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Summary

Despite sperm mitochondrial relevance to the fertilization capacity, the processes involved in
the production of ATP and functional dynamics of sperm mitochondria are not fully
understood. One of these processes is the paradox involved between function and formation
of reactive oxygen species performed by the organelle. Therefore, this review aimed to provide
data on the role of sperm mitochondria in oxidative homeostasis and functionality as well the
tools to assess sperm mitochondrial function.

Introduction

Nuclear power, including the production of low-carbon electricity, is responsible at this time
for almost one-third of global total energy generation. According to the International Atomic
Energy Agency (IAEA), the main reason for this use is the low investment cost relative to the
amount of energy produced and the fact that nuclear power plants produce virtually no
greenhouse gas emissions or air pollutants during their operation, and very low emissions over
their entire life cycle. Therefore, due to these benefits, there are now 447 nuclear power
reactors in operation in 30 countries and another 58 reactors are under construction, based on
IAEA information. However, the use of nuclear energy remains a cause of concern around the
world, due to the devastating effects of accidents caused by core damage in nuclear plants. This
concern is based on the long-term consequences of accidents, such as the accidents at
Chernobyl (1986) and Fukushima-Daiichi (2011).

As in nuclear power plants, mitochondria exhibit high energy production capacities.
However, in situations in which the structure of this organelle is compromised, the potential to
release extremely toxic products is also worrying. Such toxic substances may lead to damage of
the surrounding cells and other tissues. In fact, several studies have linked mitochondrial
dysfunction to some pathological conditions such as neurodegenerative diseases (Lin & Beal,
2006), type 2 diabetes (Lowell & Shulman, 2005) and neoplasia (Modica-Napolitano & Singh,
2004).

In regards to the spermatozoa, several studies related mitochondria to be the main source
of cell energy, playing an important role in cellular homeostasis and sperm motility (Travis
et al., 1998; St John, 2002). However, for some species, evidence suggests that glycolysis may be
also an important source of ATP production for sperm motility, superior to oxidative
phosphorylation (Mukai and Okuno, 2004; Ford, 2006; Nascimento et al., 2008).

Despite the importance of mitochondria to sperm metabolism, during oxidative phos-
phorylation, metabolites called reactive oxygen species (ROS) are produced and are a trigger
for several reproductive physiological mechanisms (de Lamirande et al., 1997). Nevertheless,
an unbalance between ROS production and mechanisms aiming to avoid their powerful
oxidative potential (i.e. antioxidants), may be extremely harmful to the spermatozoa (Halli-
well, 1999; Nichi et al., 2007a).

In this context, mitochondria are highlighted as source of pro-oxidative factors that are
crucial in the disruption of oxidative homeostasis (Agarwal et al., 2014). Several studies have
demonstrated correlations between impaired mitochondrial activity, oxidative stress and
sperm DNA fragmentation, indicating a close relationship between these variables on sperm
damage (Barros, 2007; Nichi et al., 2007b; Blumer et al., 2012).

Since the accident at Chernobyl, several safety improvements have been adopted and, after
the Fukushima accidents, new generations of more safe designs for nuclear power stations
have been developed. The main concern of nuclear energy specialists and the community, in
general, is the approaches made to prevent the destruction and long-term consequences
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caused by an eventual nuclear disaster. If possible, the deactiva-
tion of power plants prior to predictable stressful events would
probably avoid most damage. Similarly, mitochondrial therapy is
applied in situations in which organelle dysfunction occurs (i.e.,
sperm cryopreservation) (O’Connell et al., 2002; Sariozkan et al.,
2009; Thomson et al., 2009), and aimed to improve sperm via-
bility by prevention of pro-oxidative factors release. Actually,
some studies have suggested that, for certain cell types, uncou-
plers of oxidative phosphorylation are capable of reducing oxi-
dative stress (Vincent et al., 2004; Mailloux & Harper, 2011).

This review aimed to compile available data on the role of mito-
chondria in oxidative homeostasis and sperm functionality as well as
suggesting some tools to assess the sperm mitochondrial function.

