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Abstract. The projection factor used in the Baade-Wesselink method of determining the dis-
tance of Cepheids makes the link between stellar physics and the cosmological distance scale.
A coherent picture of this physical quantity is now provided based on several approaches. We
present the latest news on the expected projection factor for different kinds of pulsating stars
in the Hertzsprung-Russell diagram.
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1. Short review on the projection factor of Cepheids
For many decades the Cepheid stars have been used to calibrate the distance scale

and the Hubble constant through their well-known period-luminosity (PL) relation (see
Riess et al. 2011 and Freedman & Madore 2010 for a review). Recently, using the Baade-
Wesselink (BW) method to determine distances of Cepheids, Storm et al. (2011a) found
that the K-band PL relation is nearly universal and can be applied to any host galaxy
largely independent of metallicity. The projection factor is a key quantity of the BW
methods: it is used to convert the radial velocity variation into the pulsation velocity of
the star. There are several ways to study the projection factor. One can use geometrical or
static models, hydrodynamical analysis, or even direct observations when the distance of
the star is known. In the purely geometric approach, two effects are considered only: the
limb-darkening of the star (in the continuum) and the expansion of the atmosphere (at
constant velocity). The projection factor is then an integration of the pulsation velocity
field (associated with the line-forming region) projected on the line of sight and weighted
by the surface brightness of the star, which is defined for instance by I(cos θ) = 1−uV +
uV cos θ, where uV is the limb darkening of the star in the V band and θ is the angle
between the normal of the star and the line of sight (Claret et al. 2011). In this case, the
geometric projection factor can be derived as follows: p0 = 3/2 − uV /6 (Getting 1934).
However, this definition of the projection factor implies a specific method of the radial
velocity determination, which is the first moment or centroid method (Burki et al. 1982).
Depending on the limb-darkening considered for the Cepheid studied, the value of the
projection factor is different: p = 24/17 = 1.415 (uV = 0.60, Getting 1934), p = 1.375
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(uV = 0.75, Van Hoof & Deurinck 1952) or p = 1.360 (uV = 0.80, Burki et al. 1982). The
latter value has been widely used in spectroscopy. Recently, Neilson et al. (2012) derived
the geometrical projection factor as a function of the period and for several photometric
bands using a radiative transfer in spherical geometry and found a slightly lower value of
p = 1.33 for δ Cep. Additional studies should be also mentioned like Gray & Stevenson
(2007) and Hadrava et al. (2009) in which a geometrical model is directly fitted to the
observed spectral line profile (the pulsation velocity is then an output). Such approaches
are formally consistent with the geometrical method.

The second approach to study the Baade-Wesselink projection factor is to consider a
hydrodynamical model, which describes the dynamical structure of the atmosphere of
the star (in particular the atmospheric velocity gradient). Using a so-called piston model
in which the radial velocity curve is used as an input, Sabbey et al. (1995) found a mean
value of the projection factor of p = 1.34. However, this value was derived using the
bi-sector method of the radial velocity determination (applied to theoretical line pro-
files), which unfortunately makes the comparison with other studies quite uncertain. On
the other hand, using a self-consistent model of the pulsation (requiring few fundamen-
tal parameters such as the stellar mass, the luminosity, the effective temperature and
the chemical composition), Nardetto et al. (2004) found that the atmospheric velocity
gradient (and other dynamical effects) reduce the geometric projection factor (found at
p0 = 1.39 with the model) by about 9%, leading to a projection factor of p = 1.27±0.01.
This value is however consistent with the Gaussian fit method of the radial velocity
determination (applied to a spectral line with a typical depth of D = 0.2). In this 9%
decrease, 5% comes from the dynamical structure of the atmosphere and 4% from using
the Gaussian fit method. Indeed later, Nardetto et al. (2007) provided a revised value
of the projection factor, p = 1.33 ± 0.02, applicable together with the first moment
method (and consistent with a plane parallel model atmosphere). It is worth noticing
that the projection factor is generally supposed as being constant over the pulsation
phase following Nardetto et al. (2006b).

If one uses the cross-correlated radial velocity (which includes many lines and also a
Gaussian fit of the cross-correlated mean line profile with a typical depth of D = 0.25),
a lower value of the projection factor is found (by about 11% compared to the initial
geometrical projection factor p0 = 1.39), i.e. p = 1.25± 0.05 (Nardetto et al. 2009). One
can say approximatively that in these 11%, 7% comes from the dynamical structure of
the atmosphere and 4% from the Gaussian fit.

