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NORM DECREASING HOMOMORPHISMS BETWEEN
IDEALS OF Lr(G)

N. J. KALTON AND G. V. WOOD

1. Introduction. Let G, and G, be compact groups and T : L,(G1) — L,(G,)
(1 £ p £ ) be an algebra homomorphism. If ||7]| £ 1 and T is either a
monomorphism of an epimorphism then 7 can in many cases be explicitly
characterized (see [4;8;9;11;13; 14]). Excluding p = 2, the outstanding cases
are 1 < p < oo for monomorphisms and 2 < p < oo for epimorphisms (cf.
[14]). One aim of the present note is to complete this work. We also consider
the problem of extending these results in some form to homomorphisms on
ideals of group algebras; the only known result in this area is for abelian groups
[3].

The characterization of isometries on subspaces of L?-spaces that preserve
the constant functions has recently been completed by Rudin [10]. However,
in this paper we use the techniques in the earlier work of Forelli [2]. We extend
his ideas in Section 2, mainly with applications to group algebras in mind,
although we believe there is some independent value for these results. The main
theorems are in Section 3.

2. L,-norm decreasing operators. Throughout this section X and ¥ will
be compact Hausdorff spaces and p and » will be probability measures on X
and Y respectively such that whenever U C X and V C YV are open and
non-empty then pw(U) > 0 and »(V) > 0. We denote by L,(X) and L,(Y),
(I £ p £ ) the spaces of complex L,-functions on (X, p) and (Y, v). As
usual

1/p
fll> = {L Ifi”du} feL,(X),p <o
[|flle = u — ess.sup |f] f€ L,(X)

and similarly for L,(¥). We shall identify functions which are equal p-a.e.
or v-a.e.

Our first lemma is a trivial generalization of a result of Forelli [2, Proposition
1]. We omit the proof, which is identical to Forelli’'s. We denote the constantly
one function on X or Y by 1.

LEMMA 2.1. Suppose 1 < p < o0, f € L,(X) and g € L,(Y) and
1+ 2fll, = [[1 + z¢ll, forallz € G.
Then || f|l: = llgll: (¢n particular, if f € Lo(X) theng € Lo(Y)).
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As an immediate application, we have

THEOREM 2.2. Suppose 1 £ p < 0 and T : L,(X)— L,(X) is a linear
operator satisfying T1 = 1 and ||T|| = 1. Then there is a sub-g-algebra Z of the
Borel sets of X such that Tf = f1f and only if f is Z-measurable.

Proof. Let A, = (1/n)(T" + ...+ I7). For p > 1, A, converges in the
strong operator topology to a contractive projection onto E = {f: Tf = f},
by the Ergodic Theorem [1, p. 662]. Since E is the range of the contractive
projection, the result follows from the known form of such projections [6, p. 162].
For p = 1, we observe that, by Lemma 2.1, || Tf||: < ||fl|2, and hence applying
the Ergodic Theorem to Ly (X), 4,f converges for f € L,. Hence (see [1, p. 662,
Cor. 2 & 3]) A4, converges to a contractive projection on L; and the result

again follows.

Remark. It is not difficult to deduce from Theorem 2.2 the more general

THEOREM 2.3. Let (S, Z, N\) be a probability space and T : L,(S, Z, \) —
L,(S, =, \) be a linear operator with ||T|| = 1. Then there is a sub-g-algebra =,
of Zand B € Xy such that Tf = fif and only if f is Zo-measurable and

Ms:|f(s)] > 0,5 ¢ B} =0.

For our next theorem, we need the following technical lemma.

Lemma 2.4. Suppose {ay 5,k =0,1,2,...} and {by ;5,k=0,1,2,...}
are complex numbers satisfying

(i) A = Qg bjk = bkj?

(11) a]'jbjj Z OfOr (lll], and ajjbjj = O'melies aj; = b/j = 0,

(iii) there exists v > O such that for |z| < r, the doubly infinite series Y o
Do @278 and Y- To0 Dm0 b 378" converge absolutely, and

Z Z (ljkzjgk 2 0 g Z Z bjkzjék.

=0 k=0 =0 k=0

Thenay = 0forallj, k.
Proof. For 0 < p <7

2r = . ) .
(1) j; > amp’Fexpi(j — k)0do = Z;, a0
s

=0 k=0

IV
e

and similarly

2 b £ 0.

