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WAVES BELOW FIRST CUTOFF IN A DUCT
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Abstract

The two-dimensional Helmholtz equation is studied for an infinite region with two
semi-infinite plates extending to infinity in opposite directions and a finite duct
in the overlapping region. The solution technique leads to coupled Wiener-Hopf
equations, and subsequently to an infinite set of simultaneous linear equations.
As an example, an asymptotic expansion is calculated and graphed for the case
when the duct length divided by duct width is large enough to ensure damping
of all but the zero mode wave in the duct.

1. Introduction

The problem of wave fields in infinite regions penetrating apertures and wave-
guides has been studied extensively. Generally, the method of solution relies on
solving in various regions, and linking these solutions across connecting bound-
aries. Further, if edges are present, edge conditions must be obeyed to ensure
uniqueness [2].

This paper investigates the steady state two-dimensional problem of the fields
due to a unit source in a boundary configuration as shown in Figure 1. Problems
similar to this one have been discussed by Noble in his book on the Wiener-Hopf
technique [6].

The fields are solved in each of the regions y < d,2, di < y < di and y > d\,
and linked across the connecting boundaries. This linking leads to equations
that are able to be solved by the Wiener-Hopf technique. However, the problems
solved in Noble's book have both plates extending to infinity on the same side.
This problem has the plates extending to infinity on opposite sides, and a finite
waveguide formed between the plates. For this problem, the conditions ai > az
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1. Source and field points and boundaries.

and d\ > d<i will always apply. This area in the region dv < y < d\ and
02 < x < ai will be subsequently referred to as the duct. The Wiener-Hopf
technique can be used to solve this problem but the Wiener-Hopf equations
obtained are simultaneous, and the method suggested in Section 4.4 of [6] is
employed.

When the ratio duct length divided by duct width is large, asymptotic solu-
tions for the region on the opposite side to the source will be graphed to show
the effect of a long thin duct on the field.

2. Formulation of the problem

Assume a time dependence of the form exp(—iuit) for the field, denoted by
0, and consider a unit line source parallel to the z axis at the point (io>2/o)> as
in Figure 1. The wave equation reduces to Helmholtz's equation, with a source
term independent of z. Thus, <f> will be independent of z and the problem reduces
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to a two-dimensional one. The equation for <j> is:

- xo)6(y - y0) (2.1)

where 6 denotes the Dirac delta function and k (= w/c, c is the speed of light)
is the wavenumber. As is usual with problems of this sort, for analysis purposes
assume that k is a complex number with a small positive imaginary part as well
as a real part. Once the problem has been solved, this small positive imaginary
part can be let tend to zero. Also, consider Neumann boundary conditions, that
is,

-5- = 0 on y = d\, x < 01 and y = di, x > a-i. (2.2)
ay

Edge conditions [2], [6] require that

4> = O{\) (2.3)

and
^ ^ (2.4)

a s r - » 0 where r is the distance from either (ai,di) or (02, d?).
As discussed in Section 1, <j> may be determined in the three regions y < di,

d<i < y < d\ and y > d\ using, for example, Green's functions appropriate to
each region, and these solutions linked across the boundaries. This approach is
taken here. <j> can be written, [5]:

^ (ky/(x - so)2 + (y- yo

„/&,) cos(r»r(» - d1)/(d1 - cfc)) /

(» > di) (2.5a)
+oo

. 00

(d2 < y < di) (2.5b)

(y < da) (2.5c)

where

• - C r>i (2-6»
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is the Neumann function, and
2 2 I(A ri 2̂ (O *7\

where the branch of the square root function is chosen such that Im(/3n) > 0 as
n-KM. The boundary conditions (2.2), edge conditions (2.3) and (2.4) and the
fact that <j> must be continuous across y = d\, x < a\ and y — d2, x > a2 and
d(f>/dy continuous across y — di, d2, allow for the determination of / and g in
(2.5), as is done in Section 3. Note that equality of the derivative across y = di,
d2 in (2.5) already holds.

3. Reduction to and solution by Wiener-Hopf technique

Define
+oo

4>(x,v)eiX*dz,

with inverses

1 f

1 f

<t>(z,y) = —j= I

I r
/(?) = -7= \

\/2w J-

+oo

dx,

+°°
oo

V27T y_o

Take the Fourier Transform of (2.5) to get

- A;2 (y > d{)

fc2] - G(A)cosh[(y -F(A)cosh[(y -

From (3.7), we have,

= G(A).

(3.1)

(3.2)

(3.3)

(3-4)

(3.5)

(3.6)

(3.7a)

(3.7b)

(3.7c)

(3.8)
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A-plane

-k

Figure 2. Branch cut system for A plane.

The function $(\,y) defined in (3.7) has branch points at ±k, and the usual
branch-cut system, as illustrated in Figure 2, is used to satisfy the radiation
condition (only outgoing waves at infinity). It is convenient at this time to
define the upper half plane as that region for which Im(A) > Im(—k), and the
lower half plane to be the region for which Im(A) < Im(fc). Further, any function
analytic in the upper half plane will be subscripted with a "+" and any function
analytic in the lower half plane will be subscripted with a "—", as done by Noble
[6].

