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ON A COMPLEMENTARITY PROBLEM
ASSOCIATED WITH NONDIFFERENTIABLE PROGRAMMING
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Abstract

This paper deals with the question of the existence of a solution to the stationary-point
problem corresponding to a given nonlinear nondifferentiable program. An existence
theorem for the stationary-point problem is presented under some convexity and regular-
ity conditions on the functions involved, which also guarantee an optimal solution to the
nonlinear program.

1. Introduction

A mathematical programming problem with an objective function containing the
square root of a positive semidefinite quadratic form has been discussed by many
authors (see references in [5]). Sinha [11,12] has shown that in the formulation of
a deterministic model of the stochastic linear programming problem, the objective
function contained a term of the above form. Mond [5] has generalized the
formulation in [12], and derived necessary and sufficient conditions for optimality
for such programming problems. Since the usual methods for solving this type of
problem are not applicable because of the nondifferentiability of the objective
function, it is solved by solving the corresponding dual problems. For this
purpose, it is always assumed that the primal has an optimal solution. One feels it
useful if the existence of an optimal solution to the problem is ensured before the
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actual computation is taken up. With this point in view, consider the pro-
gramming problem:

P

(P): Minimize F(x) =f(x) + j {xTBjX)

subject t o x € I ,

W2

whfrP Y = fv (= V°- y > ( l , . ( v \ > n ) V0 ; c or. nnor. oat ,r* D" (• V0 _ J) o^fj ~ -
• • * - - . » » - J « i^*- ^— -• •. . ^ v - - v » ft V''* ,/ "~ v / j ) ^ » »t> V4.lt VSL^W'IA J V l 1 1 1 I V j J • -f 1. ' i l U 1 1 V J £ .

X° -> Rm are differentiable functions on A"0, and By, 7 = 1,...,/?, is an n X «
symmetric positive semidefinite matrix. A test will be obtained for the existence
of an optimal solution. This is primarily of interest when the feasible set X is
unbounded, since an optimal solution will always exist if X is bounded, and hence
compact. The results may also be of use in cases when it is not easy to determine
whether or not the feasible set X is bounded.

Following Mond [5], a stationary-point problem for (P), very similar to the
Kuhn-Tucker stationary-point problem [4] for the usual nonlinear differentiable
program is given as follows: Let / = {1,2,...,/?}, and for x £ X, let K(x) = {7
e J: BjX = 0}.

(CP): Find x £ R", u G Rm, Wj e J T J £ K(x), such that

x(x,u,Wj) =
j<EJ\K(x)

+ 2 BJWJ ^ 0,

(X(x,u,Wj),x)=0, (g(x),u)=0,

where <j>(x, u) = / (x) — uTg(x), T7<p(x, u) — Vf(x) — A(x)u, V denotes the
gradient with respect to x and A(x) is the Jacobian matrix of the mapping g
defined by AIJ(x) = dgj/'dxr It is easy to check that if (x, u, Wj) is a solution to
(CP) and if/is convex and g is concave at x, with respect to X (see [4], definition
4.1.1), then x is an optimal solution of (P). Thus for/convex and g concave, (1.1)
is a sufficient condition for x to be optimal for (P).

Given a function M: R"+ -> R", the problem of finding an x £ RK such that

x>0, M{x)>Q, (M(x),x)=0, (1.2)

is known as the complementarity problem. The Kuhn-Tucker stationary-point
problem for the usual nonlinear differentiable program with nonnegative varia-
bles takes the form (1.2). Hence, the problem of the existence of a solution to the
nonlinear program can be reduced to a problem of the form (1.2) (see [1], [6] and
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[2]). The stationary-point problem for (P) does not take exactly the form (1.2),
and thus, the problem (1.1) is not a complementarity problem in the true sense of
the term. In order to maintain similarity, we call (1.1) the (CP) associated with (P)
and study the question of the existence of an optimal solution to (P) via the (CP).
Convexity of a function is defined in terms of its directional derivative and an
existence theorem for (CP) is established under some conditions on / and g which
also guarantee the existence of an optimal solution to (P).

2. Preliminaries

Throughout this paper, T denotes an index set and R" denotes ^-dimensional
Euclidean space with the usual inner product (x, y) of x, y G R". Further, R+

and R"+ denote the set of nonnegative numbers and the nonnegative orthant,
{x G R": x s= 0} of R", respectively. Finally, e G R" denotes a vector all of whose
components are unity.