[y

It follows easily by induction that a;; = b;; = 0 for all j. Hence, as the
integrand in (1) is everywhere non-negative, we conclude

NE

7

Thus a;, = 0 for all 7, k.

Z ajkzjék =0 [Zl <7.
%=0

I
=4
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THEOREM 2.5. Let L be a subspace of C(X) containing 1 and separating the
points of X. Suppose T : L — C(Y) is a linear operator satisfying T1 = 1 and
such that for some p,r 1 £ p < 0,1 £ 7 < 00 where neither p nor r is an even
integer,

WAl < I/l fe L
WZAll z WAl e L

Then there is a continuous map o : ¥ — X, salisfying v(e='(B)) = u(B) when-
ever B is a Borel subset of X, such that

Tf(y) = fla(y)) ye ¥,fe L
In particular T extends to a multiplicative homomorphism of C(X) into C(Y).

Remark. This theorem may be regarded as a generalization of a theorem of
Forelli [2]. The most obvious application is the case p = when T is an
isometry on L.

Proof. For f € L and z € C,

f 1+ 2T f]"dv < f 1+ zf|"du.
Y X
For small enough |z|, since f and T'f are bounded,

1+2f = A+ + 5"
S E () (e

=0 k=0
and

paersr = 5 5 (P2) (12)en iy
Hence for small |z],

3

j=

Ms

=k
apxz’? =0

o

2
I
o

where

an = (Pf) (i",f’) ( fX PP — f (Tf)"(T?’)"dv)-

Similarly, for small |z|,

Z kZ_Z bsz

7=0

where

b = (’f) (’f) ( fX PP — f (Tf)f(ff)"dv).
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Clearly

asby = (P;2)2(7§2)2[L fdu — fy (TJ‘.)].(T_J’P)jdV:,2 =20
and so we may apply Lemma 2.4 to conclude that for f € L
fx Fdu = f (TN TH'dv j,k=01,2...
This implies (by expanding)
fX 1+ f™ = fY |1+ Tf™ forallm =1,f¢€ L.
In particular for f1...f, € L,31...3, € Gand m € N,
fX 14 2if1 + ... + 2ofn]du = f,, 1+ 2:Tfr + . .. + 2,Tf, ™ dv
and so expanding and equating coefficients
foxﬁ‘fzﬁ2 P e P M M fy (TF) (Tf)™ . .. (Th)"dy

where 8, v, =0,1,2,....
Hence if P is any polynomial in 2n-variables

LP(fl...f,,,fl...fn)dy = fyP(Tfl.‘.TfmTf_l...T_ﬁ,)du.

Let A be the subalgebra of C(X) generated by L and its complex conjugates,
i.e. the space of all polynomials P(f1...f,fi...fu) forfi...f, € L. We define
S:4—>C(Y) by

SP(frwfur o J)) = P(Tfio .. Tfy Tfy ... TF,)
S is well-defined since if P(f;...fu,f1...f) =0,

flP(fl...f,,,fl...f,,)fd#

e RN SO VIO W AT

= f[P(Tfl o Th Tfy ... TS |%dv.
Hence P(Ify ... Tf, Tfi ... Tf,) = 0 v-almost everywhere, and by our

assumptions on v, P(Tfy ... Tfy Tfy... Tf,) = 0.
Similarly to this calculation we may show

f [Sa|*dy = f la|du a € A,m € N.
Y X
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Hence ||Sa||,, = lim,.., [|Sa|lsn = lim, . llallen = |la]|s. Thus Sis a || - ||,
isometry on 4. 4 is dense in C(X) by the Stone-Weierstrass Theorem and so .S
may be extended to an algebra homomorphism S : C(X) — C(Y). Hence

SF@) = fley)

for some continuous map a : ¥ — X. [t is trivial to see that

fy Sfdy = Lfdu Fe )

and so « is measure-preserving (The last part of this theorem would follow
from [10, Theorem I1]).

THEOREM 2.6. Suppose 1 £ p<w, p#2 and T : C(X) > L,(Y) 15 a
linear operator satisfying T1 =1 and ||Tfll, £ Ifll, (f € C(X)). Let L =
{(f:Tf € CCY); T2 = 1Ifll2), and suppose L separates the points of X. Then
there is a continuous map o : Y — X such that if B is a Borel subset of X,
v(@1(B)) = u(B), and

Tf(y) = fla(y)) v —ae,fc CX),y€ V.

