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Abstract

The integration of Artificial Neural Networks (ANNs) and Feature Extraction (FE) in the context of the Sample-
Partitioning Adaptive Reduced Chemistry approach was investigated in this work, to increase the on-the-fly
classification accuracy for very large thermochemical states. The proposed methodology was firstly compared with
an on-the-fly classifier based on the Principal Component Analysis reconstruction error, as well as with a standard
ANN (s-ANN) classifier, operating on the full thermochemical space, for the adaptive simulation of a steady laminar
flame fed with a nitrogen-diluted stream of n-heptane in air. The numerical simulations were carried out with a kinetic
mechanism accounting for 172 species and 6,067 reactions, which includes the chemistry of Polycyclic Aromatic
Hydrocarbons (PAHs) up to C20. Among all the aforementioned classifiers, the one exploiting the combination of an
FE step with ANN proved to be more efficient for the classification of high-dimensional spaces, leading to a higher
speed-up factor and a higher accuracy of the adaptive simulation in the description of the PAH and soot-precursor
chemistry. Finally, the investigation of the classifier’s performances was also extended to flames with different
boundary conditionswith respect to the training one, obtained imposing a higher Reynolds number or time-dependent
sinusoidal perturbations. Satisfying results were observed on all the test flames.

Impact Statement

The existingmethodologies for the simulation ofmultidimensional flameswith detailed kineticmechanisms are time-
consuming because of the large number of involved chemical species and reactions. This aspect has prompted the
development of approaches to reduce the computational requirements of computational fluid dynamics simulations of
reacting flows.Among them, adaptive chemistry isworthmentioning, as it allows to use complex kineticmechanisms
only where needed. In this work, an artificial neural network architecture with a prior encoding step via Principal
Component Analysis was integrated in the Sample-Partitioning Adaptive Reduced Chemistry approach, to increase
the on-the-fly classification accuracywhen high-dimensional spaces are considered. Its performances were compared
with others supervised classifiers, operating on the full thermochemical space, in terms of speed-upwith respect to the
detailed simulation and accuracy in the description of Polycyclic Aromatic Hydrocarbon species.
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1. Introduction

The computational cost of reacting flows’ Computational lFluid Dynamics (CFD) simulations is highly
correlated with the number of chemical species included in the kinetic mechanism. In fact, as observed in
Cuoci et al. (2013), in the context of operator-splitting methods for inhomogeneous reacting flows (Ren
and Pope, 2008), the CPU time associated with both the transport substep and the reaction substep
increases nonlinearly with the level of chemical detail. The reaction step, in particular, represents themost
time-consuming part of the computation, requiring sometimes even more than 90% of the total compu-
tational time (Cuoci et al., 2013). Many strategies involving an a priori skeletal reduction have been
developed and efficiently coupledwith numerical simulations (Nagy and Turányi, 2009; Niemeyer, 2009;
Ranzi et al., 2014; Stagni et al., 2016; Chen et al., 2017), but it is not always possible to opt out of using a
high number of species. In many cases, in fact, the use of detailed kinetic mechanisms is still crucial for
accurate predictions of slow chemistry, as well as for an accurate description of the pollutants formation.

One effective strategy to alleviate the costs impliedwith the inclusion of detailed chemicalmechanisms
in CFD simulations is to consider an adaptive-chemistry approach, as it allows to reduce the CPU time by
means of the adaptation of the kinetic mechanism according to the local flame conditions. Several
adaptive approaches have been proposed in the literature, such as the Dynamic Adaptive Chemistry and
the Pre-Partitioning Adaptive Chemistry (Schwer et al., 2003; Liang et al., 2009; Shi et al., 2010; Contino
et al., 2011; Ren et al., 2014a, 2014b; Komninos, 2015; Liang et al., 2015; Zhou and Wei, 2016; Newale
et al., 2019, 2020), as well as the use of lookup tables with B-spline interpolants (Bode et al., 2019), with
benefits in terms of both CPU time (if compared to the detailed simulations) and accuracy (if compared
with simulations using globally reduced mechanisms).

In D’Alessio et al. (2020b, 2020c), the authors proposed and validated, for both steady and unsteady
laminar methane flames, a data-driven adaptive-chemistry approach called Sample Partitioning Adaptive
ReducedChemistry (SPARC), specifically conceived for operator-splitting numerical solvers, showing its
potential in terms of chemical reduction, computational speed-up, and accuracy. The latter is based on two
main steps: a preprocessing phase, in which the creation of a library of reduced kinetic mechanisms is
accomplished, and a second step, in which the multidimensional adaptive CFD simulation is carried out.
The preprocessing phase consists of the three following substeps: the creation of a training dataset, the
data partitioning, and the generation of the reduced mechanisms. The offline data partitioning is carried
out via local principal component analysis (LPCA; Kambhatla and Leen, 1997; D’Alessio et al., 2020a),
or by means of any other clustering algorithm (D’Alessio et al., 2020b). After that, for each group of
similar points (cluster), a reduced kinetic mechanism is generated via Directed Relation Graph with Error
Propagation (DRGEP; Pepiot-Desjardins and Pitsch, 2008). The chemical reduction step can also be
accomplished using different kinetic reduction techniques such as Computational Singular Perturbation
or Intrinsic Low-Dimensional Manifolds (Maas, 1998; Valorani et al., 2006, 2007; König and Maas,
2009). After this step, a library of reducedmechanisms, corresponding to different chemical conditions, is
obtained. At each timestep of the numerical simulation, then, the local thermochemical space (described
by the vector y of temperature and chemical species of each cell) is classified by means of a supervised
algorithm. Therefore, on the basis of the similarity evaluation between the aforementioned local
thermochemical state and the training clusters, one of the reduced mechanisms contained in the library
is selected to carry out the reactive step of theODE integration. This last, on-the-fly, step can be carried out
using the Principal Component Analysis (PCA) reconstruction error as in D’Alessio et al. (2020b, 2020c),
or, alternatively, any other supervised classification algorithm. The SPARC approach can be particularly
effective when employed in practical applications where several CFD simulations of the same reactive
system, but in different conditions, have to be implemented. This is true, for instance, in process
optimization and other parametric studies (in which the Reynolds number can vary) or in the design
phase of gas turbines, burners, or chemical reactors (in which different geometrical configurations can be
adopted, e.g., different nozzle shapes, inclusion of bluff bodies, etc.). Thus, in these occasions, a possible
strategy to reduce the simulation cost is to run a single CFD simulation with detailed kinetics at a low
Reynolds number (in light of the relation between the inlet velocity and the computational cost of the
simulation) or in steady conditions, and then use the data to train the SPARC approach to adaptively
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simulate the high Reynolds or the unsteady case. Additional information regarding the inclusion of the
SPARC adaptive chemistry in the numerical solver and the resolution of the governing equations can be
found in D’Alessio et al. (2020c).