For a function H: X° -» R, a point x G A"0 and a vector z G R", the directional
derivative of H at x in the direction of z, which we denote by H'{x; z), is given by

H'(x; z) = lim [H(x + rz) - H(X)]/T,
T —0 +

where T -» 0 + means T approaches zero through positive values. If H is differen-
tiate at x, then H'(x; z) = [vH(x)]Tz. It has been shown by Mond and
Schechter [7] that, for the function H(x) — f(x) + (xTBx)l/2,

H'(x; z) = zTvf(x) + zTBx/ (xTBx)1/2 if xTBx > 0,

H'(x; z) = zTvf(x) + (zTBz)V2 if xTBx = 0.

This result is easily extended to the objective function F(x) = f(x) +
!p

J=x(x
TBjX)wl, and we have

F'(x; z) = zTvf(x) + 2 zTBjX/ {xTBjX)W1

(zrBjzY/2. (2.1)

A function H: X° -> R is said to be convex at x° G A"0 with respect to A"0 if,
for each x G A"0, H'(x°; x - x°) exists and

H(x) - H(x°) - H'(x°; x - x°) ^ 0.

H is said to be convex on A"0 if it is convex at each x G A"0. H is concave at
x° G A"0 (concave on A"0) if and only if -H is convex at x° (convex on A"0).
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A function H: X° -» R is said to be pseudoconvex at x° G A"0 with respect to
X° if, for each x E X°, H'(x°; x - x°) exists and

H'(x°; x - x°) s* 0 - H{x) > H(x°).

H is said to be pseudoconvex on A"0 if it is pseudoconvex at each x G A"0. H is
pseudoconcave at x° (on A"0) if and only if -H is pseudoconvex at x° (on A"0).

A function H: X° — R is said to be quasiconcave at x° G A"0 with respect to
X° if, for each x G A0, H'(x°; x — x°) exists and

H(x) ^ H(x°) =» H'(x°; x - x°) ^ 0.

H is said to be quasiconcave on A"0 with respect to A"0 if it is quasiconcave at each
x GX°.

The concept of convexity at a point of a set (on a set) with respect to the same
set to which the point under consideration belongs is introduced by Mangasarian
[4]. Note that the above concept of pseudoconvexity in terms of directional
derivative generalizes the concept of pseudoconvexity given in [4].

For x G X, define the set Zx by

Zx = [z: zTVg,{x) ^ 0 (Vi 6 e , ) , ^ 0 (V/ G Q2) and F'(x; z) < 0}

where

G, = {':&(*) = 0} and Q2= {j; Xj = 0}.

If x is an optimal solution of (P) and Zx is empty, then (1.1) is a necessary
condition for optimality. This follows from a theorem of Sinha [12, page 380]. As
observed by Mond and Schechter [7], the condition that Zx is empty at an optimal
solution of (P) is implied by the Slater constraint qualification.

Consider the following conditions involving the functions / , g and the matrices
Br

CONDITION 1. The function g is pseudoconcave on /?+ , and there exists an x G X
such that g,(x) > 0 whenever gt is non-affine.

CONDITION 2. The point x E X satisfies the inequality

The proof of the following lemma is omitted, since it follows by making some
minor modifications to the proof of Mond and Schechter [7, page 613].

LEMMA 1. Assume that Condition 1 is satisfied. If x is an optimal solution of (P),
then Z- is empty.
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3. Main results

In the discussion to follow, we always assume that the feasible set X of (P) is
nonempty. Define the set X(a) C Xby

X(a) = {x:x EX,eTx^a]

for every real a > 0. Since X is nonempty, there exists an a0 > 0 such that X(a) is
nonempty for every a0 ^ a < oo.

The following lemma gives a necessary condition for (CP) not to have a
solution.