Proof. By Lemma 2.1, ||T|| £ 1. By the Riesz Convexity Theorem, for any
r between 2 and p, ||7], £ 1. Thus, without loss of generality, we can assume
that neither p nor ¢ = p/p — 1 is an even integer or 0.

Suppose f € L and g € C(X). Then

f]T(f—i— reg)|Pdv < flf—l— re’gPdu r>0,0<6<2r

and hence, letting » — 0,
Ree” f TfTgdy < Ree” ffgdp.
Hence

fYTngdv = ffgdu-

In particular it follows that if g € L then z,f + 25¢ € L, i.e. L is a linear sub-
space of C(X). Also if f € L, then

AL = (1A sgn flls = (17 f1%7 sgn Al

where sgn z = e if 2 =re®® r > 0, 0 =60 < 27, and sgn 0 = 0. Therefore

HTAIAL

v

Tf (by Holder’s inequality)

[ A s nas

l fflflq_1 sgn fdu

= /1"
Hence [|Tfl[, = ||fll, for f € L.
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Now by Theorem 2.5, there is a continuous map « : ¥ — X such that « is
measure preserving and

Tf(y) = fla(y)) y€ ¥, fe L.
Define S: L (X) — L,(Y) by

Sf@) = fla®).

Then S is an isometry on L,(X) for all p. S(L,(X)) is a closed subspace of
L;(Y) on which there is a conditional expectation projection P with ||P|| = 1.
(See [6, p. 158]) For each p, the restriction of P to L,(Y) will also have norm
one as a map between L,-Spaces. Let T be the natural extension of I to
L,(X), and consider U = S7'PT : L,(X) — L,(X). Then ||U||, £ 1, and so
by Theorem 2.2 the set {f € C(X): Uf = f} is a closed subalgebra
containing 1 and complex conjugates, and separating points. Hence Uf = f
forallf ¢ C(X). Thatis PT = Son C(X). Since P is an orthogonal projection
on Lo(X) and [[PT S|l = ||flle 2 [Tflle = ||PTf||s for all f € C(X), we have
Pl'= Ton CX). Thus S = T on C(X) and the result is proved.

Example. Let {¢, : n = 0} and {¢, : » = 0} be two orthonormal sequences

in L,(0, 1) consisting of continuous functions, such that ¢y = ¢, = 1, both
{en) and {Y,} separate the points of [0, 1]. Suppose for some p # 2,

1 o

f Z (fy @n)\[/ﬂ
0 n=0

Then both sequences are complete and either

enx) =¥, (x),m=1,2,... or ¢ x)=y,(1 —x),n=12....
This is an immediate deduction from the preceeding theorem applied to
the map 7" : C[0, 1] — L,[0, 1] defined by

" < fol |fldx £ € Clo, 1].

1 = 3 (oo

3. Application to group algebras. Let G, and G, be compact groups with
identities e; and e,, and with normalized Haar measure. We denote by Soc (G;)
the set of continuous functions on G;(¢ = 1, 2) whose translates generate
finite-dimensional vector spaces. Then Soc (G;) is the socle of the convolution
algebra L,(G,;) for 1 £ p < © and of C(G;). Let G; denote the set of con-
tinuous homomorphisms from G; into the circle group.

LEMMA 3.1. Let N be a minimal two-sided 1deal in Ly(Gy) and T . N — Lo(G2)
be a convolution algebra homomorphism with ||T'|| £ 1. Then of T %0, T is an
isometry.

Proof. In this proof, we use the fact (implicit in [7]) that if e is an idempotent
in a minimal ideal of L2(G) of dimension 72, then |le||; = 4/ with equality if
and only if ¢ is minimal and self-adjoint. We see this as follows. Certainly
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minimal self-adjoint idempotents have norm v/z [7, p. 158]. Since any self-
adjoint idempotent is the sum of minimal ones which are mutually orthogonal
[7, p. 102], the result is clear for self-adjoint idempotents. Finally for a general
idempotent ¢, let f be a non-zero self-adjoint idempotent in the left ideal
generated by e (see [7, p. 101]) and g = ¢ — f. Then f*g = 0. Since f is
self-adjoint, this meansf L gandso [le||*> = || ][> + |lg][*> = I[f]|* with equality
only if e is self-adjoint.