If the chemical mechanism consists of a large number of species (i.e., if the thermochemical space is
high-dimensional), the supervised classification can be a difficult task to accomplish, especially if the
label assignment is based on the computation of a generic Lk-norm (as with LPCA). In fact, as also
mathematically proved in Aggarwal et al. (2001) andVerleysen et al. (2003), as the number of dimensions
increases, the concepts of distance and nearest neighbors both lose meaningfulness. Thus, Artificial
Neural Networks (ANNs) represent a valid alternative to improve the classification efficiency when
dealing with high-dimensional spaces, and they have also already been successfully exploited for
combustion and chemical kinetics applications (Christo et al., 1995, 1996; Blasco et al., 1998; Hao
et al., 2001; Galindo et al., 2005; Chen et al., 2020; Dalakoti et al., 2020; Debiagi et al., 2020; Angelilli
et al., 2021). ANNs have also been introduced in the context of Large Eddy Simulations of reactive flows
in Ihme et al. (2009), and the comparison with conventional tabulation techniques for chemistry
representation led to excellent results in terms of accuracy. Nevertheless, the network performances
can also be undermined if the training dataset consists of a large number of features. As described in
Bellman (1961) and Priddy and Keller (2005), the number of statistical observations which are necessary
to properly train the network is proportional to the input space’s dimensions, following an exponential
relation. In light of this problem, one possible solution is to carry out a feature extraction (FE) step prior to
the ANN classification. Encoding the input space in a lower dimensional manifold allows to significantly
lower the number of features (and, consequently, the number of observations required to properly train the
network), at the same time removing the data noise, and eventually increasing the classification accuracy
modifying the hyperspace geometry (i.e., promoting the separation between classes). The described
combination between FE and classification is nowadays widely used in many scientific applications and
domains, such as images classification (Chen et al., 2014, 2016; Xing et al., 2016; Zhao and Du, 2016),
computational biology (Ongun et al., 2001; Wang et al., 2018), medical sciences (Alexakis et al., 2003;
Rafiuddin et al., 2011; Kottaimalai et al., 2013), and fault detection identification (Thirukovalluru et al.,
2016; Vartouni et al., 2018).

In this work, a novel on-the-fly classifier based on FE and ANN is proposed to adaptively simulate
laminar coflow diffusion flames fed with a nitrogen-diluted n-heptane stream in air. The new classifier
performances are firstly compared a posteriori with a PCA-based classifier and an s-ANN classifier
(without the FE step) in terms of speed-up and accuracy in the description of Polycyclic Aromatic
Hydrocarbon (PAH) species with respect with the detailed one. Finally, the new classifier is tested on three
flames with different boundary conditions (BCs; in terms of Reynolds number, or using unsteady BCs)
with respect to the one used for the training.

The remainder of the paper is structured as follows: in Section 2, the classification algorithms are
explained in detail, and a step-by-step procedure for the on-the-fly classification is shown; in Section 3, the
numerical setup for the CFD simulations is described; in Section 4, the adaptive simulation results for the
four flames are shown and discussed.

2. Theory

2.1. Algorithms for the on-the-fly classification

2.1.1. Clustering and classification via local principal component analysis
In this work, PCA is used to identify a lower-dimensional manifold spanned by a new set of orthogonal
directions explaining nearly all the variance contained in the original dataset X∈ℝn�p, consisting of n
statistical observations of p variables. Mathematically speaking, the new directions are represented by a
set of eigenvectors A∈ℝp�p obtained by the eigendecomposition of the covariance matrix S∈ℝp�p:

S¼ 1
n�1

XTX, (1)
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S¼ALAT : (2)

The basis can be truncated to retain only the relevant information contained in the first q eigenvectors, and
the matrix Aq∈ℝp�q is obtained. Projecting the original data matrix on Aq, the matrix of the truncated
scores, Zq∈ℝn�q, is obtained:

Zq ¼XAq: (3)

Because of the eigenvectors’ matrix orthonormality, i.e., Aq
�1 ¼Aq

T , it is possible to approximate the
original dataset from the reduced PCA manifold by means of a matrix multiplication:eX¼ZqAq

T : (4)

The difference between the original and the reconstructed set of observations is the PCA reconstruction
error, and it is defined as

ϵRE ¼ kX� eXk: (5)

LPCA with vector quantization, introduced in Kambhatla and Leen (1997), is a piecewise-linear
formulation of PCA that extends its applicability also to nonlinear cases, reducing the error due to the
linearity of the original, global, algorithm. This unsupervised algorithm uses the minimization of the
reconstruction error reported in Equation (4) as objective function, partitioning the matrixX in k clusters,
and separately performing a dimensionality reduction in each of them. Given that, k eigenvector matrices
Aq j, with j¼ 1,…,k, are found at each iteration, and the observations of the datasetX are assigned to the
cluster k such that:

k ∣ ϵRE,k ¼ min
j¼1,…,k

ϵRE,j: (6)

Additional information regarding the iterative algorithm can be found in Kambhatla and Leen (1997) and
D’Alessio et al. (2020a, 2020b, 2020c).

As also proved in Kambhatla and Leen (1997), the local reconstruction error reported in Equation (6)
can be seen as the Euclidean orthogonal distance between the considered observation and the reduced
manifold spanned by the set of eigenvectors of the jth cluster,Aq j: This partitioning criterion has already
shown its potential in the field of combustion for both dimensionality reduction (Parente et al., 2009,
2011) and clustering (D’Alessio et al., 2020a, 2020b, 2020c) tasks, and it has also proved to be
competitive with other state-of-the-art clustering algorithms (D’Alessio et al., 2020b).

The objective function reported in Equation (6) can also be used to classify a new, unobserved, point,
on the basis of a previous dataset partitioning. In fact, given a training dataset eX∈ℝn�p, centered and
scaledwith its centering and scaling factors μx∈ℝ1�p and σx∈ℝ1�p, partitioned in k clusters via LPCA, it
is possible to classify a new, unobserved, vector y∈ℝ1�p by means of the following procedure:

1. Centering and scaling: The new observation y is centered and scaled with μx and σx, the centering
and scaling factors of the training dataset. The centered and scaled vector ey is obtained after this
operation;

2. Projection: The vector ey is projected on the k local, lower-dimensional, manifolds spanned by the
local PCs (Aq j) using Equation (3);

3. Cluster assignment: The k projections are reconstructed using the local eigenvectors, and the
associated reconstruction error is computed (Equations (4) and (5)). The considered observation is
thus assigned to the cluster k, which minimizes the reconstruction error (Equation (6)).

