Annals of Glaciology 30 2000
© International Glaciological Society

Flow of anisotropic ice from the EPICA core:

a new test apparatus

Perer R. Sammonps,' S. Boon,' N. HucnEes,! M. A. Rist?
'Rock and Ice Physics Laboratory, Research School of Geological and Geophysical Sciences,
Unaversity College London, London WCIE 6BT, England
2 Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3Q2, England

ABSTRACT. Our objective is to measure the mechanical properties of anisotropic ice
of the EPICA ice core, from Dome Concordia, Antarctica, through the full depth of the
borehole in deformation experiments under simulated ice-sheet conditions of temperature
and pressure. We propose to undertake experiments on the EPICA core using both a con-
ventional triaxial-test apparatus and a new, true, triaxial-test apparatus incorporating
automated tomographic imaging of the ice-fabric evolution during deformation. We pres-
ent the design of this new apparatus together with our testing methodology for EPICA ice.
The new apparatus is capable of deforming an ice specimen, up to 200 mm X 100 mm x
40 mm, under servo-controlled biaxial loading with a superimposed confining pressure
of 50 MPa and at temperatures down to —40°C. Highly unusual problems arising from
the true triaxial nature of the apparatus and tomographic imaging are discussed.

1. INTRODUCTION

Modelling ice-sheet flow is difficult because, amongst other
factors, the state of stress is not known and the flow law cannot
be uniquely defined from field measurements. This arises
because of (a) longitudinal deviatoric stresses resulting from
bedrock and surface topography, which may be significantly
larger than the shear stresses, and (b) the strongly anisotropic
nature of ice flow. The first problem means that experiments
on ice cores are likely to remain a significant part of any rheo-
logical investigation and second, that a properly constituted
anisotropic flow law needs to be formulated. The anisotropy
of polycrystalline ice, associated with anisotropic crystallo-
graphic c-axis orientations, results in strongly anisotropic
strength. As ice is buried in an ice sheet and moves along a
flowline, its degree of anisotropy changes and so does its
strength. The European Project for Ice Coring in Antarctica
(EPICA) 1s an important opportunity for investigating the
flow of anisotropic ice.

Laboratory deformation experiments on Greenland and
Antarctic deep-core ice have employed uniaxial compres-
sion and tension, simple-shear and conventional triaxial-
compression tests (e.g. Russell-Head and Budd, 1979; Shoji
and Langway, 1985; Raistrick, 1996). However these tests
only allow the flow of ice to be investigated under simple-
stress configurations and cannot be used to test a general an-
isotropic flow law. What are required are tests involving
combined stresses. One such test combines direct shear and
uniaxial compression (Li and others, 1996). What we have
done is design a new, true, triaxial-test apparatus as this
allows general axial loading configurations. The apparatus,
described below, consists of biaxial loading with a superim-
posed confining pressure. The design uniquely incorporates
automated tomographic imaging of the ice-fabric evolution
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during deformation using multiple P and S elastic-wave
velocity measurements.

True triaxial rigs for ice deformation have used cubic
specimens loaded by three pairs of orthogonal actuators
(Héausler, 1983; Gratz and Schulson, 1997). However serious
doubts remain about the non-uniform nature of the stress
field in such a squat specimen. Mogi (1967) on the other
hand developed a combined biaxial rig and pressure vessel
for rock mechanics capable of operating under compression
and extension. This apparatus has the advantage of the con-
ventional triaxial cell in using a slender specimen. We have
chosen to follow this approach even though it has been tech-
nically demanding due to the low temperatures and large
specimen size needed. The disadvantage of using a slender
specimen is that for certain specimen orientations cut rela-
tive to the ice fabric, buckling may occur.

2. FLOW LAWS FOR ICE

Ice naturally occurring on Earth, ice 1h, has a hexagonal
crystal structure with five non-zero elastic constants (Table
1). Polycrystalline ice with random crystal orientation is elas-
tically isotropic and exhibits an average of the single-crystal
response, which in itself only departs by a small amount from
being elastically isotropic (Hobbs, 1974). By contrast the plas-
ticity of ice is highly anisotropic. The easy-slip plane is the
basal plane, in which there is no preferred slip direction
(Kamb, 1961), but the resistance to shear on non-basal planes
1s considerably greater (Duval and others, 1983). Deformation
of polycrystalline ice 1s accompanied by crystallographic lat-
tice rotation, grain-boundary migration and dynamic recrys-
tallization so that initially isotropic ice will develop an
anisotropic fabric (cf. Gastelnau and others, 1996.)