Using this terminology, the two functions F and G may be split as follows,

f(x)eiXxdx, f(x)eiXxdx, (3.9)

G+(A) = -±= rg(x)eiXxdx, G-(X) = -}== f ' g(x)eiXxdx, (3.10)

i'-J'++i'_, tr-tr++Cr_. 1<>-11)
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The boundary conditions (2.2) correspond to F- = 0 and G+ = 0. Thus (3.7)
becomes

*(*,») = F+cosh[(j/ - d2)v/A2 - fc2] - G_cosh[(y - ,

(3.12a)

- fc2sinh[(di - d2)\/A
2 - fc2]

(d2 < y < di) (3.12b)

- fc2 (j/ < d2). (3.12c)

The only condition left to enforce is the continuity of </> on y = di, x > a\ and
y = d2, x < a2. Define $i and $ 2 for £ small as

$+ (A, di ± e) =

$7 (A, dx ± e) =

Thus

0(i, d! ± e)e'Al dx,

^(x, d! ± £)eiAl dx,

<t>(x, d2 ± e)e i A* dx,

<t>{x,d2±e)etXxdx.

= 2v^etAx°-( l")-<J l )VA2-fcV\/A2 -

(3-13)

*(A,di - £ ) = *J-(A,di - e ) + $r(A,d! - e )

_ F+cosh[(di - d2)y/A2 - fc2] - G-

~ ^A2 - fc2sinh[(di - da)VAa - fc2]'

$(A,d2 +e) = *J(A,da + e) + *J(A,d3 + e)

_ F+ - g_cosh[(di - d2)y/A2 - fc2)

~ x/A2 - fc2sinh[(di - d2)y/X2 - fc2]'

$(A,d2 - e) = *J(A,da -e) + $2"(A,d2 - e) = G.

as e —> 0+. As 4> is continuous across y = di, x > ai, and y = d2) x < a2,

(3.15)

(3.16)

(3-17)

- fc2 (3.18)

(3.19)

(3.20)
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Define

\, d2 + e) - $2 (A, d2 - e).

Subtract (3.16) from (3.15) and (3.18) from (3.17) to get

piXxo-(vo-<ii)y/X2-k2

[7]

(3.21)

(3.22)

2 - A;2 'X2 - fc2sinh[(di - d2)y/X2 - A:2]'

(3.23)

F+ - G _
/A2 - fc2sinh[(d! - d 2 ) \A 2 - A;2]'

(3.24)

Equations (3.23) and (3.24) are the dual Wiener-Hopf equations. A quick
check, involving writing (3.23) and (3.24) out in matrix form, ensures that the
method due to R. A. Hurd [1] cannot be used here, as the resulting iG' matrix
referred to in equation (3) of his paper does not factor into the appropriate form.
To ensure uniqueness, edge conditions (2.3) and (2.4) give

F+~e
G- ~e
D7 ~ e l\M - 1

(3.25)

D^-e'^IAr1

as A —> co in the appropriate half planes. Define

M+(A)M_(A) = - fc2sinh[(di - d2)\J'A2 - A;2]
(3.26)

where M+ and M_ are asymptotic to IAI1/2 in appropriate half planes. Thus,

- d2)/2}
= (d1-d2)(X±k)

x exp{±iA(di - d2)[l - C + ln(2ir/ifc(di - d2))]/n

x exp{-(di - d2)\/X
2 - A;2 arccos(±A/A:)/7r}

oo

A;2(di - d 2 ) 2 / n V ) 1 / 2 T »A(di - d2)/mr
n = l

(3.27)
where C is Euler's constant = 0.5772 • • •. The functions M+ and M_ are related
to Noble's functions L+ and L_ in [3] by

= (di-da)(A±*)L±(A). (3.28)
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Equation (3.23) becomes

455

- d2)

- A;2]
(3.29)

It is at this point that this derivation differs from the work by Kashyap [4],
who deals with the same problem but with (a\ - a2) < 0. It is necessary here
to multiply (3.23) by exp(— iXai) to ensure bounded behaviour of all functions
as A —> oo in the appropriate half planes. Thus, the last term in (3.23) and
subsequent infinite series expansion is really introduced as a consequence of this.

Now,
1

- 1
(3.30)

where the first function on the right-hand side of (3.30) is analytic in the upper
half-plane and the second function is analytic in the lower half-plane. By splitting
the term with sinh in the denominator up into terms analytic in the upper and
lower half planes, (3.29) becomes

(dx - d2) ~

- F+e~iXai/M+

en(-l)"G-(-/3n)M-(-f3n)e
ta^

where

- 1

6_(A) =
£»(-!)"

