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ALMOST GIANT CLUSTERS FOR PERCOLATION
ON LARGE TREES WITH LOGARITHMIC HEIGHTS
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Abstract

This paper is based on works presented at the 2012 Applied Probability Trust Lecture in
Sheffield; its main purpose is to survey the recent asymptotic results of Bertoin (2012a)
and Bertoin and Uribe Bravo (2012b) about Bernoulli bond percolation on certain large
random trees with logarithmic height. We also provide a general criterion for the existence
of giant percolation clusters in large trees, which answers a question raised by David
Croydon.
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1. Introduction

It is well known that percolation is considerably simpler to study on a tree than on a general
graph, thanks to the property of uniqueness of the path connecting two vertices. We refer in
particular to Chapter 5 of [9] and the references therein for a number of important and useful
results for infinite trees, such as criteria for the existence or absence of infinite percolation
clusters. Here, we will be interested in a somewhat different type of question. Specifically,
we consider a tree of large but finite size, and perform a Bernoulli bond percolation with a
parameter that depends on the size of that tree; our purpose is to investigate the asymptotic
behavior of the sizes of the largest clusters for appropriate regimes when the size of the tree
goes to ∞.

Our motivation comes from a celebrated result of Erdős and Rényi on the random graph
model, which can be phrased informally as follows. With high probability, when n � 1,
Bernoulli bond percolation on the complete graph with n vertices and with parameter
p(n) ∼ c/n for some fixed c > 1 produces a single giant cluster of size close to θ(c)n,
where θ(c) ∈ (0, 1) is some known constant, while the second, third, etc. largest clusters are
almost microscopic, and more precisely have size of only order ln n.

In the first part of this paper, we provide a simple characterization of tree families and
percolation regimes which yield giant clusters, answering a question raised by David Croydon.
In the second part, we briefly review the main results of [3] and [4] concerning two natural
families of random trees with logarithmic heights, namely recursive trees and scale-free trees.
In those works, we showed that the next largest clusters are almost giant, in the sense that
their sizes are of order n/ ln n, and obtained precise limit theorems in terms of certain Poisson
random measures. A common feature in the analysis of percolation for these models is that,
even though one addresses a static problem, it is useful to consider dynamical versions in which
edges are removed, respectively vertices are inserted, one after the other in a certain order as
time passes.
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2. Giant clusters

We first introduce notation and hypotheses which will have an important role in this section.
For a given integer n, we consider a set of n + 1 vertices, say Vn = {0, 1, . . . , n}, and a tree
structure Tn on Vn. So Tn has n edges, and we should think of 0 as the root of Tn. We perform
a Bernoulli bond percolation on Tn with parameter p(n), so that each edge of Tn is kept with
probability p(n) and removed with probability 1−p(n), independently of the other edges. The
resulting connected components are then referred to as clusters.

We write C0
p(n) for the size of the cluster that contains the root; plainly, C0

p(n) ≤ n + 1. We

say that C0
p(n) is giant if n−1C0

p(n) converges in law to some random variable G �≡ 0, which
should be thought of as the asymptotic proportion of vertices pertaining to the root cluster. David
Croydon raised the question of finding a simple criterion for C0

p(n) to be giant, depending of
course on the nature of Tn and regimes of the percolation parameter p(n); this motivates the
following.

For each fixed n ∈ N, we denote by V1, V2, . . . a sequence of independent and identically
distributed (i.i.d.) vertices in Vn with the uniform distribution. Next, for every k ∈ N, we write
Lk,n for the length of the tree Tn reduced to V1, . . . , Vk and the root 0, i.e. the minimal number
of edges of Tn which are needed to connect 0 and V1, . . . , Vk . In particular, L1,n should be
thought of as the height of a typical vertex in Tn. Let � : N → R+ be some function with
limn→∞ �(n) = ∞. We introduce the hypothesis

(Hk)
1

�(n)
Lk,n ⇒ Lk,

where ‘⇒’ means weak convergence and Lk is some random variable with values in R+. We
stress that (Hk) can be assumed to hold for different values of k and then only convergence in
the sense of one-dimensional distributions is involved.