Glen (19535) showed from uniaxial-deformation tests on
isotropic, laboratory-grown fresh-water ice that the flow of
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Table 1. Tables of stiffness constants for ice in matrix form ac-
cording to the rule 11-1, 22-2, 35-3, 23-4 ( from Hobbs, 1974)

Component Stiffness
GPa
G 132
Ci 6.7
Clg 5.8
Css 14.4
Cuy 29

Note: C11 = Caa; C13 = Cag; Cyy = Css; all other Cijpg = 0.

ice could be described by the power creep equation. To apply
Glen’s law to ice-sheet modelling it was necessary to general-
ize the flow law in terms of stress and strain-rate invariants,
which are invariant to rotation of the coordinate system. The
stress invariants are: J; = P, Jy = 1/2tr(s;;?), J3 = dets;.
P is pressure and s;; is the deviatoric stress. Glen wrote the
general form of the flow law assuming isotropy and incom-
pressibility (Paterson, 1994):

¢ = B(Ja, J3)sij + C(Ja, J3)[sirsk; — 2/3J264].

It is widely assumed that the flow of isotropic ice depends
only on Jy, in which case the familiar tensor flow equation
of Nye (1957) can be used. However this assumption has not
yet been adequately tested experimentally.

Considerable effort has gone into developing flow laws for
ice relating the development of anisotropic ice fabrics to stress
states and cumulative strain. Azuma and Higashi (1985)
showed that ice-fabric development in shallower parts of an
ice sheet, where recrystallization could be disregarded, could
be modelled by c-axis rotation caused by basal-slip deform-
ation. Alley (1988) extended the c-axis rotation model to uni-
axial extension, pure shear and simple shear and modelled
fabric development for each loading condition. Lliboutry
(1993) observed that ice fabrics in an ice sheet have rotational
symmetry about a single preferred-orientation direction, that
is they are transversely isotropic, and therefore developed a
constitutive relation for transversely isotropic ice. Castelnau
and others (1996) developed an anisotropic visco—plastic self-
consistent approach for predicting texture development.
Azuma (1994) proposed an anisotropic flow law under uniax-
1al compression, taking into account interaction between
grains, that operates with a geometric tensor incorporating
the mean Schmid factor, which characterizes the mean orien-
tation angle of the crystallographic c axes of ice grains with
respect to the vertical. Svendsen and Hutter (1996) have pro-
posed the use of a “macroscopic” orientation-distribution
function, assuming that large-scale fabric development leads
to transversely isotropic material behaviour.

However, there are few experimental studies of ice de-
formation under complex stresses against which to test these
models. It is for this reason that we have designed the new
pressurized biaxial-deformation cell for ice. As a common
component of recent models is that they incorporate some
orientation-distribution function to describe ice-fabric evo-
lution, we are developing the automated tomographic-ima-
ging system to measure fabric evolution contemporaneously
with deformation.
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Fig. 1. Stress-invariant domains for compressive stress for:
(a) (Jo, J3) space; and (b) (P, Jo) space ( after Morland
and Earle, 1983). Comparison of biaxial tests (o1 # 0,
03 = 0) with convention triaxial tests (01 # o9 = 03)
Jor isotropic deformation.

3. TEST LOADING CONFIGURATION

When considering the design of a new test apparatus it is im-
portant to compare the effectiveness of different loading sys-
tems in determining the general multiaxial-loading response
of ice. This has not been done for anisotropic deformation,
but Morland and Earle (1983) have done this analysis for iso-
tropic deformation, which is summarized in Figure 1. In uni-
axial tests only o; may be varied independently and
09 = 03 = 0. Tor true triaxial tests, all three principal stres-
ses can be varied independently (o1 # o3 # 03). The conven-
tional triaxial test is when o # 09 = 03, giving transversely
1sotropic stress. (09 = 03 = p, where p is the confining pres-
sure.) In extension tests done in the conventional triaxial cell,
the axial stress, o1, is much less than the confining pressure.
In biaxial tests, 01 and o2 may be varied independently and
03 = 0. Morland and Earle (1983) compare stress-invariant
domains for various loading systems. In (Jy, J3) space con-
ventional triaxial testing is confined to a pair of curves. The
effect of the intermediate principal stress may only be gauged
by comparing tension and compression tests. By contrast, in
the biaxial test for any given Jy, there is a range of possible
values of J3. In (P, Jy) space the conventional triaxial test
provides better coverage. True triaxial testing covers the en-
tire bound space.