2.1.2. Classification via artificial neural networks
ANNs are universal function approximators (Hornik et al., 1989; Stinchcombe andWhite, 1989; Hornik,
1991), which can be used for regression or classification tasks (Specht, 1991; Dreiseitl and Ohno-
Machado, 2002). They consist of a series of interconnected layers, each layer being characterized by a
certain number of nodes, or neurons.

e2-4 Giuseppe D’Alessio et al.

https://doi.org/10.1017/dce.2021.2 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2021.2


Given an input vector x∈ℝ1�p to the network, it is linearly combined with the weights W and the
biases b of the first layer, and it is then activated by a nonlinear function h(�):

z¼ h xWþbð Þ: (7)

After that, z undergoes the same linear combination of the immediately following layer’s weights and
biases, with a subsequent nonlinear activation, until the last layer, that is, the output layer, is reached
(Bishop, 2006). The layers between the input and the output are called hidden layers (HLs): if the network
architecture is characterized by two or more HLs, the neural network can be defined deep. During the
network training phase, the numerical values of theweights aremodified at each iteration (epoch) to better
approximate the output function, in case of regression, or to have a better accuracy in the class prediction,
in case of classification tasks, by means of the backpropagation algorithm (Hecht-Nielsen, 1992; Bishop,
2006). The possibility to use a nonlinear activation function is the real strength of this method, allowing
the architecture to learn complex patterns hidden in the data (Stinchcombe and White, 1989).

AlthoughANNs are a powerful tool to be used for regression and classification problems, they result to
be prone to overfitting. For this reason, several methods and strategies have been formulated to stem this
phenomenon, such as dropout and early stopping (Caruana et al., 2001; Srivastava et al., 2014). In
particular, early stopping is an effective tool to deal with situations in which the networks would tend to
overfit, as it stops the training in advance, when the learned model is similar to the one that would have
been achieved by an optimal-sized architecture (Caruana et al., 2001).

Supposing to have a training dataset eX∈ℝn�p, centered and scaled with its centering and scaling
factors μx∈ℝ1�p and σx∈ℝ1�p, partitioned in k clusters, the classification of a new, unobserved, vector
y∈ℝ1�p is, in this case, accomplished according to the following steps:

1. Centering and scaling: The new observation y is centered and scaled with μx and σx, the centering
and the scaling factors of the networks’ training dataset. The centered and scaled vector ey is
obtained after this operation;

2. Forward pass through the network: The centered and scaled observation ey has a forward pass
through the trained network;

3. Cluster assignment: The observation is assigned to the class which maximizes the membership
probability, computed applying a softmax function on the output layer.

2.2. Classification via feature extraction and artificial neural networks

If the training data fed to any machine learning algorithm are high-dimensional, it is very likely that many
of the input variables are redundant, therefore adding a large amount of noisy information. This aspect is
inconvenient from a model development perspective, as it makes difficult to achieve a valuable
knowledge discovery process, as well as from a predictive modeling point of view, because of the highly
exponential relation between the number of features and the number of statistical observations required to
properly train themodel (Priddy andKeller, 2005). FE algorithmswere thus designed to find a new, lower-
dimensional, representation of the space which is spanned by the input data (i.e., a new, reduced, set of
variables) with minimal information loss. Among all the possible FE techniques, it is worth mentioning
PCA (Jolliffe, 1986; Bishop, 2006), Independent Component Analysis (Hyvärinen and Oja, 2000), Non-
negative Matrix Factorization (Lee and Seung, 2001), and Dynamic Mode Decomposition (Schmid,
2010; Tu et al., 2013; Grenga et al., 2018), among the linear methods, as well as Autoencoders (AEs; Ng,
2011), Kernel Principal Component Analysis (KPCA; Mika et al., 1999; Rosipal et al., 2001; Mirgolba-
baei et al., 2014), Isomap (IM; Choi and Choi, 2007; Bansal et al., 2011), and t-distributed Stochastic
Neighbor Embedding (t-SNE; van derMaaten andHinton, 2008; Fooladgar andDuwig, 2018), among the
nonlinear methods. Because of the intrinsic nonlinearity characterizing both fluid dynamics and chemical
kinetics, the application of nonlinear FE methods would obviously be more suitable for combustion
applications, but their application is not always straightforward. In fact, methods based on the compu-
tation of a kernel matrix (K) and its relative decomposition (e.g., KPCA and IM) are computationally
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expensive. As a result, they can be applied only to relatively small training matrices (accounting for
thousands of statistical observations, maximum), as the storage of K requires O n2ð Þ space, and its
computation O n2dð Þ operations, where n is the number of statistical observations of the training matrix,
and d the number of its variables (Si et al., 2017). On the other hand, methods such as AE and t-SNE
require a remarkable user expertise and a thorough sensitivity analysis to find the optimal setting of the
hyperparameters, as poor results are obtained otherwise. Linear FE methods are, instead, faster from a
computational point of view, and straightforward to use (because of the lower number of hyperparameters
to be set) with respect to the aforementioned, nonlinear, ones. In particular, among all the aforementioned
linear FE algorithms, PCA, despite its linear nature, has proved to be a valuable tool to extract the main
features for combustion datasets, and its use is well documented in literature for model order reduction in
reactive flow applications (Parente et al., 2009, 2011; Isaac et al., 2014; Aversano et al., 2019).

The coupling between the FE and the ANN classification is accomplished by prefixing the PCA step to
the network classification, i.e., feeding and training the network with the lower-dimensional projection of
the training matrix (i.e., with the scores matrix Zq). A general scheme of the encoding-classification
procedure is shown in Figure 1.

Given a training dataset eX∈ℝn�p, centered and scaled with its centering and scaling factors μx∈ℝ1�p

and σx∈ℝ1�p, partitioned in k clusters, to whom PCA has been applied (i.e., the eigenvectors matrix
Aq∈ℝp�q has been retrieved), it is possible to classify a new, unobserved, vector y∈ℝ1�p on the basis of
the aforementioned partitioning by means of the following procedure:

1. Centering and scaling: The new observation y is centered and scaled with μx and σx, the centering
and scaling factors of the training dataset. The centered and scaled vector ey is obtained after this
operation;

Figure 1.Operational diagram of the on-the-fly classifier based on feature extraction (FE) and ANN: an
FE step (encoding) is carried out by means of principal component analysis, and the lower-dimensional

data representation is fed to the ANN for the classification.
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2. Encoding: The vector ey is projected on the reduced manifold spanned by the eigenvectors’matrix
Aq, by means of the matrix multiplication zq ¼eyAq. Thus, at the end of this step, the PC-score vector
zq is obtained;
3. Forward pass through the network: The PC-score vector zq has a forward pass through the trained

network;
4. Cluster assignment: The observation is assigned to the class which maximizes the membership

probability, computed applying a softmax function on the output layer.

