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Abstract

Simulated data from the Coupled Model Intercomparison Project Phase 6 (CMIP6) has been very important for
climate science research, as they can provide wide spatio-temporal coverage to address data deficiencies in both
present and future scenarios. However, these physics-based models require a huge amount of high-performance
computing (HPC) resources. As an alternative approach, researchers are exploring if such simulated data can be
generated by Generative Machine Learning models. In this work, we develop a model based on Pix2Pix conditional
Generative Adversarial Network (cGAN), which can generate high-resolution spatial maps of global sea surface
temperature (SST) using comparatively less computing power and time. We have shown that the maps generated by
these models have similar statistical characteristics as the CMIP6 model simulations. Notably, we trained and
validated our cGAN model on completely distinct time periods across all ensemble members of the EC-Earth3-CC
and CMCC-CM2-SR5 CMIP6 models, demonstrating satisfactory results and confirming the generalizability of our
proposed model.

Impact Statement

Climate studies heavily rely on simulated climate data from the Coupled Model Intercomparison Project Phase
6 (CMIP6) due to its significant contribution in addressing data gaps. Nevertheless, the computational demands
of physics-based models within CMIP6 necessitate huge HPC resources. To overcome this challenge, the
proposed Pix2Pix GAN model enables the generation of global maps of SST, similar to the CMIP6 model, on a
comparatively low hardware-based system and in a reduced timeframe. By combining domain knowledge with
cutting-edge machine learning, this work represents an important step towards the accessibility of climate
modeling tools and datasets.

1. Introduction

Climate models are computer simulations of the complex physical processes in the Earth’s climatic
system. These models are based on differential equations over climatic variables like temperature,
humidity, andwind across a 3Dgrid representing the Earth System (Flato et al. 2014). Climate simulations
are carried out by solving these equations at multiple spatiotemporal resolutions. In recent years there
have emerged several families of such climate models, e.g., the Coupled Model Intercomparison Project
version 6 (CMIP6; Eyring et al. 2016). These models have become vital tools for understanding climate
change under various future scenarios. However, the computational demands of running these physics-
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based models limit their accessibility and utility. These models are often used to simulate various
geophysical parameters, e.g., sea surface temperature (SST) at both regional and global scales. Such
simulations are often used by climate researchers for analyzing different geophysical phenomena (e.g.,
El-Niño Southern Oscillations [ENSO], Indian Ocean Dipole [IOD], etc.), regional rainfall forecasts at
different timescales (Sharma et al. 2023, Le et. al. 2023). However, such simulations are computationally
very expensive and typically require supercomputers.

Machine learning (ML) methods like deep neural networks have emerged as powerful techniques for
modeling complex systems and are being used in multiple scientific fields, including climate
sciences(Bochenek & Ustrnul 2022). Deep neural networks are emerging as one of the most popular
MLmodels in climate sciences due to their constantly improving performance (Sun et al. 2023). However,
the main bottleneck of these models is the requirement for a huge amount of data to train. To address this
challenge, we present a cost-effective alternative for generating synthetic climatic data, which can be used
to train such models. Specifically, we propose to use a Generative Adversarial Network (GAN) for
generating data such as SST. The proposed model is based on the Pix2pix conditional GAN, which takes
observed SST anomaly data as the condition to calibrate the generated data with the observed one.
Another contribution of the model is the generation of spatiotemporal maps. That means the model is able
to generate spatial maps for a given timestamp. Themodel is validated for one CMIP6model (EC-Earth3-
CC). Hence, this approach is able to generate a map equivalent to a CMIP6 model with significantly less
computational cost.

2. Literature survey

The coupled model intercomparison project (CMIP) was established in 1995 by the Joint Scientific
Committee and CLIVAR (Core Project of the World Climate Research Programme) Working Group on
Coupled Models to facilitate ensemble climate modeling. Now in its sixth iteration, CMIP6 enables
coordinated simulations across complex physics-based models (Eyring et al. 2016). CMIP outputs like
SST are valuable real-world surrogates. The ocean and atmosphere are intrinsically linked (Gill, A. E.
2016); hence simulated oceanic variables serve as predictors in diverse climate studies (Richter &
Tokinaga 2020 and Rivera & Arnould (2020)). In particular, SSTs quantify various oceanic phenomena
like Atlantic Multi-decadal Oscillation (Goswami et al. 2022), El-Niño Southern Oscillation (Karoly,
D. J. 1989), North Atlantic Nino (Yadav et al. 2018), and so forth They have a significant impact on the
precipitation of East Africa (Yan et al. 2020, Yang et al. 2018, Stevenson et al. 2012, Endris et al. 2019),
Maritime continent (Power et al. 2013,Xu et al. 2017), Southern andEastern parts ofAsia (Goswami et al.
2022, Wang et al. 2020, Yang et al. 2018), North America (Fasullo et al. 2018, Yang et al. 2018) and so
forthHence CMIP6’s 165-year (1850–2014) SST simulations have various utilities in the climate studies
of various continental regions (Krishnamurthy & Krishnamurthy 2014).