True triaxial-test apparatuses are difficult to build, and
tests are difficult to perform. Therefore a successful strategy
for testing multiaxial flow laws would be to do experiments
both in a biaxial apparatus and conventional triaxial appa-
ratus. This presents two major problems. (1) Ice is an excep-
tionally brittle material (its fracture toughness is around
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only 0.1 MPa ml/Q) and at high strain rates deformation is ac-
companied by cracking. However low stress, low strain-rate
tests require long tests. It is noticeable that in some testing
programmes steady-state creep has not been achieved and
only transient creep measured. So it is necessary to impose
a confining pressure to suppress cracking if a comprehensive
test programme is to be completed in reasonable time. (2)
For deep ice cores, air hydrate transforms to air bubbles
when ice specimens are taken up to atmospheric pressure.
These may lead to cracking. Therefore it is important to test
ice-core specimens under in-situ pressure conditions.
Steady-state flow laws obtained from laboratory experi-
ments, both in rock and ice mechanics, have been used to
extrapolate laboratory measurements over many orders of
magnitude of strain rate to infer lithospheric and glaciologi-
cal conditions. This raises two problems. (1) Steady-state de-
formation frequently is not achieved during tests (e.g
Castelnau and others, 1998). (2) Even when steady-state de-
formation is achieved, assumptions still have to be made
about the validity of the extrapolation. A newer approach
has been described for geological materials by Covey-
Crump (1988) which addresses both of these problems. This
involves the measurement of a mechanical-state variable,
which does not make the steady-state approximation. The
methodology holds out great promise for ice mechanics.

4. DETERMINING FABRIC ORIENTATION BY
ELASTIC-WAVE-VELOCITY MEASUREMENTS

Determining the evolution of the anisotropic ice-fabric syn-
deformational is an important goal. We intend to do this by
measuring elastic-wave velocities for the P wave and two po-
larization of the S wave, S1 and 52, in three orthogonal di-
rections to the specimen (1, 2, 3). This approach is possible
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because of the small but measurable elastic anisotropy in the
stiffness, Cjju, of ice (Table 1). Single crystal ice 1h has maxi-
mum P wave velocity, Vp, along the ¢ axis of 4.11kms ' at
0.00l MPa and —32°C (Nanthikesan and Shyam Sunder,
1994). The velocity distribution is axially symmetric about
the c axis because of the hexagonal symmetry. The Vp mini-
mum is 3.84 kms ! at about 45° to the ¢ axis. The Vp aniso-
tropy is 6.9%. The shear-wave splitting anisotropy is 15%,
with a maximum at about 45° to the ¢ axis. So {from a com-
bination of P- and S-wave measurements the orientation of a
single-crystal ¢ axis can in principle be determined. Wave-
velocity measurements have been used in the field to measure
fabric anisotropy (Bentley, 1972) and in our laboratory where
P-wave velocity changes with deformation have been meas-
ured in the conventional triaxial test (Raistrick, 1996).

The determination of fabric orientation for ice by elastic-
wave-velocity measurements has not been solved analyti-
cally, and in itself will be a matter for investigation during
the course of our research. In Appendix 1, we outline the
basic theory that has informed our apparatus design, follow-
ing the development of Nikitin and Chesnokov (1981). We
treat the case of hexagonal symmetry, which is applicable
to the ice single crystal and ice fabric, if transverse isotropy
is assumed. We find that the measurement of Vps, Vp1, Vis1)3,
Vis1y1 gives all five independent elastic constants. But only
three wave-velocity measurements (e.g., P and S1 and 52
in one direction) need be measured to determine the orien-
tation of the c axis of the ice single crystal.

Treating the polar ice fabric as having transverse isotro-
pic symmetry is a reasonable assumption, and in accordance
with other fabric studies in rock mechanics (Mainprice and
Humbert, 1994) and in glaciology (Lliboutry, 1993). If we
wish only to determine the simple c-axis maximum fabric,
again only three wave-velocity measurements would be
needed. General triaxial stressing imposes orthorhombic

21

Irg. 2. Schematic diagram of the pressurized biaxial cell for ice and conceptual diagram of the loading system.
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symmetry and more wave-velocity measurements would be
needed. Under stress, four measurements of both Vp and Vg
are needed to obtain the nine constants. However a com-
plete analytical solution to this problem does not exist.