Now N is algebraically isomorphic to a full matrix algebra of dimension m?,
say. L2(Gs) is the ly-sum of its minimal two-sided ideals {/, : @ € 4} where
each J, is a full matrix algebra of dimension m,> Let P, be the orthogonal
projection of Ly(G:) onto Ju; P, is an algebra homomorphism. If P,T # 0
then, since N is simple, P,1 is injective and hence m, = m.

Let ¢ be a minimal self-adjoint idempotent of N. Then ||e||s = +/m. Hence
[|Tells <4/m. However T'e = 3 5 e, where B is the set of « such that P,T" % 0
and ¢, is a non-zero idempotent in J,. Hence

Tells" = 20 Jleal " 2 20 14

B B

v

and as each m, = m for « € B, B consists of one member @ and mz = m.
Thus [|T€||s = v/mz and so Te is a self-adjoint minimal idempotent in Js.
Hence T is a *-map since N is the span of its minimal self-adjoint idempotents,
and T(N) = Jz since the dimensions of N and J;z are equal. Let 7 denote the
trace on N or Jg. Clearly 7(7f) = 7(f). Hence Tf(e:) = f(e;) for f € N.
(c.f. [12, Lemma 1 and Corollary]).

Thusif f € N,

(7l = [ 17 las

= (Tf)* = (T°f)(e2)
= f*xf(e2)
= [Ifl]"

If G; and G, are compact groups and 8 : G; — G» is an epimorphism then 4
induces two natural algebra homomorphisms:

Ao Ly(Go) = Ly(Gr) (1 =p <o)
Aof (x) = f(6x)

and

Oy : Ly(G1) = Ly(G2) (1 = p < 0)

IMef (0x) = fk Nef(xy)dy

where the integration is with respect to the invariant measure on ker 6.
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THEOREM 3.2. Let Gy and G, be compact groups and 1 < p < 0 (p # 2).
Let T : L,(Gy) — L,(Gy) be « norm-decreasing algebra homomor phism such that
71 = 1. Then there is « compact group H and epimorphisms 6, : G, — H,
0o : Gy = H such that T = Ay, 0 y,.

Proof. Let J be the linear span of the minimal two-sided ideals not included
in the kernel of 7.

(a) Suppose J separates the points of G;; then by Lemma 3.1 and Theorem
2.6, we obtain a map 0 : G; — G; which is continuous and surjective and such
that Tf(x) = f(fx). It is easy to show that 8 is an epimorphism and so 7" = Ay;
in this case § = 6, and 6, is the identity map.

(b) In general, let

K = {x:f(x) = fler);f € J}.

Then K is a closed normal subgroup of Gi;let H = G,/K and 0, : G, — G1/K
be the natural quotient map. Then 7" = S o Iy, where S : L,(H) — L,(G,) is
a norm-decreasing algebra-homomorphism (S = 7 0 A,). If J’ is the linear span
of the minimal two-sided ideals in L,(H) not included in the kernel of S, then
J' = Ty, (J) separates the points of H. Now apply (a) to S.

Theorem 3.2 can be applied when 7°(G;) 5 0, and this is the case when 7" is
either a monomorphism or an epimorphism. Let X be a character on Gy; then by
A, we denote the automorphism of L,(G,) defined by A,f(x) = Nx)f(x).

THEOREM 3.3. Let Gy and G, be compact groups and 1 £ p < o (p # 2).
Suppose T : L,(Gy) — L,(Gs) is a norm-decreasing algebra homomorphism.
() If T is an epimorphism, then T = Ty 0 Ay where N € Gy and 6 : Gy — G,
15 an epimorphism.
(it) If T is @ monomorphism and 1 < p < o, then T = Ay o Ay where
N € Goand 6 : Gy — Gy is an epimor phism.

(iii) If T 1is a monomorphism and p = 1, there is an open subgroup H of G, of

index n, \ € Hand 6 : H — G, an epimorphism such that
Tf(x) = n\(x)f(6x) x € H
=0 x¢ H.

Proof. (i) T-'(C.1) is an ideal of L,(G,) strictly larger than 7-'(0). Hence
there is a minimal ideal J such that J M 7-1(0) = (0) and 7°(J) C C.1. Thus
J has dimension one and there exists \~! € G, such that 7\~! = 1. Thus
T 0 Ax-1(1) = 1, and so by the preceding theorem 7" 0 Ax-1 = Iy as required
(62 is an isomorphism since 71" is surjective) and hence 7" = 115 0 4.