LEMMA 2. Assume that Condition 1 is satisfied. If (CP) has no solution then the
following holds: There exist sequences {x'},er and {«'},gr» both corresponding to an
infinite sequence {a,},e r with a, -» oo, such that

{x ' / a , } , e r converges to a nonzero vector t > 0, (3.1)

and for every i G T,

x'EX(a,), «'>0, (g(x'),u')=0, (3.2)

F'(x';x-x') - (A(x')u', X-X')^0 for every x E X(a,). (3.3)

PROOF. The proof x given by Condition 1 satisfies x G X(a*), for some
sufficiently large a*. Let a'o = max(a0, a*). The sets X(a), for a'o < a < oo, are
compact. The continuous function F attains its infimum on each such compact set
X(a). Let xa be the minimal point of F with respect to X(a) for a'o =£ a < oo. By
hypothesis and Lemma 1, we obtain, as a necessary condition of optimality,
vectors u", w",j E K(x"), and a scalar £"» all corresponding to xa, such that

xa>0, g(xa)>0, (3.4)

ua>0, (g(xa),ua)=0, (3.5)

X(xa, u\ w,°) + iae > 0, (3.6)

-• 0, (3.7)

wfBjW* < 1 fory E K(xa), (3.8)

eTxa^a, | a > 0 , | a ( « - e 7 x a ) = 0 . (3.9)

If there is an a such that £" = 0, then (xa, ua, wf) is a solution to (CP).
Therefore, we conclude that if (CP) has no solution, then £" > 0 for every
a'o =£ a < oo. Now by (3.9) we have eTx" = a. Let /" = x"/a, and then t" > 0
and eTt" — 1. This shows that the set of points t" lies in a compact set, and hence,
there exists a convergent sequence of ta with a -» oo. Let this sequence of ta
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correspond to the sequence {a,-}jer. Let t be the limit of this sequence. Thus we
obtain a vector

/ = him' = l im(x ' /a , ) ,
/er

where t > 0 and eTt - 1. Clearly, t ^ 0. This establishes (3.1) and (3.2). Further,
for any x > 0, we obtain from (3.6) and (3.7) that

( X ( x \ u',wj), x - x')+ £'eT(x -x')>0 (3.10)

for every / G T. But eT(x — x') = eTx — a, < 0 for every / £ T if x G A^a,).
From the generalized Schwarz inequality [9, page 262] and (3.8), we have

BjWJ.x-x)
j<EK(x')

]
jSK(x')

Hence, it follows from (3.10) and the definition of F' as given by (2.1) that

F'(x';x - xl) - (A{x')u',x- x')>0 for every x e ^ ( a , ) .

This completes the proof of the lemma.

We define the following sets.

V= {(x,u):x G X,u £ / ? ? ,

F'(x; y - x) - (A(x)u, y - x)> 0 for some y(¥= x) G A'},

U= {u G R™ : {x, u) G V for some x G X), and

A'u= {x: (x,u) G K} for u G t/.

Obviously, ^ C X We note that if (x, u) G K then u G [/ and x G Xu.

LEMMA 3. (a) lf(x, u, Wj) is a solution to (CP), and X ¥= {x}, then

F'(x; y - x) - (A(x)u, y ~ x)>0 for ally G X,

and hence, if there exists y (=£ x) G X, then u G U and x G Xu.
(b) Assume that X is unbounded. If, for some x G X,

q{x) = Vf(x) + 2 BjX-/ (x^x) > 0,
jej\K(x)

then 0 G U and x G Xu with u = 0.
(c) Assume that g is pseudoconcave (or quasiconcave) on /?+ . / / there exist

u G R"l , x G Xsuch that (g(x), u)= 0, then (A(x)u, y - x)> 0 for ally G X.
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PROOF, (a) follows from (1.1) and the inequality

BjWj,y-x)< 2 [(y-x)TBJ(y-x)]i/2.
I j<EK(x)

(b) Since A'is unbounded, there is a sequence {xp} in Xsuch that Hx^H^ -» oo,
where \\x\\x = max{|x,|: 1 < / < « } . Note that for x £ X, \x,\= x, for every /.
Let Hicll̂  = /I, and denote \\xp\\ by [i(p). Then n(p) -» oo as p -» oo. It follows
from this that

), * ' - * ) = 2 ?,(*)(*,'-*,)
1 = 1

4 ( ) ) j max ?,(

if p is taken sufficiently large. Let one such value of p be /?, for which the
inequality holds. Now, by takings = xPl, we have (q(x), y — x)> 0. Since Bp

j £ ^ ( 3c), is positive semidefinite,

Hence, we have F'(x; y — x) > 0, which implies (3c, 0) £ K.
(c) By the hypothesis, we have

m m

2u,g,(y)>0 and 2 «,*,(*) = 0,

where M, > 0, g,(>») > 0 and g,(x) ^ 0 for each /. This implies that

«,-g,(^) ^ ° = ",«,(•«) for each '•
Let / 0 = {/: M, = 0). Then for / ^ 70, we have g,(y) ^ g,(^)- If g, is pseudocon-
cave on the convex set R"+ , it is quasiconcave [4], which implies (Vg,(x), y ~
x ) > 0. Now multiplying by w,, we obtain

(M,Vg,(x), y ~ x)&* 0 for each i & Io.