Meanwhile, ML and deep learning (DL) offer versatile utilities for geoscientists and climatologists. It
includes the prediction of rainfall (Endalie et al. 2022, Haq et al. 2021, Sharma et al. 2023), extreme
events (Yan et al. 2022), and streamflow (Singh et al. 2023); downscaling of data (Niazkar et al. 2023,
Sharma et al. 2022) and so forth Apart from these prediction models, generative models are also used in
climate studies. In recent years various variants of GAN have started to be used tomodel turbulent climate
dynamics (Gupta et al. 2020), flood frequency estimation (Ji et al. 2024), tipping point discovery
(Sleeman et al. 2023) and so forth However, there is a lot to explore in this field where GAN can come
up with more effective solutions compared to the traditional models.

Motivated thus, we develop a GAN architecture to generate CMIP6-like global SST fields based solely
on observational data. This model has the potential to increase the accessibility of simulated data by
replacing the physics-based model with a statistical model, hence reducing the hardware requirement.

3. Dataset and preprocessing

Our study uses two extensive datasets for model training and validation:
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Observed Sea Surface Temperature (SST) data: Monthly global data spanning 1871–2010 was
acquired from The Simple Oceanic Data Assimilation (SODA) v2.2.4 dataset (Giese et al. 2011).

Simulated SST data: Ten ensembles from the Coupled Model Intercomparison Project Phase
6 (CMIP6) dataset for the EC-Earth3-CC and CMCC-CM2-SR5 models were selected, covering the
same period.

Both datasets were preprocessed and resampled to a common spatial resolution of 3.75° × 2.5°,
resulting in a data dimension of 144 × 48 towards longitude and latitude, respectively, for each month.

Figure 1. The architecture of the generator model. (a) The basic convolutional neural network (CNN)
block is used in the generator, (b) The full generator model, where the combination of the CNN block
is used.

Figure 2. Architecture of the discriminator model. (a) The basic convolutional neural network (CNN)
block is used in the discriminator, (b) The full discriminator model, where the combination of the CNN
block is used.
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Missing values were replaced with zeros, and observed data anomalies were calculated by subtracting the
long-term mean.

For training, the first 130 years (1871–2000) of data were used. To match the dimensionality of the
10 CMIP6 ensembles, the observed data were replicated tenfold. This allowed training the model on each
input data point separately for each ensemble. Validation was performed for the remaining 14 years
(2001–2014). For each year, the mean of the 10 ensembles of the simulated data were used, ensuring the
performance of the model was evaluated against the average ensemble behavior, instead of individual
variations. This data processing and preparation strategy ensures thorough training on diverse simulated
scenarios while evaluating the generalizability of the model against the average ensemble response.

4. Methodology

We develop a conditional generative adversarial network (cGAN) based on the Pix2pix architecture to
generate simulated SST data based on the observed anomaly data as the condition. The cGAN contains

Figure 3. Architecture for adversarial learning for the proposed model.

Figure 4. Evolution of the generator on training data for the EC-Earth3-CC GCM model.
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two key components—a generator model to produce synthetic SST data, and a discriminator model to
differentiate real versus generated SST.

4.1. Generator model

The generator is a convolutional neural network (CNN) that takes observed SSTanomaly data as input and
outputs corresponding simulated SST data. TheGenerator consists of a combination of a basic CNNblock.As
shown in Figure 1(a), the basic CNN block comprises convolutional (Conv2D) and transposed convolutional
(ConvT2D) layers to down-scale (down) and up-scale (up) the spatial dimensions of the features, respectively.
This layer is followed by batch normalization (BatchNorm2D) and ReLU activation.

The input first undergoes initial feature extraction through two Conv2D and ReLU activation layers.
The primary structure of the generator consists of four CNN blocks for downsampling features and an
additional four blocks for upsampling. The final output layer is a ConvT2D layer to produce the simulated
SST output. This architecture enables the generator to learn the spatial variability between input and
output data. The full generator model is visually illustrated in Figure 1(b).

