large ice body as a glacier, the tensile
strength of the glacier ice must be less than, say, 10 bars, to which corresponds an effective
shear stress of 10/4/3 & 6 bars. On these grounds it seems reasonable to postulate, that an
effective shear stress of the order of magnitude of 1—3 bars acting for a long time under tensile
conditions will lead to fracture.

The question as to when the fracture occurs cannot be answered until more is known about
the long-time strength of ice, but according to the above discussion of the fracture criterion, it
may be stated that the thinner and colder a floating glacier is the longer are the intervals
between one calving and another.
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6. OBSERVATIONS SUPPORTING THE Prorosep THEORY oF CALVING

Evidence of a large downward deformation of the frontal part of a glacier at the stages
preceding calving, is provided by a couple of aerial photographs of Rink Gletscher in north-
western Greenland, taken in June 1964 (Figs. 10 and 11). As will be seen from the photo-
graphs, the glacier has calved during the period of 15 days that has elapsed between the first
and the second photographs.

h L \ . '

Fig. ro. Rink Gletscher, g June 1964. (Geodetisk Institut, Denmark, copyright)

The topographical maps shown in Figures 12 and 13 are based on the aerial photographs.
The mapping was carried out by means of a stereothope. In the absence of the necessary fixed
points, only vertical adjustments of the stereoscopic models have been carried out so that four
points at sea-level have been used as fixed points with known levels. The scale of the maps was
determined on the basis of the flight altitude. For these reasons the maps are, of course,
somewhat inaccurate. Looking at the maps, one observes that south of the dotted line shown
in Figure 12, the level of the glacier’s surface is practically constant (about 8o m above sea-
level). This is quite likely because this part of the glacier is floating. Considering the map and
the longitudinal section shown in Figures 12 and 14 respectively, it can be seen that at the
front of the glacier the upper surface is almost at the water level. Consequently, the downward
deflection of the front amounts to about 80 m. On the other hand, the part of the glacier
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immediately behind the front has moved about 20 m upwards. This is precisely the sort of
deformation predicted by the theory. Another thing supporting the theory, as will be seen
from Figure 10, is the presence of recently opened crevasses near, and parallel to, the front,
indicating tensile stresses at this place. Such crevasses are apparent from aerial photographs
of all glaciers terminating in water.

i [

Fig. rr. Rink Gletscher, 22 June 1964. (Geodetisk Institut, Denmark. copyright)

Having mentioned the things supporting the theory, it must in fairness be admitted that
not all the surface features observable on the photographs can be explained. The existence of
the smaller waves behind the large one at the front is not predicted by the theory, which gives
a wave-length of the undulations of several times the thickness of the glacier. The wave-
length of the undulations in Figure 12 is of the same order of magnitude as the thickness of the
glacier.

Another result of the theory, which is supported by observations from nature is that the
thinner and colder a floating glacier is, the longer are the intervals between one calving and
another. This agrees with the observation that calving from the relatively cold and thin
floating ice fronts in north Greenland (e.g. Melville Bugt) and Antarctica, occurs at longer
intervals than calving from the warmer and, especially, thicker glaciers terminating in Disko
Bugt and the Umanak distrikt in western Greenland.
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Fig. r2. Topographical map of Rink Gletscher based on the photography carried out 9 June 1964
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Fig. ry. Longitudinal section of Rink Gletscher at the position shown in Fignre 12

7. DiscussioN oF OTHER CALVING MECHANISMS

Several theories of the causes of calving have been given in the past. Some of these will be
discussed briefly below.

(a) Buoyancy effects. These arise either from the oblique, downward movement of the front
into the sea or from tide variations. Common to these effects are that the greatest stresses
produced by them occur at the point of transition from the grounded part of the glacier to the
part afloat, which means that the width of the icebergs should be equal to the length of the
floating part of the glacier. This is evidently not the case as regards the icebergs originating
from the Antarctic ice shelves.