We omit (ii) in view of its similarity to (iii) (which is more difficult).

(iii) By [14, Lemma 2], since 71 is a norm one idempotent in L;(G2),

71 =n\(x) x € H
=0 x¢ H

where H is an open subgroup of index # and \ € H.
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Now if f € Soc Gy, then Tf € Soc G; since Soc G is the linear span of idem-
potents. (Since Soc G is dense in LY(G;), if f € L*(G,), multiplication by f is
a compact operator on L'(G). Thus if f is an idempotent it must act as a finite
rank operator i.e. f € Soc (G;).) Now we have

2r
- fo 11+ re®fildo = 1+ o(r)

by expanding as in Section 2. Hence

2r
-217rf T + re“Tf|[d8 < 1+ o(r).
0

However

I .
Zfo || T1 + reTf||:d0

=2‘17;f01rLln—l—rewa—)Tf(x)[dx‘w_"%ﬁ% ng_Hin(dede

=14 |7 f |7 (%) |dx + o(r).
G2—H
Hence |Tf(x)| = 0 for x ¢ H. If we define

@) = 2 XE@Tf(x) v € H

then S: L,(G,) — L,(H) is a norm-decreasing monomorphism such that
S1 = 1. Now apply Theorem 3.2.

THEOREM 3.4. For 1 = p < o0, p not an even inleger, let J be « closed ideal in
L,(Gy) with 1 € J. Let T be an isometry of J into L,(Gs) such that T1 = 1. Then
there is a compact group H and epimorphism 6, : Gy — H and 05 : Gy — H such
that Tf = Ag, 0 e, f (f € J).

Proof. Let K = {x: f(x) = f(e1) f € J}; K is a closed normal subgroup of
Gy. Let H = G1/K and 6, : Gy — H be the natural epimorphism. Let S = 7o
Ag, on Ag,1(J). Then Ag,=1(J) is a closed ideal of L,(H) separating the points
of H. Now apply Theorem 2.5 to deduce that S = A, where 8, : Go — H is
an epimorphism. Hence 7" = Ay, o IIy,.

Remark. The condition 71 = 1 can be relaxed to the condition that 71 is
a norm one idempotent. However, it cannot be removed altogether. In [5],
there are examples of norm-decreasing homomorphisms between ideals of
L?(G) without the condition 71 = 1 and which have quite a different form to
those in Theorem 3.2. That paper is primarily concerned with the correspond-
ing problem for C(G), where different techniques are required.

https://doi.org/10.4153/CJM-1978-009-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-009-0

1
2
3.
4

[}

e@Ne

10.
11.
12.

13.
14.

HOMOMORPHISMS 111

REFERENCES

. N. Dunford and J. T. Schwartz, Linear operators I, (Interscience, New York, 1958).
F

. Forelli, The isometries of H?, Can. J. Math. 16 (1964), 721-728.
Homomorphisms of ideals in group algebras, 1llinois J. Math. 9 (1965), 410-417.

. F. P. Greenleaf, Norm decreasing homomorphisms of group algebras, Pacific J. Math. 15

(1965), 1187-1219.

. N. J. Kalton and G. V. Wood, Norm decreasing homomorphisms between ideals of C(G),

to appear.
H. E. Lacey, The isometric theory of classical Banach spaces (Springer-Verlag, 1974).
L. H. Loomis, An introduction to abstract harmonic analysis (Van Nostrand, 1953).

. S. K. Parrott, Isometric multipliers, Pacific J. Math. 25 (1968), 159-166.
. R. Rigelhof, Norm-decreasing homomorphisms of group algebras, Trans. Amer. Math. Soc.

136 (1969), 361-372.
W. Rudin, Lr-isometries and equimeasurability, Indiana Math. J. 25 (1976), 215-228.
R. S. Strichartz, Isomorphisms of group algebras, Proc. Amer. Math. Soc. 17 (1966), 858-862.
G. V. Wood, 4 note on isomorphisms of group algebras, Proc. Amer. Math. Soc. 25 (1970),
771-775.
Isomorphisms of Lv group algebras, J. London Math. Soc. 4 (1972), 425-428.
Homomorphisms of group algebras, Duke Math. J. 41 (1974), 255-261.

University College of Swansea,
Swansea, U K.SA42 8PP

https://doi.org/10.4153/CJM-1978-009-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-009-0