In several examples, the function � is a logarithm and Lk ≡ ak with a a positive constant.
For instance, this happens for some important families of random trees, such as recursive trees,
binary search trees, etc.; see [5]. Aldous [1] considered a different class of examples, including
the case when Tn is a Cayley tree of size n + 1 (i.e. a tree picked uniformly at random amongst
the (n + 1)n−1 trees on Vn), for which it is known that (Hk) holds with �(n) = √

n and Lk a
chi-variable with 2k degrees of freedom.

We now state the central result of this section.

Theorem 1. For an arbitrary c ≥ 0, consider the regime

p(n) = 1 − c

�(n)
+ o

(
1

�(n)

)
. (1)

(i) If (Hk) holds for every k ∈ N then we have, in the regime (1),

n−1C0
p(n) ⇒ G(c), (2)

where G(c) �≡ 0 is a random variable whose law is determined by its entire moments:

E(G(c)k) = E(e−cLk ), k ∈ N. (3)

In particular, limc→0+ G(c) = 1 in probability.
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(ii) Conversely, suppose that, for every c > 0, (2) holds in the regime (1) for some random
variable G(c) with values in [0, 1]. Suppose further that limc→0+ G(c) = 1 in
probability. Then (Hk) is fulfilled for every k ≥ 1, with Lk a nonnegative random
variable whose Laplace transform is given by (3).

Proof. The proof relies on the observation that, for each k ≥ 1, there is the identity

E(((n + 1)−1C0
p(n))

k) = E(p(n)Lk,n). (4)

Indeed, recall thatV1, . . . , Vk are k i.i.d. uniformly distributed vertices, which are independent of
the percolation process. This enables us to interpret the left-hand side of (4) as the probability
that V1, . . . , Vk belong to the percolation cluster containing the root. On the other hand,
considering the tree reduced to V1, . . . , Vk and the root shows that this same probability can
also be expressed in terms of the length Lk,n of this reduced tree, as the right-hand side of (4).

The assumption (Hk) entails that, in the regime (1),

lim
n→∞ E(p(n)Lk,n) = lim

n→∞ E

(
exp

(
− c

�(n)
Lk,n

))
= E(e−cLk ),

and then we deduce from (4) that

lim
n→∞ E(((n + 1)−1C0

p(n))
k) = E(e−cLk ).

Thus, if (Hk) holds for every k ∈ N then (n + 1)−1C0
p(n) converges in law to some variable

G(c) with values in [0, 1]. More precisely, the law of G(c) is determined by its entire moments
E(G(c)k) = E(e−cLk ) > 0; this proves (2).

Conversely, as the size of a cluster cannot exceed n + 1, (2) implies that in the regime (1),
we have, for every integer k ≥ 1,

lim
n→∞ E(((n + 1)−1C0

p(n))
k) = E(G(c)k).

From (4) we rewrite this as

lim
n→∞ E(p(n)Lk,n) = E(G(c)k).

Plugging in the expression for the parameter p(n) given in (1), we easily derive

lim
n→∞ E

(
exp

(
− c

�(n)
Lk,n

))
= E(G(c)k).

Recall the assumption that limc→0+ G(c) = 1 in probability, in particular,

lim
c→0+ E(G(c)k) = 1.

We conclude from Theorem XIII.1.2 of [7, p. 431] that, for each k ≥ 1, the function c →
E(G(c)k) is the Laplace transform of a random variable Lk ≥ 0, and that (Hk) holds. This
completes the proof.

We next point at an interesting consequence of Theorem 1 to the characterization of the cases
for which the proportion of vertices in the root cluster converges in probability to a constant. We
consider the situation where the variables Lk appearing in hypothesis (Hk) are of the form

(H ′
k) Lk = ξ1 + · · · + ξk,

where ξ1, . . . is a sequence of i.i.d. variables in R+.
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Corollary 1. (i) Suppose that (Hk) and (H ′
k) hold for k = 1, 2. Then in the regime (1) we have

lim
n→∞ n−1C0

p(n) = θ(c) in probability, (5)

where θ(c) = E(e−cξ1) > 0. Furthermore, (Hk) and (H ′
k) hold for every k ≥ 1.