3. Case Description

The first configuration chosen to test the adaptive chemistry methodology here presented is an axisym-
metric, steady, nonpremixed laminar nitrogen-diluted n-heptane coflow flame. The fuel stream is injected
at 400 K with the following composition on molar basis: n‐C7H16=N2 ¼ 0:35=0:65. The oxidizer stream,
consisting of regular air, is injected at 300K. The fuel enters through a circular nozzle (internal diameter of
11 mm and thickness of 0.90 mm), whereas the oxidizer enters through an annular region (internal
diameter of 50 mm). The velocity profile of the fuel stream is imposed parabolic at the boundary,
following the equation:

v rð Þ¼ 2vm 1� r2

R2

� �
, (8)

where r is the radial coordinate, R the internal radius, and vm is equal to 10.12 cm=s. The coflow air is
injected instead with constant velocity equal to 12.32 cm=s. The burner geometry and the inlet velocities
are the same adopted in Kashif et al. (2015) to study the propensity to soot formation of gasoline
surrogates. The numerical simulations were carried out with the laminarSMOKE code, a CFD solver
based on OpenFOAM and specifically conceived for laminar reacting flows with detailed kinetic
mechanisms1 (Cuoci et al., 2013). The 2D computational domain (with lengths of 40 and 100 mm in
the radial and axial directions, respectively) was discretized through a Cartesian mesh with a total number
of ~10,000 cells, more refined in the nozzle proximity and in the reactive zone, after amesh sensitivity and
convergence study. The simulations were carried out using the POLIMI_PRF_PAH_HT_1412 kinetic
mechanism (172 species and 6,067 reactions): this mechanism accounts for the pyrolysis, the partial
oxidation, and the combustion of n-heptane, also including the chemistry of PAHs up to C20. Extensive
validation and detailed description of such mechanism can be found in Pelucchi et al. (2014).

Three additional flame configurations, obtained imposing different BCs, were considered for the
validation of the adaptive approach using the proposed on-the-fly classifier, of which one in steady
conditions, and two in unsteady conditions. The steady test flame was obtained using the same BCs as the
first one but the Reynolds number: the inlet velocity profile was, in fact, set to 20.24 cm=s, thus doubling
the Reynolds number. The two unsteady test flames were obtained imposing a sinusoidal perturbation
with prescribed frequency f and amplitude A to the parabolic inlet velocity profile, as shown in
Equation (9). The frequencies and the amplitudes imposed to the flames to obtain the unsteady behavior
were selected verifying their effectiveness a posteriori, that is, verifying that the sinusoidal perturbations
with prescribed frequency and amplitudes were able to dynamically modify the thermochemical field of
the flame, with respect to the steady solution. A more detailed and general study regarding the
applicability and the effects of different perturbations in the context of the SPARC adaptive chemistry
approach was already extensively carried out by the authors in D’Alessio et al. (2020c).

v r, tð Þ¼ 2vm 1� r2

R2

� �
1þAsin 2πftð Þ½ �: (9)

1 available at the following address: https://github.com/acuoci/laminarSMOKE

Data-Centric Engineering e2-7

https://doi.org/10.1017/dce.2021.2 Published online by Cambridge University Press

https://github.com/acuoci/laminarSMOKE
https://doi.org/10.1017/dce.2021.2


The numerical values for the BCs concerning the inlet velocities, as well as the frequencies f and the
amplitudes A of the sinusoidal perturbations used for the numerical simulations, are summarized in
Table 1.

4. Results

4.1. Prepartitioning of composition space and reduced mechanism generation

The generation of the reduced mechanisms to be used in the multidimensional adaptive simulations was
obtainedprepartitioning the thermochemical space spanned by the S1 datasetwithLPCA, using25PCs.The
training data consisted of ~170,000 statistical observations of 173 variables (temperature and the 172 chem-
ical species included in the detailed kinetic mechanism), and they were centered with their mean values and
scaledwith their standard deviations.With regard to the second hyperparameter of the LPCA algorithm, i.e.,
the number of clusters to be used for the partitioning of the thermochemical space, it was set equal to
7 according to the minimization of the Davies–Bouldin (DB) index (Davies and Bouldin, 1979). In fact, in
the absence of an a priori knowledge of the optimal number of clusters (from a physical and chemical point
of view), the aforementioned index can provide an estimation from a geometric point of view. The LPCA
prepartitioning, as well as the choice of the optimal number of clusters by means of the DB index, was
accomplished using the OpenMORe framework, an open-source Python tool for clustering, model order
reduction, and data analysis.2 The reduced chemical mechanisms were initially generated in each cluster
using a tolerance ϵDRGEP ¼ 0:005, as done in D’Alessio et al. (2020c). The statistics regarding the chemical
reduction for the n-heptane detailed mechanism are reported in Table 2 regarding the mean (nmeansp ) and
maximum number of species nmaxsp

� �
, as well as for the mean and maximum nonuniformity coefficient

(λmean and λmax, respectively). The nonuniformity coefficient λ is defined as

λ¼ 1
nsp

Xnsp
i¼1

xi�1ð Þ2, (10)

where nsp is the total number of species included in the kinetic mechanism. The quantity xi is defined as

Table 1. Flame configurations chosen to test the sample partitioning adaptive reduced chemistry
approach: velocity of the fuel inlet parabolic profile (vm), frequency of the sinusoidal perturbation
imposed to the fuel parabolic velocity profile (f ), and amplitude of the sinusoidal perturbation imposed

to the fuel parabolic velocity profile (A).

Case vm cm=s½ � f [Hz] A [�]

S1 (steady, training) 10.12 – –
S2 (steady, test) 20.24 – –
U1 (unsteady, test) 10.12 20 0.5
U2 (unsteady, test) 10.12 40 0.75

Table 2. Reduction of the chemical mechanisms via directed graph with error propagation on the basis
of the local principal component analysis thermochemical space prepartitioning with k¼ 7: average
number of species (nmean

sp ), maximum number of species (nmax
sp ), minimum number of species (nmin

sp ),
average nonuniformity coefficient (λmean), and maximum nonuniformity coefficient (λmax).