The mitochondrial paradox: physiological and
pathological role on spermatozoa

According to the endosymbiotic theory, millions of years ago the
mitochondrion was a prokaryotic unicellular organism. Formerly
a free-living bacterium, the mitochondrion was capable of
metabolizing oxygen in an environment rich in carbon dioxide.
After penetrating a host eukaryotic cell that was incapable of
metabolizing oxygen, a symbiotic relationship was established,
later evolving into a more complex organism capable of produ-
cing energy more efficiently than the previously available glyco-
lysis pathways (Margulis, 1970; Cummins, 1998). In fact, aerobic
metabolism is highly dependent on mitochondrial functionality.
The aerobic respiration is then, a consequence of the mitochon-
drial demand for oxygen which, by means of oxidative phos-
phorylation, is capable of producing approximately 90% of
cellular energy (Saraste, 1999; Copeland, 2002).

Role of mitochondria in ATP production and sperm
physiology

Studies have demonstrated the main role of mitochondria on
sperm functionality, referring to this organelle as the main source
of ATP for cellular homeostasis and motility (Travis et al., 1998;
St John, 2002). However, its role in sperm metabolism has been a
matter of debate. Mukai & Okuno (2004), when inhibiting sperm
mitochondrial activity in mice concomitantly to glycolytic path-
way supplementation, observed that ATP production and flagella
beat remained unaltered. However, when glycolysis was inhibited
and oxidative phosphorylation was stimulated, a drastically
reduction in flagella beat and ATP production occurred. This
finding suggested that glycolysis is more relevant than oxidative
phosphorylation in the energetic metabolism of murine sperm. In
a recent study conducted by our group, we observed similar
results in bovine epididymal spermatozoa subjected to mito-
chondrial uncoupling and glycolysis stimulation (Losano et al.,
2017a; Fig. 1). In addition, Nascimento et al. (2008) observed
similar results in human sperm. These authors suggested that,
despite the important contribution of oxidative phosphorylation
for ATP production, glycolysis is the primary source of energy in
human sperm. Conversely, other studies in humans have described
the opposite effect when sperm samples are incubated with inhibi-
tors of the enzymatic electron transport complexes, with a decrease
in sperm motility (Ruiz-Pesini et al., 2000; John et al., 2005). Fur-
thermore, we verified that ovine sperm undergoing mitochondrial
depolarization that did not alter their total motility. Spermatic
kinetic patterns were affected, suggesting that mitochondria are very

important in maintaining the quality of ovine spermatozoa move-
ment (Losano et al., 2017b; Fig. 2).

Mitochondria are essential to sperm functionality due to the
relationship between their functional and fertilizing capacities
(Marchetti et al., 2002, 2004; Gallon et al., 2006; St John et al., 2006).
Nonetheless, it is still not clear how mitochondria can contribute to
the energy capacity of sperm. The organelle has distinct contribu-
tions to sperm metabolism, dependent on experimental conditions
and animal species (Storey, 2008; Amaral et al., 2013).

The importance of the glycolytic pathway on ATP generation
and on sperm function, has been described previously (Mukai &
Okuno, 2004). Lardy and colleagues (1945) first showed that
mitochondrial inhibition leads to asthenospermia. However, with
glucose supplementation to the samples, sperm motility was re-
acquired. In addition, White & Wales (1961) observed that ovine
sperm maintain their motility through two parallel mechanisms
of energy generation, i.e. glycolysis and oxidative phosphoryla-
tion. Moreover, Krzyzosiak and colleagues (1999) also observed
that bovine sperm were capable of maintaining similar motility
patterns in both aerobic and anaerobic conditions, assuming that
glycol sable substrates are available. Furthermore, previous studies
have suggested that ATP molecules supplied by oxidative phos-
phorylation in the sperm midpiece are not efficiently diffused to
the more distal regions of the tail, indicating that glycolysis would
probably play a key role in flagella beat in this region (Nevo &
Rikmenspoel, 1970; Turner, 2003).