Table 1. Epoch-wise updation of the correlations and mean squared error (approximated till 3 decimal
places) for training and validation dataset for EC-Earth3-CC GCM model (the highest values for each

column have been highlighted in bold)

Epoch

Training

Average sample-wise
correlation

Average sample-wise
MSE

Average spatial
correlation

Average spatial
MSE

Training
0 0.238 128.829 0.664 138.699

40 0.498 1.440 0.992 2.282
80 0.509 1.154 0.997 1.296
120 0.526 0.475 0.998 0.562
160 0.531 0.487 0.998 0.564
200 0.533 0.446 0.998 0.560
240 0.537 0.430 0.998 0.508
280 0.541 0.430 0.998 0.501
320 0.542 0.420 0.998 0.485
360 0.542 0.413 0.998 0.480
400 0.544 0.411 0.998 0.475

Validation
0 0.306 120.821 0.704 131.276

40 0.571 1.122 0.993 1.946
80 0.578 1.298 0.998 1.445
120 0.597 0.249 0.999 0.298
160 0.603 0.181 0.999 0.220
200 0.604 0.223 0.999 0.303
240 0.608 0.208 0.999 0.258
280 0.612 0.232 0.999 0.260
320 0.612 0.186 0.999 0.222
360 0.611 0.246 0.999 0.288
400 0.611 0.234 0.999 0.264
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4.2. Discriminator model

The discriminator is a CNN that performs binary classification on SST data distinguishing between real
and generated samples. As illustrated in Figure 2(a), it shares a similar CNN block structure as the
generator, using Conv2D layers only to downsample the input.

As in Figure 2(b), the discriminator takes both the input SST anomaly and either the real or generated
SST data as input. These are concatenated and passed through initial Conv2D and ReLU layers, followed
by fiveCNNblocks. The final Conv2D layer and sigmoid activation output the probability of the SST data
being real or fake. By competing against the generator, the discriminator improves its ability to better
differentiate between real and fake samples.

4.3. Adversarial learning

The generator and discriminator models are trained jointly through an adversarial learning approach. The
objective of the generator is to synthesize increasingly realistic simulated SST data to fool the discrim-
inator, while the discriminator aims to distinguish between real and generated SST. As the training

Table 2. Epoch-wise updation of the correlations and mean squared error (approximated till 3 decimal
places) for training and validation dataset for the CMCC-CM2-SR5 model

Epoch

Training

Average sample-wise
correlation

Average sample-wise
MSE

Average spatial
correlation

Average spatial
MSE

Training
0 0.493 6.219 0.975 8.954

40 0.571 0.424 0.999 0.489
80 0.575 0.260 0.999 0.294
120 0.576 0.266 0.100 0.299
160 0.576 0.269 0.999 0.306
200 0.576 0.266 0.999 0.298
240 0.574 0.306 0.999 0.345
260 0.577 0.263 0.999 0.295
280 0.576 0.274 0.999 0.311
320 0.574 0.278 0.999 0.311
360 0.576 0.252 0.999 0.284
400 0.574 0.353 0.999 0.430

Validation
0 0.527 7.809 0.974 11.008

40 0.612 0.782 0.999 0.890
80 0.614 0.336 0.999 0.390
120 0.613 0.269 0.999 0.321
160 0.614 0.347 0.999 0.402
200 0.613 0.242 0.999 0.291
240 0.613 0.398 0.999 0.445
260 0.615 0.197 0.999 0.235
280 0.614 0.227 0.999 0.259
320 0.612 0.260 0.999 0.306
360 0.613 0.336 0.999 0.389
400 0.613 0.223 0.999 0.285
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progresses, both networks improve through this adversarial competition (Figure 3). Each input SST image
is associated with 10 different ensemble members of simulated SST data. This aids the generator in
learning to capture the variability across ensembles given the same input.

Both models are optimized using the Adam optimizer with a learning rate of 0.00008. The discriminator
loss is the binary cross-entropy between predictions and true labels for real–fake data. The generator loss
combines binary cross-entropy for fooled predictions andHuber loss between generated and real SST.A batch
size of 64 is used. To leverage multiple ensembles, we adopt a cyclic training strategy. Each epoch trains on a
different ensemble of batch size 64, enabling themodel to incrementally learn the distinct features of each. This
mimics the transfer learning strategy to capture the inter-ensemble variability.