The experiment also requires making sufficient wave-
velocity measurements so that averaging over the specimen
1s adequate. It is necessary to scan the specimen so that suffi-
cient numbers of grains can be sampled to generate a repre-
sentative crystallographic preferred orientation (on the
grounds that any one elastic-wave-velocity measurement in
a transversely isotropic material will yield an angular separa-
tion between the measurement direction and the c axis, for a
fabric that is reasonably well-defined). It is good practice to
require 300 grains for any averaged microstructural meas-
urement (e.g. grain-size, c-axis orientation; Covey-Crump,
1997). For ice this is mitigated by the fact that it develops a
simple ¢ maximum fabric. Our typical polar ice specimen
may be 160 mm X 80 mm X 30 mm in size, with a typical
grain-size of say 5> mm x 5 mm X 10 mm, the specimen would
contain 1500 grains. Of course there are other problems to be
considered, but the specimen-size/grain-size ratio is ade-
quate, so the sampling then becomes a question of the number
of measurements needed as the specimen is scanned.

5. PRESSURIZED BIAXIAL CELL FOR ICE

A schematic diagram of the pressurized biaxial and tomo-
graphic mapping cell for ice is shown in Figure 2. The cell
consists of a thick-walled pressure vessel on which are
mounted four servo-hydraulic 60 kN actuators loading an
ice specimen in the ¢ and z directions with fluid-confining
pressure providing the £ component of stress (essentially this
is a biaxial-loading rig inside a pressure vessel). Ports are
available to incorporate two further actuators in the x axis.
Extensional loads can be applied by attaching the specimen
to the piston ram ends with epoxy resin (Mogi, 1967). The cell
is capable of operating at confining pressures up to 50 MPa,
temperatures down to —40°C, strain rates in the range 10 *s '
t010 ®s "and allow strains up to 30%. The ice specimen is up
to 200 mm x 100 mm x 40 mm in size, but typical specimens
would be smaller. Differential stresses up to 25 MPa could be
applied to a typical specimen. The entire apparatus is located
inside a large cold-room complex.

The temperature range was chosen to encompass a large
part of the temperature range of natural ice on Earth, while
still allowing the use of a liquid-confining medium. The pres-
sure range encompasses the pressures in ice sheets and is an-
ticipated to eliminate cracking. The specimen size allows full
use of ice-core material from the current deep-drilling pro-
grammes in Antarctica and Greenland and is sufficiently
large to provide a reasonable grain-size/specimen-size ratio.
In a granular test, specimen surface grains are not so con-
fined as grains in the bulk. Unless the number of surface
grains is statistically small, specimen strength will depend
on the grain-size/specimen ratio. Jacka (1994) has shown that
this requirement 1s not nearly so severe for plastic deform-
ation of ice. Mogi (1967) found, for brittle faulting in rocks,
that if the specimen-height/thickness ratio was greater than
3:3.5, the fault formed parallel to the intermediate principal
stress and remained mostly in the central part of the speci-
men. The strength was also independent of the height/width
ratio. These are strong indications that end effects at the top
and bottom were probably eliminated. The strain-rate range
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was chosen as the optimum for a comprehensive testing pro-
gramme on ice cores. Changing to a servo valve with a dif-
ferent flow rate would change the strain-rate range available.

5.1. Loading system

The loading system is shown conceptually in Figure 2. The
confining fluid (either low-temperature oil or alcohol) is pro-
vided by a servo-hydraulic pressure intensifier. Pressure is
controlled during deformation. The specimen can be con-
tained in a polymer jacket to keep out the confining fluid
when cracks are present in the ice. However this may not be
necessary for plastic-deformation tests on ice at low confining
pressure using a viscous-liquid confining medium.

Four 60 kN servo-hydraulic actuators, integral to the cell,
apply the load on the y and z axes. The reaction for the z
actuators is taken, via the closures and clamps, by the pres-
sure vessel. The reaction for the y actuators is taken via an
integral reaction ring on the vessel. The actuators apply load
to pressure-balanced pistons, which in turn load the speci-
men. The confining fluid is vented above a shoulder on the
piston so that, as confining pressure is increased, the speci-
men is loaded hydrostatically. The actuators only have to
provide the differential load, thereby greatly reducing their
size and increasing the accuracy of load measurement. Tests
can be done at constant load or displacement rate. Internal
force cells in the piston-ram ends measure load, a pressure
transducer measures pressure and internal and external dis-
placement transducers (LVDTs) measure deformation. A
five-channel controller, assembled from commercially avail-
able digital control cards, controls the system.