Role of calcium on mitochondrial function

A hypothesis on the main regulatory mechanisms of oxidative
phosphorylation considers ADP and inorganic phosphate as feed-
back substrates for ATP synthesis through several cellular kinases.
Therefore, an interesting analogy can be employed with the eco-
nomic model of supply and demand, with ATP as the unit price for
cellular energy. Evidence to support this theory showed that mito-
chondria isolated in suspension increased their ATP production
when ADP and inorganic phosphate was supplemented in the
presence of oxygen. Despite the well known ‘economic model of
equilibrium’, recent studies have shown that ATP synthesis rate is
not strictly controlled by such mechanisms (Gunter et al., 2004).

Mitochondrial calcium ([Ca2+]m) has been referred to as the
central regulator of oxidative phosphorylation, acting as the primary
metabolic mediator for NADH production and activity controller of
the enzymatic complexes pyruvate dehydrogenase, isocitrate dehy-
drogenase and α-ketoglutarate dehydrogenase (McCormack et al.,
1990; McCormack & Denton, 1993). The [Ca2+]m is also directly
involved in ATP production, playing an important role in ADP
phosphorylation through the enzyme ATP synthase (Territo et al.,
2001). Moreover, mitochondrial calcium also participates in the
apoptotic mechanism of somatic cells, triggering the release of pro-
apoptotic agents by the mitochondria (Szalai et al., 1999).

If [Ca2+ ]m action on physiological processes of somatic cells is
established, the precise role of this ion in sperm mitochondria is
still under debate (Amaral et al., 2013). In a proteomic approach,
studies identified sperm mitochondrial calcium uniporter (MCU)
proteins that are responsible for controlling mitochondria cal-
cium signalling, metabolism and cellular survival. However,
sperm mitochondrial calcium concentration is seemingly unal-
tered by mitochondrial uncoupling (Machado-Oliveira et al.,
2008; Wang et al., 2013). Additionally, in bulls, mitochondrial
activity on hyperactivated sperm appears to be unregulated by
calcium release. In this context, further studies are vital to
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establish the real function of calcium in mitochondrial physiol-
ogy, the reference values for [Ca2+ ]m, and to correlate such values
with sperm function (Irvine and Aitken, 1986; Ramalho-Santos
et al., 2009; Amaral et al., 2013).

Reactive oxygen species and the spermatozoa

During aerobic cell metabolism, ROS are formed. This event
occurs firstly because the mitochondrial environment is rich in
oxygen and electrons, and almost all of these electrons participate
in the reduction of oxygen directly to water, the final product of
oxidative phosphorylation. Physiologically, some of these elec-
trons escape from the oxidative phosphorylation enzymatic
complex and bind to molecular oxygen, leading to first ROS, the
superoxide anion, generation. From this primary product, a redox
reaction cascade occurs leading to the formation of other reactive
oxygen species, such as hydrogen peroxide (H2O2) and the
hydroxyl radical (OH–) respectively.

ROS produced are involved in many physiological triggers
such as sperm hyperactivation (de Lamirande & Cagnon, 1993),
sperm capacitation (Aitken et al., 2004), acrosome reaction
(de Lamirande et al., 1998), and interaction between spermatozoa
and the zona pellucida (Aitken et al., 1995). While ROS are
formed by other mechanisms, such as glycolysis, mitochondria
are the main ROS source with approximately 2% of consumed
oxygen being converted to superoxide anions (Koppers et al.,
2008).