(ii) Conversely, suppose that, for every c > 0, (5) holds in the regime (1) for some function
θ : [0, ∞) → [0, 1] such that limc→0+ θ(c) = 1. Then θ is the Laplace transform of a
nonnegative random variable ξ , and (Hk) and (H ′

k) are fulfilled for every k ≥ 1 with ξ1, . . . a
sequence of i.i.d. copies of ξ .

Proof. When (H ′
k) holds, we have E(exp(−cLk)) = θ(c)k , with θ(c) = E(e−cξ1). We now

see from the proof of Theorem 1 that hypotheses (Hk) and (H ′
k) entail that in the regime (1) we

have
lim

n→∞ E((n−1C0
p(n))

k) = θ(c)k.

In particular, if (Hk) and (H ′
k) hold for k = 1, 2 then

lim
n→∞ E((n−1C0

p(n) − θ(c))2) = 0,

which proves (5).
Conversely, if (5) holds then we can apply Theorem 1(ii) with G(c) ≡ θ(c). In particular,

we know that (Hk) holds for all k ∈ N. Furthermore, we get E(e−cLk ) = θ(c)k , which in turn
shows that (H ′

k) is fulfilled. This completes the proof.

We now conclude this section by pointing at a simple criterion which ensures that the cluster
containing the root is the unique giant component.

Proposition 1. In the preceding notation, assume that there is the joint weak convergence

1

�(n)
(L1,n, L2,n) ⇒ (L1, L2),

where (L1, L2) is a pair of random variables such that L2 −L1 has the same law as L1. Then,
for every c > 0, in the regime (1) we have

lim
n→∞ n−1C1

p(n) = 0 in probability,

where C1
p(n) denotes the size of the largest percolation cluster which does not contain the root 0.

Proof. Recall that V1 and V2 denote two independent, uniformly distributed random vertices.
Plainly, the probability �(n) that V1 and V2 both belong to the same percolation cluster and are
disconnected from 0 can be bounded from below by (n + 1)−2

E(|C1
p(n)|2).

On the other hand, �(n) is bounded from above by the probability that at least one edge of
the branch from the root 0 to the branch point V1 ∧ V2 of V1 and V2 has been removed, viz.

(n + 1)−2
E(|C1

p(n)|2) ≤ �(n) ≤ 1 − E(p(n)dn(0,V1∧V2)), (6)

where dn denotes the graph distance in Tn.
Next, write

L2,n = dn(0, V1) + dn(0, V2) − dn(0, V1 ∧ V2).
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Since L1,n = dn(0, V1) has the same law as dn(0, V2), it follows from our assumption that the
sequences �(n)−1dn(0, V2) and �(n)−1(dn(0, V2) − dn(0, V1 ∧ V2)) converge weakly to the
same distribution. This readily implies that

dn(0, V1 ∧ V2) = o(�(n)) in probability,

and we conclude that the right-hand side of (6) tends to 0 as n → ∞.

3. Almost giant clusters

In this section we turn our attention to the percolation clusters which do not contain the root.
We write

C1
p(n) ≥ C2

p(n) ≥ · · ·
for the sequence of their sizes, ranked in decreasing order. Beware that this convenient notation
may be slightly misleading, since C0

p(n) is always the size of the cluster containing the root 0,
while, for i ≥ 1, Ci

p(n) is in general not the size of the cluster containing the vertex i. A natural
problem is then to determine the asymptotic behavior of this sequence. We first point out that
hypothesis (Hk) is insufficient to characterize the latter, by considering three simple examples
in which very different behaviors can be observed.