ϵDRGEP nmeansp nmaxsp nminsp λmean λmax

0.005 103 114 94 0.066 0.092

2 available at the following address: https://github.com/burn-research/OpenMORe
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xi ¼ 1
nit

Xnit
j¼1

δi,j, (11)

with nit being the number of observations contained in a given cluster and δi,j being equal to 1, if the ith
species is contained in the reduced mechanism of the jth sample, or 0 otherwise. In light of its definition,
the λ coefficient can be seen as a metric to assess the cluster uniformity from a chemical point of view,
being equal to 0 if the observations in a given cluster are chemically homogeneous, and equal to 1 in case
of complete nonuniformity.

4.2. Multidimensional adaptive simulations

4.2.1. A posteriori comparison of the classifiers
The new classifier combining the FE step and ANN (hereinafter referred to as FENN) was tested on the
four laminar heptane flames described in Section 3, with BCs reported in Table 1. Its performances were
firstly compared for the flame S1, in terms of accuracy and speed-up with respect to the detailed
simulation, with the standard PCA-based classifier used in D’Alessio et al. (2020c), as well as with an
s-ANN classifier, both operating on the full thermochemical space. Afterwards, the performances of the
classifier for numerical simulations differing from the training one were assessed for flames S2, U1, and
U2 reported in Table 1.

A Normalized Root-Mean-Square Error (NRMSE) between the detailed and adaptive simulations for
temperature and selected species was adopted as a measure of the accuracy of the proposed methodology.
The NRMSE is defined as

NRMSE¼ 1
y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ŷi� yið Þ2

N

s
, (12)

with ŷi and yi being the values obtained by means of the detailed and adaptive simulations, respectively,
and y the mean value of the measured variable throughout the field.

The network architectures consisted of two HLs for both FENN and s-ANN. The size, as well as the
values for the other hyperparameters, was set after a thorough optimization and sensitivity analysis to
achieve a satisfactory accuracy in the offline class prediction. The optimal network training parameters are
reported in Table 3.

As outlined in Table 3, the activation functions chosen for the HLs were in both cases ReLU (rectified
linear unit), with a Softmax activation for the output layer, as required in case of multiclass classification
tasks. By means of the Softmax function, reported in Equation (13), a class membership score σi∈ 0,1½ �
(with i∈ 1,k½ �) is attributed to each observation, with their sum being equal to 1. Thus, it can be seen as a
probability distribution over the different classes, and the final label is assigned to the class for which the
probability is maximized.

σi zð Þ¼ eziPk
j¼1e

z j
: (13)

Table 3. Training options for the s-ANN and FENN on-the-fly classifiers: number of layers and
number of neurons per layer (HLs’ size), selected activation function for the hidden layers (HLs’
activation), selected activation function for the output layer (output activation), and number of

observations chosen for the training batches (batch size).

Classifier HLs’ size HLs’ activation Output activation Batch size

s-ANN 50, 50 ReLU Softmax 32
FENN 30, 30 ReLU Softmax 32

Abbreviation: ReLU, rectified linear unit.
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Moreover, two different strategies were adopted to avoid the network overfitting: the initial dataset was
firstly split into two different sets, one for training (Xtrain, 70% of the original training data) and one for
testing (Xtest , remaining 30%of the original training data), and early stoppingwas adopted. Consequently,
instead of the prescribed 200 epochs, only a fraction was necessary before the training automatically
stopped (29 epochs for s-ANN net, and 38 for the FENN net), as the classification accuracy for the
validation set had reached a plateau.

With regard to the FE step, as mentioned in Section 2.2, a linear projection method such as PCAwas
considered to be preferable for both the training and the on-the-fly steps with respect to other complex,
nonlinear, methods. The choice of the reduced manifold dimensionality, that is, the number of training
PCs to retain, was taken evaluating the original data variance, t, explained by the new set of coordinates.
The latter can be easily computed in the preprocessing step as the ratio between the cumulative sum up to
the qth retained eigenvalues, and the sum of the full set of eigenvalues:

t¼
Pq

i¼1λiPq
j¼1λ j

: (14)

The explained variance curve obtained evaluating twith the eigenvalues of the training dataset is reported
in Figure 2: in light of this, the number of PCs to retain was set equal to 70, as this value was enough to
recover 99:9% of the original data variance, without losing any percentage, albeit small, of information
after the projection on the low-dimensional manifold. Additional information regarding the a priori choice
and the a posteriori assessment of the reduced dimensionality can be found in Section 4.2.2.

The errors obtained from the three adaptive simulations of the S1 flame (using the LPCA, s-ANN, and
FENN classifiers, respectively) are firstly compared bymeans of a boxplot. The latter is a statistical tool to
analyze distributions: the lower and upper edges of the box represent the interquartile range, that is, the
distribution going from the 25th percentile (Q1), to the 75th percentile (Q3), whereas the red line
represents its median. The upper and lower lines outside the box, instead, connect Q1 and Q3 with the
minimum and themaximumof the distribution, which can be obtained subtracting and adding the quantity
1:5∗ IQR to Q1 and Q3, respectively. Any point identified as an outlier, with respect to the considered
distribution, is identified by a single point outside the box. In Figure 3, three boxplots representing the
NRMSEs distribution considering temperature, main reactants, and radicals (i.e., T , O2, H2O, CO, CO2,
CH3, O, OH, HO2, C2H2, CH4, and n-C7H16) are reported for the adaptive simulations of the S1 laminar
flame using the LPCA, s-ANN, and FENN classifiers, respectively.

Figure 2. Evolution of the explained original data variance with respect to the number of retained PCs.
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From the boxplots in Figure 3, it is possible to observe that the three error distributions are comparable:
the median values are close, as well as the two higher percentiles and the maximum values.Moreover, it is
possible to appreciate the high fidelity of all the adaptive simulations with respect to the detailed one, as
the errors are well below 3%.

However, an evaluation of the SPARC adaptive-chemistry approach carried out only considering the
errors arising from the main reactions and radicals would be limiting in light of its final purposes and
complexity. In fact, for an accurate prediction of the temperature, main species and radicals characterized
by a fast chemistry (such as OH, H, andHO2), a simple skeletal mechanismwould have been enough. The
final purpose of the adaptive-chemistry approaches is, on the other hand, an effective reduction of the
computational cost through locally optimized kinetic mechanisms, keeping a high accuracy for the
heavier species, such as the pollutants, included in the detailed kinetic mechanisms. Thus, a more
effective metric for the evaluation of the proposed classifiers and, consequently, of the associated
adaptive-chemistry simulations, is given by the evaluation of the accuracy in the description of specific
classes of species, for instance, PAHs and soot-precursor chemistry. Indeed, the formation and the
consumption of species with high molecular weight, characterized by slow chemistry, cannot be
accurately described by a model based on the chemical equilibrium assumption, as well as by skeletal
and global mechanisms. Therefore, heavy aromatic species such as the pyrene (C16H10) as well as two
complex aromatic structures, i.e., bin1A and bin1B, which are soot precursors and the heaviest species,
which are included in the examined kinetic mechanism, are considered as targets for themodel evaluation.
If the errors associated with the description of these species for the three numerical simulations of the S1
flame are compared, as in Figures 4–6, as well as in Table 4, the lowest one is associated with the adaptive
simulation using the FENN on-the-fly classifier, and the error reduction with respect to the other two
classifiers amounts up to ~50%, in case of pyrene and bin1B.