Some enzymatic and non-enzymatic antioxidants act syner-
gistically to prevent ROS accumulation, in which each of these

metabolites is inactivated by specific antioxidants. Superoxide
dismutase (SOD) is considered the primary line of antioxidant
defence acting through dismutation of two molecules of super-
oxide anion (O2

–) forming an oxygen molecule and a hydrogen
peroxide molecule (H2O2; Fig. 3) (Alvarez et al., 1987). Hydrogen
peroxide can be destroyed by two antioxidants independent sys-
tems, the enzyme catalase and the glutathione peroxidase/
reductase systems (Fig. 3; Nordberg & Arnér, 2001). If these two
systems fail, the H2O2 will react with an Fe2 + or Cu+ molecule
(called the Fenton reaction) and will produce the hydroxyl radical
(OH–, Fig. 3). This ROS is considered the most reactive in bio-
logical systems, and can be destroyed by non-enzymatic anti-
oxidants such as ascorbic acid and α-tocopherol (Fig. 3; Halliwell
& Gutteridge, 1985).

Mitochondrial dysfunctions and spermatozoa

Despite the physiological function, any imbalance in ROS pro-
duction and antioxidant mechanisms can lead to oxidative stress,
which may be lethal for sperm cells (Fig. 4; de Lamirande et al.,
1997; Agarwal et al., 2004). Sperm is particularly susceptible to
oxidative stress due to a limited amount of cytoplasm and con-
sequently low antioxidant activity and also a high quantity of
polyunsaturated fatty acids which is easily oxidized. Thus, oxi-
dative stress may cause damage to different sperm structures such
as in plasma and acrosomal membranes, mitochondria and sperm
DNA. Spermatozoa cannot restore damages caused by oxidative
stress due to deficiency of cytoplasmic repair enzymes (Vernet
et al., 2004; Nichi et al., 2007b; Agarwal et al., 2014).
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Figure 1. In this study, we verified that the stimulated glycolytic pathway (glucose 5 mM) is able to maintaining total (A) and progressive (B) motilities and ATP levels (C) of
bovine epididymal spermatozoa subjected to mitochondrial uncoupling [carbonyl cyanide 4-trifluoromethoxy phenylhydrazone (FCCP); 0.1, 0.3, 1 and 3 µM] (Losano et al.,
2017a). a,b,c,dDifferent letters on the bars indicate significant differences between treatments (P< 0.05).
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As mitochondria are the major source of pro-oxidative agents,
it is suggested therefore that dysfunction in this organelle would
have a fundamental role in the oxidative imbalance affecting
sperm function (Agarwal et al., 2014). Wang and colleagues
(2003) identified low mitochondrial membrane potential and high
ROS production in sperm from infertile patients, probably as a
consequence of such mitochondrial injury, suggesting that
mitochondrial function can be a marker of male fertility. In fact,
other researchers have observed changes in mitochondrial func-
tion in sperm derived from infertile men (Troiano et al., 1998;
Gallon et al., 2006). However, sperm samples with high mito-
chondrial membrane potential have been identified in fertile
patients (Kasai et al., 2002; Marchetti et al., 2002).

Studies performed in different species have shown a negative
correlation between both oxidative stress and high mitochondrial
activity. The occurrence of this stress and the sperm DNA
integrity indicated that these variables are linked and lead a single
pathogenic mechanism (Barros, 2007; Nichi et al., 2007b; Blumer
et al., 2012). Correlation was also found between variables in
spermatic oxidative stress and lower blastocyst rates, as rates of
blastomeres increased with DNA damage, confirming the nega-
tive effect of seminal oxidative stress in in vitro embryonic
development (Simões et al., 2013).

Mitochondrial disorders have multifactorial origins, and some
mechanisms have not been totally elucidated (Amaral et al.,
2013). These changes can be triggered even in the testis during
spermatogenesis, for example if the testicular thermoregulatory
mechanism is inefficient. Only 50% of the blood supply reaches
the testes through the testicular artery, therefore male gonads are
subjected to near hypoxic environments (Meijer & Fentener Van

Vlissingen, 1993). Testis metabolism increased as consequence of
pathological conditions that raised testicular temperature and
were not compensated by increase in blood flow, causing a tes-
ticular hypoxic condition (Paul et al., 2009). Beyond these con-
ditions and at the beginning of oxygenation, there is an increase
in ROS production that leads to oxidative stress. This mechanism
is known as ischaemia-reperfusion injury (Nichi et al., 2006;
Reyes et al., 2012). Increase in ROS production in this condition
is related to mitochondrial dysfunction and the subsequent acti-
vation of enzymes that play a role in a ROS generated systems,
such as xanthine oxidase (XO). These changes in the mitochon-
dria are related to lack of O2 during ischaemia, which leads to
ATP depletion and consequently mitochondrial injury. Moreover,
the increase in testicular temperature promotes an influx of cal-
cium and is also related to changes in this organelle (Dorweiler
et al., 2007; Reyes et al., 2012).