5.2. Pressure-vessel design

The pressure vessel is a thick-walled steel monobloc cylinder
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Fig. 3. Section through the pressure vessel of the pressurized
biaxial cell for ice.
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360 mm in diameter by 620 mm long, with an internal bore of
200 mm, designed for a maximum operating pressure of
50 MPa and minimum operating temperature of —40°C. A
section is shown in Figure 3. The end loads due to the confin-
ing pressure are taken by top and bottom closure plugs
secured by quick-release clamps to the vessel. Seals used are
Busak and Shamban “Turcon” coated silicone “0” rings. Vessel-
wall thickness is determined by the requirement to take the
reaction from the clamps through to the vessel wall by an in-
tegral flange. Sammonds and others (1991) discuss the parti-
cular problems of low-temperature pressure-vessel design.
Analytical equations for pressure-vessel stress analysis are
given in standard texts such as Manning and Labrow (1974)
and the modern fracture-mechanics approach is described in
Sammonds (1988). The maximum shear stress in the vessel
wall 1s 82 MPa and the maximum hoop stress is 114 MPa. Safe
design of pressure vessels requires that the critical crack
length should be greater than the wall thickness. This can be
achieved for a material with fracture toughness greater than
65 MPam"? Because of the complex shape of the vessel and
integral reaction ring, we have also done a finite-element
analysis of the stress. Peak stresses under the flange are above
450 MPa, however these rapidly decay. This suggests that the
material fracture toughness should be greater than
130 MPam"? The 25% chrome, super-duplex, stainless-steel
F55 from Special Quality Steels, England, fulfils this require-
ment at low temperatures as well as being corrosion resistant,
which is important in a cold-room environment.

The apparatus is operated inside a temperature-controlled
cold room. Additional cooling is provided by circulating
refrigerants through copper tubing close wound onto the vessel
from a free-standing temperature-controlled cryostat. The
temperature controller uses the average output from four resis-
tance thermometers located close to the specimen in the piston
ends. The large mass of the vessel ensures the temperature
stability of better than 0.2°C (Sammonds and others, 1991).

5.3. Elastic-wave-velocity measurement

Our analysis shows that only four combinations of P and
two S elastic-wave polarizations are necessary to determine
the c-axis maximum fabric orientation. As the research pro-
gramme develops, we anticipate that we will become inter-
ested not only in determining the crystallographic c-axis
orientation, but also the a and b axes, for which more
wave-velocity measurements will be required.

Our design allows for P and the two S polarizations to
be measured on each axis. In the y- and z-loading platens, a
series of P- and S-wave transducers are embedded in the faces
of the loading pistons. In the z-plane specimen surfaces a pair
of pressure-wave (P) ultrasonic transducers and two pairs of
orthogonal shear-wave (S) transducers scan the specimen,
controlled by stepper motors. Miniature hydraulic actuators
provide clamping of the transducers to the specimen. The
scanning system is shown conceptually in Figure 4. P- and
S-wave velocities are measured by the pulse-receive method
of Birch, used in rock mechanics (Sammonds and others,
1989). Here a computer-controlled generator pulses the trans-
mitter transducers several hundred times per minute, and the
travel times to the receiver transducers are measured by tim-
ing cards and averaged. 0.5 MHz PZT transducers will be
used. A full scan of the specimen surface, with some 40 plus
measurement positions, take 2—3 min. These measurements
will produce a spatially averaged velocity-distribution map
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Fig. 4. Conceptual diagram of the scanning elastic-wave-
velocity tomographic system.

of the specimen automatically, from which the fabric evolu-
tion can be inferred.

6. TEST METHODOLOGY

In terms of the EPICA programme our objective is to
measure the mechanical properties of anisotropic ice of the
EPICA ice core through the full depth of the borehole in de-
formation experiments under simulated Antarctic ice-sheet
conditions of temperature and pressure. Four types of experi-
ments will be done: (1) Pressurized biaxial-deformation tests
allowing the anisotropic-flow properties to be measured,
where the development of anisotropic c-axis orientations
during deformation will be continuously monitored by the to-
mographic-imaging system. (2) Hydrostatic tests to measure