Mérand et al. (2005) applied the inverse Baade-Wesselink method using an infrared
FLUOR/CHARA interferometric observation of δ Cep. In this approach, the projection
factor is fitted, while the distance of δ Cep is known (from the Hubble Space Telescope
(HST ) parallax) at the 4% level (Benedict et al. 2007). They found p = 1.27 ± 0.05
(using the cross-correlation method to derive the radial velocity). Then, deriving the
infrared surface brightness angular diameters of δ Cep, and applying again the inverse
BW method, Groenewegen (2007) and Laney & Joner (2009) found similarly a value of
the projection factor of p = 1.27. Later, Storm et al. (2011b) constrained directly the
period-projection factor (Pp) relation using spectroscopic and photometric observations
of Cepheids in the Large Magellanic Cloud (hereafter LMC). In this method, the zero-
point of the Pp relation is again based on the HST trigonometric parallaxes of Galactic
Cepheids, but the slope is derived from the BW distances of LMC Cepheids (all Cepheids
in the LMC used by Storm can be assumed to be at the same distance, leading to an
extra constraint on the period projection factor relation). The corresponding value for
δ Cep itself is p = 1.41 ± 0.05. It has been shown that the metallicity has no impact
(at least theoretically) on the projection factor (Nardetto et al. 2011). Using a similar
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Figure 1. The Baade-Wesselink projection factor as a function of the period for different kinds
of pulsating stars. The case of the β Cephei star α Lup is described by Nardetto et al. (2013b).

method, Groenewegen (2013) found recently a value of the projection factor which is also
quite high (p = 1.33). The latest result comes from Pilecki et al. (2013), who constrained
the projection factor using a short-period Cepheid (P = 3.8 days) in an eclipsing binary
system. They found p = 1.21 ± 0.04.

This short review shows that a lot of work has been done to constrain the BW projec-
tion factor. And even if some discrepancies remain concerning the inverse photometric
BW method of determining the projection factor, a consensus is currently emerging. In
particular, we emphasise that the fact that the projection factor derived from the surface-
brightness techniques is overestimated has no impact on the distances, because at the
same time, the amplitude of the photometric angular diameter curve is underestimated.
One can say finally that the photometric version of the BW method is self-consistently
calibrated using the HST parallaxes to set the zero point and the distances to LMC
Cepheids with a large range of periods to constrain the p-factor relation with pulsa-
tion period. However, Ngeow et al. (2012) found indeed a significant dispersion in the
period-projection factor relation, and this should be also investigated.

2. The projection factor for other types of pulsating stars
One possible way to better understand the dynamical structure of Cepheids, and in

particular the k-term† (Nardetto et al. 2006a, 2008), the mass loss (Nardetto et al. 2008),
and the projection factor, is to perform comparison with other kinds of pulsating stars
(as soon as they pulsate in a dominant radial model).

† The k-term is a residual asymmetry (not related to the pulsation) observed in the spectral
line profiles of Cepheids.
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In the framework of the Araucaria Project (Gieren et al. 2005) of distances determina-
tion in the Local Group, we determined the Baade-Wesselink projection factor for four
δ Sct stars: ρ Pup (p = 1.36±0.02), DX Cet (p = 1.39 ± 0.02), AI Vel (p = 1.44±0.05),
and β Cas (p = 1.41 ± 0.25). (Refer to Nardetto et al. (2013a) for ρ Pup and DX Cet and
to Guiglion et al. (2013) for AI Vel and β Cas.) Figure 1 shows how all these values fit in
an excellent way the extension toward short periods of the relation found for Cepheids,
i.e., p = [−0.08±0.05] log P +[1.31±0.06] (Nardetto et al. 2009). This result seems more
robust than the similar one obtained by Laney & Joner (2009) using an indirect method
based on the comparison of geometric and pulsation parallaxes. On the other hand, the
projection factor of the β Cep star α Lup is 8σ above the relation (Fig. 1). By omitting
α Lup we can find a relation common to δ Sct stars and classical Cepheids.

3. Conclusion
The projection factor is a very complex quantity which involves all the physical struc-

ture of a Cepheid’s atmosphere. Nevertheless, it is now well constrained using geometrical,
hydrodynamical modelling and also direct observations (trigonometric parallaxes and in-
terferometry). Thanks to these efforts to better understand the projection factor, the
BW technique of distance determination is becoming one of the more robust methods in
the path to the Hubble constant.
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