Sperm cryopreservation is a key process in assisted reproduction
techniques (Hammerstedt et al., 1990; Zapzalka et al., 1999; Holt,
2000). However this technique promotes a decrease in sperm
quality, and also in mitochondrial damage during cryopreservation
due to excessive production of pro-oxidative factors that, ultimately,
cause post-thaw sperm damage and decrease in motility (O’Connell
et al., 2002; Sariozkan et al., 2009; Thomson et al., 2009). Addi-
tionally, the process promotes a reduction in antioxidant capacity
after sperm cryopreservation, a further factor that also predisposes
these cells to oxidative stress (Bilodeau et al., 2000).

Consequently, several studies have used antioxidant treatment
in sperm samples submitted to cryopreservation, aimed at pre-
venting oxidative stress caused by mitochondrial injuries (Askari
et al., 1994; Bilodeau et al., 2001; Fernández-Santos et al., 2007;
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progressive motility (A), straight-line velocity (VSL; B) and linearity (LIN; C), indicating an essential role of mitochondria to sperm quality movement related to progressivity
(Losano et al., 2017b). a,bDifferent letters on the bars indicate significant differences between treatments (P< 0.05).

254 João Diego de Agostini Losano et al.

https://doi.org/10.1017/S0967199418000242 Published online by Cambridge University Press

https://doi.org/10.1017/S0967199418000242


Taylor et al., 2009). However, the use of a specific mitochondrial
shield during cryopreservation also appeared as an option, aimed at
improving post-thaw sperm quality (Schober et al., 2007). A pos-
sible alternative would be to reduce mitochondrial activity, which
can be induced by uncouplers of oxidative phosphorylation during
the cryopreservation process, thus preventing ROS accumulation
caused by any mitochondrial dysfunction that can occur during
this process. Some uncoupler activities have been identified in the
physiological processes of somatic cells, acting even in oxidative
stress reduction (Vincent et al., 2004; Brand & Esteves, 2005).

Inhibitors and uncouplers of oxidative phosphorylation:
action mechanisms and their possible applications

Inhibitors and uncouplers of oxidative phosphorylation are impor-
tant in the study of mitochondrial physiology, and have been widely
used in pharmacology as many chemical compounds can inhibit the
specific processes of oxidative phosphorylation. Therefore, it is
possible to observe their role by preventing a single process without
inhibiting other mechanisms (Nelson & Cox, 2008).

Inhibitors can act towards complex electron carriers and also
in mitochondrial channels. Rotenone (e.g. insecticide class), can
block the transfer of electrons from complex I to ubiquinone,
inhibiting the overall process of oxidative phosphorylation
(Sherer et al., 2003). Conversely, antimycin A, an antibiotic
produced by the Streptomyces fungus, blocks the transport of
electrons from complex III to complex IV (Slater, 1973). Cyanide
inhibits the electron transport complex IV to oxygen. Further-
more, it is possible to directly inhibit ATP synthesis with oligo-
mycin, which is widely used in this process. This compound acts
on the enzyme ATP synthase by blocking the flow of protons
through the F0 subunit of this enzyme to the mitochondrial
matrix and, consequently, preventing ATP synthesis (Penefsky,
1985). As well as enzyme complex inhibitors, there are also cal-
cium channel blockers such as RU360, Na+/Ca2+pump inhibitors
or CGP 37157 (García-Rivas et al., 2006; Thu et al., 2006).