A further confirmation of the higher efficiency and classification accuracy guaranteed by the FENN
on-the-fly classifier can be found comparing the speed-up factors for the chemistry substep (Schem) relative
to the three adaptive simulations of flame S1. In Table 5, the details about the CPU time required for the
chemical substep integration of the four simulations (i.e., detailed, adaptive with the LPCA classifier,
adaptive with the s-ANN classifier, and adaptive with the FENN classifier) are reported by means of the
average CPU time per cell (τchem), the maximumCPU time per cell (τmaxchem), and the relative average speed-
up with respect to the detailed simulation (Schem).

Figure 3.Boxplot representing the normalized root-mean-square error distribution for the three adaptive
simulations using local principal component analysis, s-ANN, and FENN, respectively. The error

distributions were computed considering the profiles of main reactants and radicals: T , O2, H2O, CO,
CO2, CH3, O, OH, HO2, C2H2, CH4, and n-C7H16 with respect to the detailed simulation.
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Examining the values reported in Table 5, it is possible to observe that both the LPCA and s-ANN
adaptive simulations are characterized by comparable mean and maximum CPU time required for the
chemical step integration, while the time required for the chemistry step resolution by the FENN adaptive

(a) (b) (c)

Figure 4. Parity plots for the comparison of the pyrene massive concentration obtained by means of a
detailed chemistry and the adaptive simulations using (a) the local principal component analysis

classifier, (b) the s-ANN classifier, and (c) the FENN classifier for the S1 flame configuration, using
reduced mechanisms with ϵDRGEP ¼ 0:005.

(a) (b) (c)

Figure 5. Parity plots for the comparison of the bin1A massive concentration obtained by means of a
detailed chemistry and the adaptive simulations using (a) the local principal component analysis

classifier, (b) the s-ANN classifier, and (c) the FENN classifier for the S1 flame configuration, using
reduced mechanisms with ϵDRGEP ¼ 0:005.

(a) (b) (c)

Figure 6. Parity plots for the comparison of the bin1B massive concentration obtained by means of a
detailed chemistry and the adaptive simulations using (a) the local principal component analysis

classifier, (b) the s-ANN classifier, and (c) the FENN classifier for the S1 flame configuration, using
reduced mechanisms with ϵDRGEP ¼ 0:005.
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simulation is lower. Consequently, the adaptive simulation using FENN is characterized by a higher
speed-up factor Schem with respect to the remaining two. This can be related to the fact that both LPCA and
s-ANN classifiers are assigning complex mechanisms also to cells which could require a lower number of
species, such as the ones outside the reacting layer of the flame, while with the FENN, this misclassifica-
tion behavior is limited.

By adopting a FENN classifier with a PCA encoding step, in addition to the advantages linked to the
higher accuracy and speed-up of the adaptive simulation, it is also possible to retrieve an additional
information regarding the main physicochemical processes that are occurring within the system. In fact,
since it is possible to evaluate the relative importance of each PC by means of the magnitude of the
associated eigenvalue, it is consequently possible to examine the most impacting chemical species,
inspecting their correlationwith the first PCs. In this regard, Pearson’s correlation coefficients between the
chemical species and the first PCs were computed for the S1 flame, and it emerged that, in many cases, the
correlation factor between a species and a PC exceeded 90%. This is the case, for instance, of C2H4, C2H6,
and CH3COCH3 with the first PC (a correlation coefficient equal to 95, 91, and 92% was found,
respectively) or C12H8 and C14H8 with the second PCs (a correlation coefficient equal to 90 and 88%
was found, respectively). The strong relation between the aforementioned species and the PCs is
graphically shown in Figure 7, where the concentrations (by mass) of the highest correlated species
and the associated PC are shown on the left and the right of each contour, respectively.

4.2.2. A priori and a posteriori assessment of the choice of the reduced dimensionality in the feature
extraction classifier
As reported in Section 2.2, PCAwas chosen to be coupled with the ANN classifier for the FE step because
of the considerable advantage of requiring only few parameters for the training, without the need for a
thorough sensitivity analysis like most machine learning algorithms.

Table 4. Normalized Root Mean Square Errors (NRMSE) obtained by means of the LPCA, s-ANN, and
FENN classifiers for the adaptive simulation of the S1 flame configuration with regard to the pyrene,

bin1A, and bin1A mass concentrations with respect with detailed profiles.

Classifier pyrene bin1A bin1B

LPCA 1.06 10�1 1.11 10�1 5.49 10�2

s-ANN 2.14 10�1 2.78 10�1 2.03 10�1

FENN 1.07 10�1 1.16 10�1 6.60 10�2

Table 5. Performances of the adaptive-chemistry simulations: comparison of the CPU time (in
milliseconds) required for the chemical step integration for the detailed numerical simulation and for
the three adaptive simulations of the n-heptane steady laminar flame, using reduced mechanisms
obtained with ϵDRGEP ¼ 0:005, and the local principal component analysis, s-ANN, and FENN

classifiers, respectively, analyzing the average CPU time per cell ( τchem, in milliseconds), the maximum
CPU time per cell ( τmax

chem, in milliseconds), and the relative average speed-up factor with respect to the
detailed simulation ( Schem).

Classifier τchem [ms] τmaxchem [ms] Schem [�]

Detailed simulation 20.54 61.69 –
LPCA 5.89 23.39 3.48
s-ANN 5.87 21.48 3.49
FENN 5.09 18.70 4.03
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The only PCA hyperparameter which can have an impact on the accuracy of the classification, and
consequently on the accuracy and the speed-up of the adaptive simulation, is the dimensionality of the
manifold encoding the thermochemical space. In fact, a too strong dimensionality reduction could lead to
an excessive compression of the initial data, with a consequent loss of information. On the other hand, a
mild dimensionality reduction could, first of all, not be beneficial to solve the input dimensionality issue
and, moreover, entails the inclusion of redundant information (i.e., data noise, usually found on the last
PCs) that could compromise the accuracy of the classifier. Unlike other FE techniques (both linear and
nonlinear) mentioned in Section 2.2, PCA is able to indicate a priori which is the optimal dimensionality
of the manifold. In fact, by using Equation (14), it is possible to retrieve the amount of original data
variance being explained by the selected set of PCs, computing the ratio between the cumulative sum of
the eigenvalues and their total sum.Nevertheless, as pointed out by the authors inD’Alessio et al. (2020a),

(a) (b)

(c) (d)

Figure 7.Maps of massive fractions for the species with the highest correlation factor with one of the first
PCs (left side of each contour), and map of the score they are most correlated with (right side of each

contour): (a) C2H4 and first score; (b) CH3COCH3 and first score; (c) C12H8 and second score;
(d) C14H10 and second score.
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the choice of the dimensionality by means of the explained variance criterion should always be supported
by the examination of the profiles for the reconstructed training variables, as the explained variance can
also be influenced by other factors, such as the scaling technique. In general, it can be considered as a
sufficient reduced basis the one which can ensure, in addition to an almost unitary explained original data
variance, a reconstruction error (in terms of NRMSE) for the variables of the training dataset below 5%.