Since w, = 0 for / £ /0, it follows by taking the sum over / that (A(x)u, y — x)>
0.

THEOREM 1. For problem (P), assume both the constraint qualification (Condition
1), and also Condition 2, that q(x) > 0 for some x £ X. If, for each fixed u £ U, F
is pseudoconvex in the variable x on the set Xu with respect to X, then (CP) has a
solution, and hence, (P) has an optimal solution.
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PROOF. If (CP) has a solution, then by the convexity assumption, (P) has an
optimal solution. This can be seen as follows. Let (x, u, w,) be a solution to (CP).
Hence, if x is not the only feasible solution of (P), by Lemmas 3(a) and 3(c) we
have

F'(x;y-x)>0 forattyEX,

which by the pseudoconvexity of Fyields F(y) > F{x) for ally G X.
We show that (CP) has a solution by contradiction. Only the case of X

unbounded need be considered, since (P) has always an optimal solution when X
is bounded. Assuming that (CP) has no solution, by Lemma 2 we have a sequence
{a,},g r C R+ with a, — oo, corresponding to which there exist sequences {*'},<=r
and {«'},er

 s u c n that, f°r e a c ' 1 ' e F,

x'EX(a,), u'GR™, (g(xl),u')=0,

F'ix'ix-x') - (A(x')u',x- X')>0 for all x £*(<*,).

For some s 6 T , the points x and x given by Conditions 1 and 2 satisfy e r i < « ,
and eTx «£ a, for every a, > as, i G F. Then we have

F'(x';x- x') - {A{x')u', X- X')^0 for all / G T with a, 5= a s .

By the pseudoconvexity assumption and Lemma 3(c), this implies

F(x)>F(x').

We thus have

F(x)^ F(x') for every/^G T with a, 5* as.

We now distinguish between two cases.

Case 1: F(x) = F(x') for every / G T with a, > <xs. This implies that F(x) is
the minimum value of F over A" and (CP) has a solution.

Case 2: F(x) > F(xr) for some r E.T with a, s= as. Since F(x') does not
increase with increasing a,, it is clear that F(x) > F(x') for every / G T with
a, ^ ar^ as. By Lemma 3(b), we have 0 G U and x G Xu with « = 0, which
implies that F is pseudoconvex at x. But by the pseudoconvexity of F, F(x) >
F(x') implies F'(x; x' — x) < 0. Thus we have F'(x; x' - x) < 0 for every / G T
with a, 5= ar 2s af. Now dividing by a, and taking the limit, this yields

tTVf(x)+ 2 tTBJx/(xTBJx)'/1+ 2 ( ^ ) ' / 2 ^ 0 .
7ey\A:(x)

This is a contradiction since (0 ¥=) t 5* 0.
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COROLLARY 1. Assume that Conditions 1 and 2 are satisfied. Iff is convex on X
with respect to X, then there exists a solution to (CP) and hence an optimal solution
to (P).

REMARK. Note that a necessary condition for x° £ X to be an optimal solution
of (P) is that there exist some u° £ R+ satisfying

F'(x°; y~ x°) - (A(x)u°, y - X°)^0 for all .ye X,

(g(x°),u°)=0. (3.11)

This condition (implied by (1.1)) is sufficient when some convexity condition is
assumed. Let Qo = {/: g,(*°) = 0}. If there exist x° E X, u° £ R™ satisfying
(3.11), and if / i s convex at x° with respect to X [or F is pseudoconvex at x° with
respect to X], and if g,, / £ Qo [or u°g,, i £ Qo] are quasiconcave at x° with
respect to X, then it follows that x° is an optimal solution of (P). Sufficiency
conditions of this sort can be found for / convex and g concave in [5] and for /
convex and g quasiconcave in [10].