First, imagine that Tn is a star-shaped tree centered at 0, meaning that the root is the unique
branching point. Suppose also for simplicity that there are approximately n1−α branches
attached to the root, each of size approximately nα , where α ∈ (0, 1) is some fixed parameter.
Then one readily checks that (Hk) and (H ′

k) hold for every k ≥ 1 with �(n) = nα and Lk =
ξ1 +· · ·+ ξk , where the ξi are i.i.d. uniformly distributed on [0, 1]. It is further straightforward
to see in the regime (1) that we have

C1
p(n) ∼ C2

p(n) ∼ · · · ∼ C
j

p(n) ∼ nα

for every fixed j ∈ N.
Second, consider the case when Tn is the complete regular d-ary tree with height h, where

d ≥ 2 is some integer. So there are dj vertices at distance j = 0, 1, . . . , h from the root and

n = n(h) = d(dh − 1)

d − 1
.

One readily checks that hypotheses (Hk) and (H ′
k) hold for every k ≥ 1 with �(n) = ln n and

ξi ≡ 1/ ln d. Because the subtree spanned by a vertex at height j ≤ h is again a complete
regular d-ary tree with height h − j , we deduce from the preceding section that in the regime
(1), the size C1

p(n) of the largest cluster which does not contain the root is close to

e−c/ ln ddh−κ(h)+1

d − 1
,

where κ(h) is the smallest height at which an edge has been removed. Recall that there are
d(dj − 1)/(d − 1) edges with height at most j , so the law of κ(h) is given by

P(κ(h) > j) = p(n)d(dj −1)/(d−1), j = 1, . . . , h.

It follows readily that in the regime (1), the sequence (κ(h) − ln(h)/ln(d) : h ∈ N) is tight.
We stress however that this sequence does not converge in distribution as h → ∞; more
precisely, weakly convergent subsequences are obtained provided that the fractional part
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{ln(h)/ln(d)} converges. It follows that the sequence (ln(n)n−1C1
p(n) : n = n(h), h ∈ N)

is also tight. It does not converge as h → ∞; however, weakly convergent subsequences can
be excerpt provided that {ln(h)/ln(d)} converges.

Third, we recall that in the case of Cayley trees, Pitman [11], [12] showed that, for 1−p(n) ∼
c/

√
n with a fixed c > 0, the sequence of the sizes of the clusters ranked in decreasing order

and renormalized by a factor 1/n converges weakly as n → ∞ to a random mass partition
which can be described explicitly in terms of a conditioned Poisson measure. It is interesting
to observe that in this situation, the number of giant components is unbounded as n → ∞. We
stress that the conditions of Proposition 1 and hypothesis (H ′

k) for k ≥ 2 fail for Cayley trees.
We will now study the asymptotic behavior of the sizes of the largest clusters which do not

contain the root for two families of random trees with logarithmic heights, i.e. which fulfill (Hk)
with �(n) = ln n. In particular, we will point out that in the regime (1), the largest percolation
clusters which do not contain the root fail to be giant only by a logarithmic factor.

3.1. Random recursive trees

A tree on an ordered set of vertices is called recursive if, when we agree that the smallest
vertex serves as the root, then the sequence of vertices along any branch from the root to a leaf
is increasing. Recursive trees are sometimes also known as increasing trees in the literature;
they arise for instance in computer science as data structures, or as simple epidemic models.

Of course, there is no loss of generality in assuming that the set of vertices is Vn =
{0, 1, . . . , n} (and then 0 is the root); however, other ordered sets may arise naturally in this
setting as we will see. Each recursive tree on Vn encodes a permutation of {1, . . . , n} in such
a way that the subtrees attached to the root 0 correspond to the cycles of the permutation, and
this encoding is bijective; see Section 6.1.1 of [5]. In particular, there are n! recursive trees
on Vn; we pick one of them uniformly at random and denote it by Tn. In other words, Tn can
be viewed as a Cayley tree on Vn, subject to the condition that the sequence of vertices along
any branch from the root to a leaf is increasing. We stress that, informally, the conditioning
becomes singular as n → ∞. Indeed, the geometry of large Cayley trees and large uniform
recursive trees are notoriously different; for instance, the typical height of the former is of order√

n while that of latter is only of order ln n.
There is an elementary algorithm for constructing Tn which is closely related to the

so-called Chinese restaurant process (see, e.g. Section 3.1 of [12]), and, hence, further points at
the connection with uniform random permutations. For every i = 1, . . . , n, we pick a vertex Ui

uniformly at random from {0, . . . , i − 1} and independently of the Uj for j �= i. The random
tree induced by the set of edges {(i, Ui) : i = 1, . . . , n} is then a version of Tn.