As outlined in Section 4.2.1, a reduced basis consisting of 70 PCs was adopted for the FENN
simulations, as the latter ensures that only 0.1% of the original data variance is lost, while achieving a
dimensionality reduction greater than 50%. Moreover, with the considered dimensionality, the observed
NRMSEs for temperature and chemical species were all below 5%, as shown in Figure 8.

To prove the validity of the a priori method to assess the dimensionality of the reduced manifold,
several adaptive simulations were carried out varying the number of retained PCs in the on-the-fly
classification, and their results were compared a posteriori. In particular, four additional adaptive
simulations with an on-the-fly classifier combining PCA and ANN were tested retaining 20, 40,
90, and 120 PCs, respectively. Figure 9 shows the boxplots for the error distributions for the aforemen-
tioned adaptive simulations, focusing on the following species: bin1A, bin1B, and pyrene.

Examining Figure 9, amonotonically decreasing behavior of the error up to 70modes can be observed.
After hitting aminimum below 10%, themedian stabilizes around 15% if a higher number of retained PCs
is considered.

The very large errors observed for the adaptive simulationwith 20 PCs can be explained by the relatively
high compression, which entails a too large loss of information. In case 40 PCs are retained, the loss of
variance is limited to 1% only. However, the NMRSEs for the variables’ profile reconstruction are higher
than the 5% range, as for the combustion products andmain radicals (such asH2O,OH, andO) the error can
reach �12%, as shown in Figure 10. Thus, the reduced basis with 40 PCs still cannot be considered as
optimal because of the information loss between the compression and reconstruction processes.

(a) (b) (c)

(d) (e) (f)

Figure 8. Parity plot for the original and reconstructed profile via principal component analysis,
retaining 70 PCs, for (a) temperature, (b) carbon monoxide, (c) n-heptane, (d) pyrene, (e) bin1B,

and (f) bin1A.
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For the adaptive simulations with an encoding step accounting for 90 and 120 modes, the errors are
slightly higher than the ones observed with 70 PCs, despite the subsets ensure a unitary variance and
NRMSEwell below 5%. This is due to the fact that theANN input space has to account for a larger number
of variables, as well as because the reduced basis is including redundant information on the last PCs, thus
making the classification process more complex.

4.2.3. Adaptive simulations with FENN classification on test simulations
As already mentioned in Section 3, after the validation and the a posteriori comparison of the adaptive
simulations for the S1 flame carried out by means of the FENN classifier, three additional adaptive
simulations for the S2, U1, andU2 flame configurations were carried out. Themotivation was to ascertain
the capability of the combined FE and ANN classification model to adapt to different cases in terms of
physical and chemical features, to guarantee that a trained model can be used for different configurations.
For the test cases, the performances of the FENN classifier were also evaluated focusing on the heavier
species, i.e., PAHs and soot precursors. In Figure 11, the parity plots for the profiles of the species bin1A
and bin1B are reported. Figure 12a–c shows a comparison of the contours obtained by means of the
detailed and adaptive simulations using FENN for the following species: AC3H4, C14H9, and C16H10,
respectively. From this figure, it is possible to appreciate the accuracy of the adaptive simulation, despite

(a) (b) (c)

Figure 10. Parity plot for the original and reconstructed profile via principal component analysis,
retaining 40 PCs, for (a) water, (b) oxygen radical, and (c) hydroxyl radical.

Figure 9. Boxplot representing the normalized root-mean-square error distribution for the adaptive
simulations using an on-the-fly classifier combining principal component analysis and artificial neural

network, for an increasing number of retained PCs.
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the Reynolds number of the numerical simulation was changed with respect to the one used for the
training. In particular, examining the NRMSE reported in Figure 11a,b for bin1A and bin1B, respectively,
it is possible to notice that it is exactly of the same order of magnitude (about 20 and 5%, respectively) of
the one observed for the S1 flame FENN adaptive simulation. Moreover, for the other considered PAHs
and soot precursors (up to C16), the maps of mass fractions of the FENN adaptive simulation (right side of
each contour reported in Figure 12) are indistinguishable from the ones obtained by means of the detailed
simulation (left side of each contour reported in Figure 12).

The possibility of having such an accurate adaptive simulation with new BCs is due to the fact that the
on-the-fly classification is notmade on the thermochemical state of the flame, but on its features. In fact, as

(a) (b) (c)

Figure 12.Maps of massive fractions obtained from the detailed simulation (left) compared to the ones
obtained from the adaptive simulation of the S2 flame configuration using both FENN classifier and
reduced mechanisms trained on the prepartitioning detailed simulation of the S1 flame configuration

(right) for (a) AC3H3, (b) C14H9, and (c) C16H10.

(a) (b)

Figure 11. (a) Parity plot of bin1A concentration for the n-heptane steady laminar flame S2 obtained
using the FENN classifier. (b) Parity plot of bin1B concentration for the n-heptane steady laminar flame

S2 obtained using the FENN classifier.
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previously proved bymeans of the S1 flame adaptive simulations, it is possible to increase the accuracy of
the classifier, if compared to a s-ANN classifier on the thermochemical space, by reducing the input space
dimensionality, thus attenuating the so-called curse of dimensionality. Furthermore, the features of a flame
are, in general, less dependent from one or more BCs imposed to the simulation. Therefore, the
classification accuracy (and, consequently, the accuracy of the numerical simulation) is higher when
compared to the onemade on the thermochemical space. To prove this last statement, the simulation of the
S2 flame configuration was also carried out using the previous s-ANN classifier, and the results were
compared with the ones obtained by means of the FENN classifier. In Tables 6 and 7, the NRMSEs of the
two adaptive simulations for the S2 flame using the two aforementioned on-the-fly classifiers are reported
for the main species and PAHs, respectively. While for the DRGEP target species (n-C7H16 and O2), as
well as for temperature and light radicals (O, H, and OH), the two errors are comparable and very low, as
reported in Table 6, once again, the adaptive simulation with the FENN classifier proves to be more
reliable for the prediction of heavy aromatic radicals and soot precursors. As shown in Table 7, the errors
are lower for all the examined species, and reduced of a factor of 2 for C7H8, Pyrene, and bin1B.
Moreover, the FENN simulation for the S2 flame is still faster than the s-ANN one, with the speed-up for
the chemistry step, Schem, being equal to 3.44 and 3.40, respectively, on higher terms of simulation
accuracy. In conclusion, the possibility to have amore accurate and, at the same time, faster simulation, on
equal terms of offline training (i.e., prepartitioning method and reduced mechanisms), can be only
interpreted due to a higher on-the-fly classification accuracy.