Training continues for 400 epochs(as after that overfitting starts), with model weights being saved at
every 20 epochs. The best weights are selected by evaluating the temporal correlation, spatial correlation,
and discriminator accuracy on the validation set.

5. Experimental results

To evaluatemodel generalization, we have trained and validated ourmodel onmutually exclusive training
and validation datasets. Training ensemble members and validating the ensemble mean also test the
generalization ability across the ensembles.

Figures 4 and 6 show the evolution of the training data generation for the EC-Earth3-CC and CMCC-
CM2-SR5 models till epoch numbers 320 and 260, respectively, as our GAN model shows the highest
correlation in these epochs. Here, mean maps are calculated by taking the grid-wise mean of all the
individual SSTmaps. The correlationmaps are generated by calculating the grid-wise Pearson correlation
coefficient between the generated and original maps, while the mean squared error (MSE) maps are
generated by calculating theMSE for each grid cell between the generated and original maps. As shown in
Tables 1 and 2, metric values are calculated by averaging the values across all grid cells of the respective
metric maps. In contrast, the spatial metric values are computed by considering the correlation and MSE
between the mean generated and original maps, effectively evaluating the overall spatial patterns.
According to the tables, in early epochs, the generated SST exhibits a low correlation with real data, as

Figure 5. Evolution of the generator on validation data for the EC-Earth3-CC GCM model.
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evident from the high values of the MSE between the generated and the original maps. This can also be
understood visually by observing the sample-wise correlation and MSE maps. The random initialization
of the weights improves substantially by epoch 80 although as per the correlation map, the prediction of
the equatorial and polar regions remains challenging. This is because, in the equatorial region, all the
waves of the tropical regions come together because of the Inter Tropical Convergence Zone (ITCZ;
Schneider et. al. (2014)) varying the characteristics of that region from the other regions of the ocean. For

Figure 6. Evolution of the generator on training data for CMCC-CM2-SR5 GCM model.

Figure 7. Evolution of the generator on validation data CMCC-CM2-SR5 GCM model.
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the polar regions, very low SSTmakes the region hard to predict. Themagnitude differences also decrease
drastically. By epoch 320 (for EC-Earth3-CC) and 260 (for CMCC-CM2-SR5), when the model peaks at
the correlations 0.542 (0.577) and 0.998 (0.999), even these difficult regions achieve the correlation value
nearly to 0.5. The grid-wise magnitude differences also come down to almost 0 in most of the grid
locations, making the average MSEs 0.420 (0.263) and 0.485 (0.295), respectively.

The evolution of the validation set in Figures 5 and 7 follow a similar trajectory, with temporal and spatial
correlation improving from 0.306 (0.527) and 0.70 (0.974) at epoch 0 to 0.612 (0.615) and 0.999 (0.999) at
epochs 320 and 260 respectively. Even the MSE maps have also followed the same by improving the
temporal and spatial values. Unlike the training set, in the validation set the equatorial and polar correlations
reach a value of more than 0.5 by the best epochs, indicating the ability of the model to learn the capture
ensemble variability.We have also shown some sample SSTmaps (January, February, andMarchmonths of
the year 2001) from the EC-Earth3-CC model and our proposed GAN-based model in Figure 8.

Figure 8. Sample outputs from EC-Earth3-CC GCM model at epoch 320.
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In summary, adversarial training enables the model to incrementally generate increasingly realistic
SST data over epochs, as quantified by the improved values of spatial and temporal/sample-wise
correlation and MSEs (Tables 1 and 2). Validating on an unseen time period and the ensemble mean
demonstrates the ability of themodel to generalize across both time and ensembles. The proposed training
strategy effectively captures ensemble variability in simulated SST generation.

6. Conclusion

Physics-based climate models like those in the CMIP6 have become indispensable tools for climate
studies by providing extensive simulated datasets to address critical data gaps. To overcome its hardware
limitations, we have developed a data-driven generative modeling approach for simulating SST based on
Pix2pix cGAN.Our proposed conditional GANmodel learns to synthesize realistic SST data simply from
observed SST, bypassing the need to explicitly solve complex physical equations. Critically, we have
trained and validated the GAN on entirely distinct time periods across all ensemble members of the
EC-Earth3-CC and CMCC-CM2-SR5 GCM models. The skill of the model in generalizing across both
temporal and spatial dimensions underscores the viability of using generative machine learning models
for efficient and accessible climate simulation. This approach can be extended in the future to generate
other oceanic variables like Isothermal layers, sea level pressure, and so forth furthermore this model can
be further extended to develop a predictive approach for simulated data.
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