Uniform recursive trees fulfill an important splitting property which is the key to many of
their features. Fix an arbitrary k ∈ {1, . . . , n} and remove the edge between k and its parent Uk .
This disconnects Tn into two subtrees, say T and T ′. If we denote by V (respectively V ′)
the set of vertices of T (respectively of T ′), then, conditionally on V and V ′, T and T ′ are
two independent uniform recursive trees with respective sets of vertices V and V ′. This basic
property is easy to check, either directly from the definition, or from the Chinese restaurant
construction of Tn.

It is easy to verify that the conditions (Hk) are fulfilled for all k ≥ 1 with �(n) = ln n and
Lk ≡ k; see Section 6.2.5 of [5]. We conclude from the preceding section that in the regime
(1), the cluster containing the root 0 is the unique giant percolation cluster of Tn, and, more
precisely, that (5) holds with θ(c) = e−c. The main result of [3] is that the next largest clusters
are almost giant, and, more precisely, one has the following weak limit theorem.
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Theorem 2. Let Tn denote a uniform random recursive tree on {0, 1, . . . , n}. For every fixed
integer j , in the regime (1) with �(n) = ln n,

(
ln n

n
C1

p(n), . . . ,
ln n

n
C

j

p(n)

)

converges in distribution towards
(x1, . . . , xj ),

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0, ∞) with intensity ce−cx−2 dx.

There is an equivalent simple description of the law of the limiting sequence, namely, 1/x1,
1/x2 − 1/x1, . . . , 1/xj − 1/xj−1 are i.i.d. exponential variables with parameter ce−c. In
particular, xj has the same distribution as the inverse of a gamma variable with parameter
(j, ce−c), and limj→∞ jxj = ce−c in probability.

The basic idea in [3] for establishing Theorem 2 is to relate percolation on a rooted tree
T to a random algorithm for the isolation of its root that was introduced by Meir and Moon.
Specifically, following these authors, we can imagine that we remove an edge in T uniformly at
random, disconnecting T into two subtrees. We set aside the subtree which does not contain the
root and iterate in an obvious way with the subtree containing the root, until the root is finally
isolated. Loosely speaking, we can think of this algorithm as a dynamical version of percolation
(i.e. edges are now removed one after the other rather than simultaneously), except that each
time an edge is removed, the cluster which does not contain the root is instantaneously frozen,
in the sense that only edges belonging to the cluster that contains the root can be removed.

The upshot of this point of view is that it enables us to use a coupling due to Iksanov and
Möhle [8], which, informally, identifies the sequence of the sizes of the frozen subtrees which
arise from the isolation of the root algorithm, with the sequence η1, η2, . . . , ηk of i.i.d. variables
with distribution

P(η = j) = 1

j (j + 1)
, j ∈ N,

at least as long as η1 + · · · + ηk ≤ n. In short, this coupling follows from the splitting property
of random recursive trees, and the following remarkable fact observed by Meir and Moon
[10]. Imagine that we remove an edge of Tn uniformly at random, and consider the size of the
resulting subtree that does not contain the root. Then the latter has the same distribution as η

conditioned on η ≤ n.
The coupling of Iksanov and Möhle enables us to use extreme values theory and determine the

asymptotic behavior of the sizes of these frozen subtrees, jointly with the steps of the algorithm
at which they have appeared. In short, one finds that the largest frozen subtrees have size of
order n/ ln n and a precise limit theorem can be given in terms of the atoms of some Poisson
random measure. It then remains to de-freeze each of these subtrees by performing an additional
Bernoulli percolation with a suitable parameter, to recover the outcome of percolation on Tn.
Roughly speaking, each of these frozen subtrees can be viewed conditionally on its size as a
uniform recursive tree. As a consequence, the additional percolation produces a single relatively
giant component of size again of order n/ ln n and further clusters of smaller size O(n/ ln2 n).
In particular, the largest percolation clusters of Tn which do not contain the root correspond
to simple transformations of the frozen subtrees arising from the algorithm of isolation of the
root, and their limiting distribution is obtained as the image of some Poisson random measure.
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3.2. Scale-free random trees