Finally, the two unsteady simulations U1 and U2, carried out with the FENN classifier, are evaluated
examining the NRMSE (with respect to the detailed simulation) behavior in time. In Figure 13a,b, the
curves relative to the error for bin1A, bin1B, and pyrene for the U1 and U2 simulations are reported,
respectively. When unsteady conditions are imposed, as expected, the observed errors for these variables
are, in general, slightly higher than the ones for steady conditions, that is, S1 and S2 simulations. In
particular, the errors can vary depending on the considered timestep because of the variations of the
chemical state due to the sinusoidal solicitation in the inlet velocity profile. The error behavior in time for
both the adaptive simulations is similar: after an initial phase of amplification up to t¼ 0:03 s, where a
maximum is reached, it has a steep and fast decrease. However, since after the initial amplification phase
the error is stabilized around an asymptotic value, which is �8% for bin1B and Pyrene and �25% for
bin1A, and it does not keep amplifying in time, the application of the FENN classifier is verified also for
the two unsteady simulations U1 and U2.

Table 6. Normalized Root Mean Square Errors obtained by means of the s-ANN and FENN classifiers
for the adaptive simulation of the S2 flame configuration with regard to the temperature, target species,

and fast-chemistry radicals.

Classifier T n-C7H16 O2 O H OH

s-ANN 7.57 10�4 6.01 10�4 4.38 10�4 1.04 10�2 2.37 10�2 9.88 10�3

FENN 9.60 10�4 7.15 10�4 5.79 10�4 1.34 10�2 3.23 10�2 1.25 10�2

Table 7. Normalized Root Mean Square Errors obtained by means of the s-ANN and FENN classifiers
for the adaptive simulation of the S2 flame configuration with regard to polycyclic aromatic

hydrocarbons and soot precursors.

Classifier C7H8 Pyrene bin1A bin1B

s-ANN 3.28 10�1 1.39 10�1 3.28 10�1 1.40 10�1

FENN 1.7 10�1 5.55 10�2 2.02 10�1 5.68 10�2
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5. Conclusions

In this work, a novel on-the-fly classifier based on the combination of FE and ANNs was proposed and
tested to perform adaptive-chemistry simulations using large kinetic mechanisms, accounting for hun-
dreds of chemical species. The preprocessing steps of the chosen adaptive-chemistry methodology
(SPARC) remained unchanged (i.e., the prepartitioning of the composition space and the creation of a
library of reduced mechanisms via DRGEP), but a neural architecture with a prior encoding step via PCA
was integrated in the CFD numerical solver for the on-the-fly classification task. At each timestep of the
CFD simulation, the thermochemical states associated with each grid point are projected on a lower-
dimensional manifold spanned by the PCA eigenvectors, and then they are passed through an ANN to be
classified.

In case high-dimensional spaces are considered, a high accuracy for the supervised classification step
can be hard to accomplish, both if the label assignment is based on the computation of a Lk norm, or using
ANN. In this regard, the presence of a FE step can be beneficial, as lowering the number of features entails
the removal of the data noise and a modification of the hyperspace geometry, which promotes the
separation between classes, thus increasing the classification accuracy.

The new classifier (FENN) was firstly successfully tested for the simulation of a steady 2D, nitrogen-
diluted, n-heptane laminar coflow diffusion flame in air, and its performances were compared with a
classifier based on the PCA reconstruction error, as well as with a s-ANN classifier operating on the full
thermochemical space. The original detailed kinetic mechanism accounted for 172 species and 6,067
reactions, while the library of reduced mechanisms was obtained by means of the DRGEP algorithm,
imposing a reduction tolerance equal to ϵDRGEP ¼ 0:005. From the comparison of the three classifiers,

(a)

(b)

Figure 13. Behavior in time of the Normalized Root Mean Square Error observed for the unsteady
adaptive simulations carried out with an FENN classifier and using (a) f = 20 Hz and A = 0.5 as

parameters for the sinusoidal perturbation of the fuel velocity inlet and (b) f = 40 Hz and A = 0.75 as
parameters for the sinusoidal perturbation of the fuel velocity inlet. Orange solid line with upward

pointing triangle markers: bin1B; green solid line with diamond markers: bin1A; gray solid line with
squared markers: pyrene.
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it was clear that carrying out the classification in the feature space, instead of the thermochemical space,
enhances the model performances. In fact, although comparable results were obtained with regard to the
temperature, the main species (fuel and oxidizer) and the fast radicals (such as H, O, and OH), the
simulations carried out with the FENN classifier provided an increase in the accuracy of a factor of 2 with
respect to the heavy, aromatic, species, such as PAHs and soot precursors. Moreover, the adaptive
simulation using a FENN classifier was also characterized by a higher speed-up factor than the other
two (equal to 4.03, while 3.48 and 3.49 were the speed-up factors for the adaptive simulations using the
PCA classifier and the s-ANN architecture, respectively), thus entailing a smaller percentage of mis-
classified points.

To extend the possibility to use the FENN classifier also to numerical setups which are different than
the ones used for the training, i.e., with different BCs, three additional adaptive simulations were carried
out: one in steady condition, but with a higher Reynolds number, and other two in unsteady conditions.
The latter were obtained imposing a time-dependent sinusoidal perturbation to the fuel parabolic velocity
profile. The accuracy in the PAHs and soot-precursors chemistry description observed for the adaptive
simulation for the flame configuration with higher Reynolds was of the same order of magnitude of the
previous one, as well as the speed-up. Moreover, the FENN classifier, compared to an ANN architecture
classifying the thermochemical space, lead to a factor of 2 accuracy increase, while keeping a higher
speed-up factor with respect to the detailed simulation. Finally, for the two unsteady adaptive test
simulations, the error did not amplify, but instead steeply decreased and asymptotized toward the values
observed for the steady simulations.
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