(b) Effect of storm waves. The action of waves at the ice front itself can hardly result in
stresses which can lead to calving. However, the waves will also produce pressure fluctuations
along the lower surface of the glacier. Now, the pressure fluctuations decrease very rapidly
with the distance below the sea surface, and at a depth equal to the wave-length they have
practically disappeared. Wave-lengths of 200-300 m are the maximum reported for ocean
waves. Below a depth of this magnitude, significant pressure fluctuations will not occur.
Since the thickness of most of the fronts of floating glaciers and ice shelves is more than 200 m
we can conclude that the action of storm waves can hardly explain the breaking of big icebergs
from the ice front.

8. CoxNcLusioN

The theory of calving advanced in this paper seems to agree with observations from the ice
streams of western Greenland, especially with observations from such ice streams as the
Jakobshavn Isbra and Rink Gletscher, which, most likely, have floating fronts. On the other
hand, the theory does not explain directly the periodical break-up of large portions of the
Antarctic ice shelves. A possible explanation of this feature is that, when the first iceberg has
loosened from the front, the adjoining part of the shelf is not in equilibrium and, consequently,
breaks off, and so on.

It should be pointed out that, of course, not all of the ice calved from the floating glaciers
of the world is formed in the way proposed in this paper. Many small icebergs are, for
example, produced by pieces falling down from the upper part of the ice front.

Finally, it should be mentioned that a consequence of the theory proposed is that the size
of the icebergs as well as the frequency of calving depends solely on the thickness, the tempera-
ture, and the density of the glacier. Consequently, the loss of ice by calving depends on these
three quantities only. The width of the glacier will of course influence the calving process to
some degree. But if the width is just a few times the thickness of the glacier, the influence is
believed to be small.

https://doi.org/10.3189/50022143000031014 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031014

232 JOURNAL OF GLACIOLOGY

9. ACKNOWLEDGEMENT

I wish to thank Kebenhavns Universitets Geografiske Institut, in particular Dr Tyge
Moller, for placing at my disposal maps, aerial photographs and the Zeiss Stereothop of the
Institut, for the mapping work.

MS. receved 25 September 1967

REFERENCES

Bender. J. A.. and Gow. A. J. 1961. Deep drilling in Antarctica. Union Géodésique et Géophysique Internationale.
Assoctation Internationale d’ Hydrologie Scientifique. Assemblée générale de Helsinki, 25-7—6-8 1960. Collogue sur la
glaciologie antarctique, p. 132—41.

Jellinek, H. H. G. 1957. Tensile strength properties of ice adhering to stainless steel. U.S. Snow, Ice and Permafiost
Research Establishment. Research Report 23.

Lliboutry. L. 1964-65. Traité de glaciologie. Paris, Masson et Cie. 2 vols.

Nadai. A. 1950. Theory of flow and fracture of solids. New Yorx, McGraw-Hill Book Co. (Engineering Societies
Monographs.)

Pounder, E. R. 1965. The physics of ice. Oxford. etc.. Pergamon Press. (The Commonwealth and International
Library. Geophysics Division.)

Swithinbank, C. W. M., and Zumberge. J. H. 1965. The iceshelves. (In Hatherton. T.. ed. Antarctica. London,
Methuen, p. 199-220.)

Weertman, J. 1957. Deformation of floating ice shelves. Fournal of Glaciology, Vol. 3. No. 21, p. 38—42.

Zumberge, J. H.. and others. 1960. Deformation of the Ross Ice Shelf near the Bay of Whales, Antarctica, by
J. H. Zumberge, M. Giovinetto, R. Kehle and J. Reid. IGY Glaciological Report Series (New York, IGY World
Data Center A, Glaciology, American Geographical Society), No. 3.

https://doi.org/10.3189/50022143000031014 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000031014

	Vol 7 Issue 50 page 215-232 - On the calving of ice from floating glaciers and ice shelves - Niels Reeh