Scale-free random trees form a one-parameter family of random trees that grow following a
preferential attachment algorithm; see [2]. Fix a parameter β ∈ (−1, ∞), and start for n = 1
from the unique tree T

(β)
1 on V1 = {0, 1} which has a single edge connecting 0 and 1. Then

suppose that T
(β)
n has been constructed for some n ≥ 1, and, for every i ∈ Vn = {0, . . . , n},

denote by dn(i) the degree of vertex i in T
(β)
n . Conditionally given T

(β)
n , we construct the tree

T
(β)
n+1 by incorporating the new vertex n + 1 to T

(β)
n and adding an edge between n + 1 and a

vertex vn ∈ {0, . . . , n} chosen at random according to the law

P(vn = i) = dn(i) + β

2n + β(n + 1)
, i ∈ {0, . . . , n}.

Recall that there is the identity
∑n

i=0 dn(i) = 2n (because T
(β)
n is a tree with n edges), so the

preceding indeed defines a probability on {0, . . . , n}. Note also that when one lets β → ∞, then
vn becomes uniformly distributed on {0, . . . , n}, and the algorithm yields a uniform recursive
tree as in the preceding section.

Just as for recursive trees, one can check that the conditions (Hk) are fulfilled for all k ≥ 1 with
�(n) = ln n and Lk ≡ k(1 +β)/(2 +β); see, for instance, Section 4.4 of [6] in the case β = 0.
Hence we know from Theorem 1 and Proposition 1 that percolation in the regime (1) produces
a single giant cluster, and, more precisely, that (2) holds with G(c) ≡ θ(c) = e−c(1+β)/(2+β).
It has been shown recently in [4] that the asymptotic behavior of the sizes of the largest clusters
for percolation on a scale-free tree is similar to that on a random recursive tree.

Theorem 3. Let Tn = T
(β)
n denote a random scale free tree on {0, 1, . . . , n} with parameter

β > −1. For every fixed integer j , in the regime (1) with �(n) = ln n,
(

ln n

n
C1

p(n), . . . ,
ln n

n
C

j

p(n)

)

converges in distribution towards
(x1, . . . , xj ),

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0, ∞) with intensity ce−c(1+β)/(2+β)x−2 dx.

The key splitting property of random recursive trees fails for scale-free random trees, and the
approach in [4] for establishing Theorem 3 thus departs significantly from that for Theorem 2.
In short, one superposes Bernoulli bond percolation to the growth algorithm with preferential
attachment as follows. Each time an edge is inserted, we draw an independent Bernoulli variable
ε with parameter p(n). If ε = 1, the edge is left intact; otherwise, we cut this edge in two at
its midpoint. The upshot of cutting rather than removing edges is that the former procedure
preserves the degrees of vertices, where the degree of a vertex is defined as the sum of the intact
edges and half-edges attached to it. This is crucial for running the construction with preferential
attachment.

This enables us to adapt a classical idea in this area (see, e.g. [6]), namely to consider a
continuous-time version of the growth algorithm with preferential attachment and interpret the
latter in terms of a continuous-time branching processes. Roughly speaking, incorporating
percolation to the algorithm yields systems of branching processes with rare neutral mutations,
where a mutation event corresponds to the insertion of an edge that is cut at its midpoint. Each
branching process in the system corresponds to a percolation cluster which grows following a
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dynamic with preferential attachment. One has to study carefully the asymptotic behavior of
such systems of branching processes with neutral mutations, and then derive Theorem 3.
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