Condition (3.11) holds if (CP) has a solution. In Theorem 1, a solution to (CP)
is proved to exist, under a stronger convexity condition, which while making
(3.11) sufficient for optimality, ensures that a solution to (CP) exists. In Lemma 2,
necessary conditions are obtained for a minimal point, xa of F over X(a), using
the Slater Condition, which does not depend on the particular point xa. Analo-
gous results hold with other constraint qualifications that are applicable to the
sequence of programs obtained by substituting X(a) for X. In such cases, it is
possible to weaken the requirements on the function g to quasiconcavity.

So far as the authors know, there are no existence results previously known for
nondifferentiable programming. For the differentiable problem,

(PD): Minimize/(x) subject to x £ X, obtained by setting each BJ = 0 in (P),
the sufficient conditions for optimality in [3, Theorems 1.1.1-1.1.4] are compar-
able to those for (P) discussed above. Kojima [2] showed that an optimal solution
exists for (PD) if X is bounded, a Slater condition holds, and / is convex and g
concave; but X bounded closed and / continuous suffice. Parida and Sahoo [8]
obtained an existence result for (PD) assuming / convex and g concave on R"+ ,
and there exists x > 0 with g(3c) > 0, v/(3c) > 0. This is a special case of
Corollary 1. Some minor changes in the proof of Lemma 2 and Theorem 1 prove
the following, more general, existence result.

THEOREM 2. Suppose that f is pseudoconvex on X with respect to X and g is
pseudoconcave on R"+ . If there exists feasible x such that g,(3c) > 0 for all
non-affine g, and V/(ic) > 0, then (PD) possesses an optimal solution.
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In order to apply the sufficient criterion of Theorem 1, all that is needed is one

feasible point 3c (often from an infinite number of such points), for which

q(x) > 0; or, for Theorem 2, for which 3c 3= 0, g(x) > 0, V / ( x ) > 0. Such a point

may often be easily found, as in examples (A), (D) and (E) below. However,

examples (B) and (C) show that a minimum may be attained, without necessarily

having q{x) > 0 for any feasible 3c. Example (F) shows that the sufficient

hypothesis q(x)> 0 cannot be weakened to q(x) 3= 0.

Example (A) Minimize

- x2 + 2x2 + (x2 + x2Y/2
"•"l T AX2 ' \xl i X2j

subject to g,(x) = x, - 1 > 0, g2(x) = -e~Xl + \ > 0, x, 3= 0, x2 3= 0.

Here F is convex and the constraint functions are concave on R"+ . When
3c = (2.2), q(x) > 0. Also g(x) > 0 (here x = 3c). By Theorem 1, an optimum
exists, in fact at (1,0).

Example (B) Minimize JC, subject to JC, + x2 > 1, x, > 0, x2 > 0.

Example (C) Minimize

/ ( x ) = { ( ^ - 1 ) 2 + 5 (x<\),)

subject to x 3s 0.

Both (B) and (C) have minima, but no 3c is <7(3c)(= V/(x) for a differentiable
problem) strictly positive.

Example (D) Minimize

subject to

g|(x) = - U
g2{x)=x\+
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Here the objective function F is pseudoconvex on the feasible set; q(x) > 0 for

x — (1,2); so a minimum exists, in fact at (1,0).

Example (E) Minimize F(x) - -e'x subject to g(x) - x3 + x + 1 s= 0, x s= 0.

Since Fis pseudoconvex, g is pseudoconcave, and q(x) > 0 at 3c = 2, it follows

that there exists an optimal solution; in fact, at x = 0.

Example (F) Minimize x2 subject to x2 — e~*< > 0, x s* 0.

If F is convex over X with respect to X, and attains its minimum at a unique

x°, and there exists z G X with 0 ¥^ z — x° > 0, then qt(z) > 0, for some /; but

q{z) > 0 cannot be deduced. This is shown as follows. Since/is convex, so is F.

From F(y) > F(x°) whenevery G X, y ¥= x°, there follows

/(*°) + 2 (*°V)' / 2 -ZOO - 2 1/2

7=1 J<=J\K(y)

But 2?yj = 0 for y G #(>>) implies that the last summation reduces to

^jeKiy)(x°TBjXoy/2. Hence (q(y), y - x°)> 0 for a\\ y (E X,y =t x°. The result
follows with y = z.
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