In addition to these inhibitors, uncouplers of oxidative phos-
phorylation were widely used not only as a tool to study cell phy-
siology, but also as a possible therapeutic application (Kasianowicz

et al., 1984). ATP synthesis occurs through coupling of two reactions,
electron transport and phosphorylation, as a result of a proton
gradient this class of substances uncouples these two reactions,
preventing or decreasing ATP synthesis. However, electron flow
activity across the mitochondrial complexes is not inhibited, and even
could be increased (Terada, 1990). Most of these molecules are
hydrophobic and have protonophore activity, depolarization of
mitochondrial membranes allows protons to return to the mito-
chondrial matrix and dissipate the mitochondrial membrane poten-
tial and pH difference, inhibiting the driving proton force, essential
for ATP synthesis (Chen, 1988; Terada, 1990). Uncoupling proteins
have been identified in some cells and are related to some physio-
logical roles such as in adaptive thermogenesis in adipose tissue.

Moreover, these proteins have been identified in researches
related to obesity, diabetes, neurodegenerative disease and ageing in
humans (Brand and Esteves, 2005). These studies emerged as
previous researches found out that mitochondrial uncouplers can
control mitochondria ROS production and, therefore, prevent
oxidative stress, which is related to these diseases. Therefore, the
use of these proteins in cell therapy for the treatment of these
pathologies is suggested (Brand & Esteves, 2005; Lowell & Shul-
man, 2005; Lin & Beal, 2006; Mailloux & Harper, 2011). Decrease
in ROS production promoted by uncouplers is due to an increase
in the respiratory rate followed by a decrease in mitochondria
intermediate reduced states, capable of donating single electrons to
oxygen, thereby preventing the generation of superoxide anions.

The uncoupled process has been applied in an energy study of
spermatozoa (Mukai & Okuno, 2004), however there is still no
evidence that these compounds can control ROS production by
sperm mitochondria. However, the use of these substances may
bring interesting results for the prevention of oxidative stress in
seminal samples in front of possible mitochondrial dysfunction.
Thus, the application of this treatment can be attractive, especially
for use in reproductive biotechnologies due to the highest sus-
ceptibility to oxidative stress.

Tools for assessing sperm mitochondrial function

Sperm mitochondria can be involved in both physiological as
pathological processes, therefore the importance of assessing the

Figure 3. Reactive oxygen species formed by the oxy-reduction process from O2 to H2O and their respective inactivation antioxidant systems. The enzyme superoxide
dismutase (SOD) acting through dismutation of two molecules of superoxide anion (O2

–) forming an oxygen molecule and a hydrogen peroxide molecule. Hydrogen peroxide
(H2O2) can be destroyed by two antioxidants independent systems, the enzyme catalase and glutathione peroxidase (GPx)/glutathione reductase (GR) system, with the
participation of oxidized (GSSG) and reduced (GSH) glutathione. If these two systems fail, H2O2 will react with an iron (Fe2 + ) or (Cu+) molecule (Fenton reaction) and will form
the hydroxyl radical (OH–). This ROS can be destroyed by non-enzymatic antioxidants such as ascorbic acid and α-tocopherol.
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functionality of this organelle is evident. The use of tools to evaluate
sperm mitochondrial function associated with other sperm analysis
can be applied for the prediction of fertilizing capacity (Troiano
et al., 1998; Kasai et al., 2002; Aitken, 2006). In this context, sperm
mitochondria have been studied for some decades (Christen et al.,
1983; Hrudka, 1987; Graham et al., 1990) Thus, several tools have
been developed for assessment of mitochondrial function (Table 1).

Mitochondria activity evaluation aims to infer the efficiency of
electron transport between enzymatic complexes and also in the
redox processes involved in oxidative phosphorylation. In classic
research, Hrudka (1987) developed a cytochemical technique to
evaluate mitochondrial activity. This cytochemical assay is based
on the oxidation of 3′3-diaminobenzidine (DAB) by cytochromec,
an enzyme involved in electron transport between the enzymatic

complexes. Subsequently, some fluorescent probes such as H2-
CMXros and CMXros, were developed with the same purpose
and commercially sold as Mito Tracker Red® (Poot et al., 1996;
Wojcik et al., 2000; Celeghini et al., 2007).