30 mm

Fig. 5. EPICA—Dome C core-cutting scheme for mechanical-
and physical-properties studies.
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recrystallization kinetics. (3) Conventional triaxial-deform-
ation experiments using specimen cut at 0°, 45° and 90° to
the vertical (to allow comparison with other laboratories).
(4) Stress-relaxation tests in the pressurized biaxial cell and
conventional triaxial cell to achieve very low strain rates.
The EPICA core from Dome Concordia will have a
98 mm diameter. A central section from the core will be cut
for the confined biaxial-test specimen, up to 160 mm long by
80 mm wide by 30 mm thick (Fig. 5). One bag in every 200
will be cut according to this scheme. This will provide ade-
quate samples for a comprehensive testing programme.
Initially isotropic ice at the surface of an ice sheet devel-
ops an anisotropic fabric in the prevailing stress field as it is
buried and moves along a flowline, via primary and second-
ary creep to steady tertiary creep. Achieving tertiary creep
in the laboratory takes a long time and, in an arbitrary stress
field, would involve the destruction of the existing ice fabric
and the evolution of a new one. However, it has been demon-
strated that if the ice core is subjected to the same stress con-
figuration in the laboratory as in the field and the fabric is
not destroyed, then deformation passes straight from pri-
mary to tertiary creep (Shoji and Langway, 1985). In the
confined biaxial cell, ice cores can be deformed at in-situ
pressure and temperature and in a stress field compatible
with its developed anisotropy. The subsequent fabric evolu-
tion can be measured by the tomographic-imaging system.
The stress field then can be subsequently altered. These tests
should allow anisotropic flow parameters to be measured.
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APPENDIX 1

Following Nikitin and Chesnokov (198l), the solution for
plane-wave propagation in anisotropic elastic media is

given by the Green—Christoffel equation (GCE):

(Tix — pV26i)uy = 0

where Iy, — Cijungng, p is density, V' is the phase velocity,
04, is the Kroneker delta, uy, is displacement, and n; is the
direction of the wave vector. 1o determine the elastic-wave
velocities, the GCE can be determined for any direction in
the anisotropic medium. We do not consider group velocities
at this stage.
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For hexagonal symmetry (in matrix form according to

the rule 11-1, 22-2, 333, 23—4, 13-5,12-6):
I =n*1C11 + n5Cs6 + n*3Cay T1a=(Ci1 + Cog)nane
Dy2=n*1Cos + n*sCos +n°3C1y  T13=(Ci3 + Cry)nang
Ty3=(n’ 4+ n°)Cu +n’3Cs3  Tag=(Ci3 + Cas)nong
(See Table 1) GCE has non-trivial solutions when:

IDix — pV?6ii| = 0

For hexagonal symmetry where the plane wave is propagat-
ing in plane OX;0X3:

(D11 — pV?) (L33 — pV?) — T%13] (T2 — pV?) = 0
This gives:
V251 = Taa/p = (Cosn®1 + Cuan?s)/p

Vip = 1/p([F11 +I33]/2 + \/[Fn —Tas]?/2 + F213)

Vi = 1/p<[F11 +I'33]/2 — \/[Fu —T33]”/2 + 1“213)

The measurements of P and the two polarizations of S-wave
velocities, V2g1, V259, along the axes of symmetry (n; = ng;
ng = 1) OX3 lead to the determination of two elastic con-
stants

Cs3 = pV7ps Cut = pV? (513
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For hexagonal symmetry Vig1)3 = V/(g2)3 and no shear-
wave splitting occurs along the axis of symmetry. Measure-
ments of P and S1 and 52 velocities in a plane of symmetry
OX, (perpendicular to axis of symmetry) give:
Cii = pV?p1 Ces = PV (5101 Cus = pV7(s2)3

In order to determine Ci3 it is necessary to measure P or S
velocity in any direction ¢ = " (not parallel or perpendi-
cular) to the axis of symmetry. In this case from GCE, Ci3
can be calculated:

Cis = 1/mins[(pV?p (") — (A1)" — (A2)"1” = pV (513
where: n; = sin((po); ng = COS(‘PO)?

Al = 1/2[(pV?p1n®1 + Vpsn®s + pV>s1)3;
A2 = 1/2 [(pv2p1n21 — V2p3n23) + pV2(51>3(n23 — n21)}.

The measurements of Vs, Vp1, V(g3 and V gy give all
five independent elastic constants. But only three wave-
velocity measurements (e.g. P and S1 and S2 in one direc-
tion) need measured to determine the orientation of the ¢
axis of the ice single crystal.
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