Fluorescent probes, such as JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolyl-carbocyanine iodide; Garner et al.,
1997), Mito Tracker Green FM® (Gillan et al., 2005) and Rho-
damine 123® (Graham et al., 1990), were also developed to assess
mitochondrial membrane potential. These probes diffuse freely
through the plasma membrane to the cell cytosol and accumulate
electrophoretically in the mitochondrial matrix, determined by
proton motive force and acting in accordance with mitochondria
ability to pump protons from the matrix to the intermembrane
area (Chen, 1988; Garner et al., 1997; Piccoli et al., 2006).

Figure 4. Physiological and pathological role of sperm mitochondria. ROS play a important role in sperm physiology acting as triggers of fertilization processes such as
hyperactivation, acrosome reaction and spermatozoa–oocyte binding. However, in cases of mitochondrial dysfunctions, there is an imbalance between ROS production and
antioxidant capacity, the oxidative stress. In this case, ROS cause damage to sperm structures including lipid peroxidation of the plasma membrane and DNA damage leading
to loss of biological function of spermatozoa.
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Membrane potential and mitochondrial activity are indicators of
mitochondrial function and are related, however it is important to
note that these parameters cannot be confused, as the mito-
chondria can maintain their redox processes by electron transport
even with low membrane potential (Chen, 1988; Terada, 1990).
Therefore, evaluation of these two parameters can be used in a
complementary form.

Furthermore, it is possible to measure mitochondria calcium
levels, as this mineral is considered to be the central regulator of

oxidative phosphorylation (Irvine and Aitken, 1986; McCormack
& Denton, 1993). Calcium measurement in spermatozoa has
been reported by the use of the fluorescent probes Quin-2 AM
(Irvine & Aitken, 1986), fluo-3/AM (Giojalas, 1998; Harrison
et al., 1993) and indo-1AM (Brewis et al., 2000). However, it
would ideal to measure intramitochondrial calcium, as well as
create reference indices, considering that calcium has other
functions in the cell such as its role in sperm capacitation
(Breitbart, 2002).

Table 1. Available tools for assessing sperm mitochondrial functionality (mitochondrial activity, mitochondrial membrane potential and calcium levels
assessments)

Technique Assay/Probe/kit Application/Procedure

Mitochondrial activity evaluation

Cytochemical
technique

DAB; 3′,3-diaminobenzidine Oxidation of DAB by cytochrome c. Analysis by optical microscopy
(Herzog & Fahimi, 1973; Pariz & Hallak, 2016)

Fluorescent
probes

H2-CMXros; 8-(4′-chloromethyl) pheny1–2,3,5,6,11,12,14,15-octahydro-
1H,4H,1OH,13H-diquinolizino-8H-xanthene

Stains mitochondria in live cells. The extent of dye uptake reflects the
redox potential across the mitochondrial membrane. Analysis can
be made by fluorescence microscopy and flow cytometry (Rasola &
Geuna, 2001; Celeghini et al., 2007)

CMXros; 8-(4′-chloromethyl) pheny1–2,3,5,6,11,12,14,15-octahydro-
1H,4H,1OH,13H-diquinolizino-8H-xanthylium chloride

Stains mitochondria in live cells. The extent of dye uptake reflects the
redox potential across the mitochondrial membrane. Analysis can
be made by fluorescence microscopy and flow cytometry (Rasola &
Geuna, 2001; Celeghini et al., 2007)

Mito Tracker Red® Stains mitochondria in live cells and its accumulation is dependent
upon membrane potential. Analysis can be made by fluorescence
microscopy and flow cytometry (Rasola & Geuna, 2001; Hallap
et al., 2005)

Mitochondrial membrane potential evaluation

Fluorescent
probes

JC-1; 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-
carbocyanine iodide

A cationic carbocyanine dye that accumulates in mitochondria. At
higher concentrations, the dye forms J-aggregates that exhibit a
broad excitation spectrum. Analysis can be made by fluorescence
microscopy and flow cytometry (Smiley et al., 1991; Hu et al., 2017)

Rhodamine 123® A cell-permeant, cationic, green-fluorescent dye that is readily
sequestered by active mitochondria without cytotoxic effects.
Analysis can be made by fluorescence microscopy (Forster et al.,
2012; Celeghini et al., 2007)

Mito Tracker Green FM® MitoTracker Green FM is green-fluorescent mitochondrial stain which
localizes to mitochondria regardless of mitochondrial membrane
potential. The dye stain live cells but is not well-retained after
aldehyde fixation. Analysis can be made by fluorescence
microscopy and flow cytometry (Chazotte, 2011; Celeghini et al.,
2007)

Mitochondrial calcium levels evaluation

Fluorescent
probes

Quin-2 AM; 2-[(2-amino-5-methylphenoxy)methyl]-6-methoxy-8-
aminoquinoline-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl
ester), 2-{[2-bis(carboxymethyl)amino-5-methylphenoxy]-methyl}-
6-methoxy-8-bis(carboxymethyl)aminoquinoline tetrakis
(acetoxymethyl) ester

A cell-permeant acetoxymethyl ester of the high-affinity fluorescent
calcium indicator quin-2. Used for fluorescent determination of
free calcium in intact cells. Penetrates cell membranes and
undergoes enzymatic hydrolysis to quin-2 in the cytoplasm.
Analysis can be made by fluorescence microscopy and flow
cytometry (Mahanes et al., 1986; Zhang & Wu, 1996)

Fluo-3/AM; 4-(6-acetoxymethoxy-2,7-dichloro-3-oxo-9-xanthenyl)-
4′-methyl-2,2′(ethylenedioxy)dianiline-N,N,N′,N′-tetraacetic acid
tetrakis(acetoxymethyl) ester

Cell permeable fluorescent indicator of intracellular Ca2 + ; non-
fluorescent until it is hydrolyzed intracellularly and/or in the
presence of Ca2 + . Analysis can be made by confocal and
fluorescence microscopy and flow cytometry (Merritt et al., 1990;
Del Olmo et al., 2013)

Indo-1, AM; 4-(6-carboxy-2-indolyl)-4′-methyl-2,2′-(ethylenedioxy)
dianiline-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl) ester

A cell-permeant, UV light-excitable, ratiometric Ca2 + indicator.
Analysis can be made by fluorescence microscopy,
microphotometry and flow cytometry (Collin et al., 2000; Bailey &
Macardle, 2006)
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Although these assessments are indicative of mitochondria
function, these techniques cannot be applied to quantify energy
efficiency of sperm cells. Studies aimed at the evaluation of sperm
energy metabolism using measurement of ATP levels are
important to complement the mitochondria status assessment
(Mukai and Okuno, 2004). High-performance liquid chromato-
graphy (Samizo et al., 2001) or dosage by commercial kits are
among the methods that can be used to measure the ATP
and ADP levels (Perchec et al., 1995). Measurement of ATP and
ADP molecules was performed in several species such as mice
(Mukai & Okuno, 2004), birds (Rowe et al., 2013) and humans.
However, more studies are necessary to develop indexes between
production and ATP consumption, and relate these with sperm
function.

Conclusion

In conclusion, there are still several questions covering the real
contribution of the mitochondrial metabolism in sperm function
in each species, although it is clear that this organelle can affect
reproductive processes both positively and negatively (Amaral
et al., 2013). Moreover, as mitochondria are the main ROS source
and sperm are extremely susceptible to oxidative damage (Nichi
et al., 2007b; Vernet et al., 2004), the development of studies
aimed at the prevention of mitochondrial dysfunction in sperm
cells is extremely important, such as the regarding improvement
of mechanisms to reduce ROS release or inactivation of mechan-
isms for a better mitochondrial function.
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