(3.31)

(3.32)

(3.33)

The source term can be split (refer Noble [6]) as follows:

(3.34)
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where

- A)

for Im(-fc) < Im(f) < Im(A) < Im(fc), (3.35)

/.2 i - 2 r ;

for Im(-jfc) < Im(A) < Im(?) < Im(fc). (3.36)

Thus,

+ M+

(di - d2)

1

(3.37)

Similar analysis on (3.24) gives

g n ( - l )"F + ( /? n )M + ( /? n )e-^" G-e
A.(A-A.) - ^ — (3'38)

Note that the series in (3.37) and (3.38) can be shown to be absolutely con-
vergent, except near A = /3m, m = 0,1,2,.. . , by using (3.25). The left-hand
sides of (3.37) and (3.38) are analytic in the upper half plane, and the right-
hand sides are analytic in the lower half plane. Equations (3.37) and (3.38), in
conjunction with (3.25), imply that both sides of both equations are O(X~1) as
A —» oo in the appropriate half-planes. It follows from Liouville's theorem that
the left and right hand sides of (3.37) and (3.38) are analytic representations,
with the overlapping domain Im(—k) < Im(A) < Im(fc), of the integral function
0.

To solve for F+(/3m) and G_(—/?m), set A = 0m in the right-hand side of
(3.37) and A = — /?m in the right-hand side of (3.38). This gives an infinite set
of coupled equations for m = 1,2, Set

pm = F+(/3m)e-iai^, (3.39)

qm = G_(-/?m)e t a 2 / ? m (3.40)
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where, using (3.25), pm,Qm ~ m~1^2 as m —• oo. Thus the equations for pm and
qm are

/?n(/?m + ft,)
(3.41)

M - ( - f l n ) ^ £ n ( l ) M + ( ^ ) e C ) ^ P n _

4. Asymptotic form for waves below first cutoff

As an example, consider the case 2 < A; < 20, (di —d2) = 0.002 and (ai —02) =
0.30. A method similar to that used by D. S. Jones [3] can be used to find
an approximate solution for the asymptotic expansion for this example. The
expression for G_ in (3.38), substituted into (3.7) and noting (3.39), gives

for y < d2- (4.1)

Thus,

x v) -

X

'—oo

/x2-k2dX

fory<d2- (4.2)

For k, (di — d2) and (ai — a2) as above, 0o = k and for n > 0, Re(/?n) = 0 and
Im((ai - a.2)Pn) > lOO.n. Thus, exp{i(oi - a2)/3n} «: 1 for n > 0 and (3.41)
and (3.42) can be solved accordingly. Set

Pm = Pm(l + O(exp{-7r(a1 - oa)/(di - da)})), (4.3)

9m = Qm(l + O(exp{-7r(ai - o3)/(rfi - d2)})) (4.4)

in (3.41), (3.42). Thus,
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Solve for Po, Qo and Pm, m > 0, to get

> (-A)) exp{i2fc(ai - a2)}
- d2)2/?gM-(-/?0)M2 (/?o)/i+ (A,)

l(/Jb)Ml(-/*>) exp{t2*(Ol - a2)} - 16/$(dx - d2)

+ (/?o)M£(-/?o) exp{i2fc(Ol - a2)} -

(4.9)

These substituted into (4.2) and neglecting terms of 0(exp{—ir(a,i —
d2)}) noting (3.35) gives

* l X ' y j ~ ^ [ l e fc^d i - <f2)
4 - M2(fc)M£(-fc)exp{72Jfc(ai - o2)}]

+ o° exp{if(io - ai) - (j/o - df

-oo

f
r + o c exp{zA(i - a2) + (y -

- A;2 (A - Ar)

O(exp{-7r(ai - a2)/(d!

for y < d2. (4.10)

Further, let

> x = rcos(9 + w),
(4.11)

yo = rosm0o, y = rsm(0 + n) 0 <9,0Q <n

as in Figure 1 and consider TQ, r —• oo. After some standard analysis as per
Noble [6], and noting this formula,

+00

/(A)exp{—iXx — |j/|\/A2 - &2}dA
—00

~ (2kn)1/2 exp(-tV/4)/(-fc cos 6) sin B r~1/2 exp(ikr)

for r large (4-12)

(4.10) becomes

16M£(fc)M_(-fccos0)M_(-fccos0o)(di - d 2 )

x exp{iA;(ro + r + ai — a2 + a.i cos ̂ o — ^2 cos 6 — di sin #o + d2 sin0)}

for r,r0 large. (413)
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Figure 3. |(ror)1^20l vs k for ro and r large.

Figure 3 shows the behaviour of \{ror)ll2(j)\ with 6 = $o = TT/2, for both ro
and r large enough to warrant using the asymptotic expansion but otherwise
unspecified. This fact, of course, needs to be borne in mind when reading the
vertical scale of the graph.

As can be seen from Figure 3, there is a marked peak for the far field at
around k = 10.5. This is because the duct acts as a waveguide. The field in
the duct may be found from the inversion integral (3.4) with $ given by (3.7),
noting that d? < y < d\ in the duct. For 02 < x < ai, all singularities are simple
poles and the first mode in the duct, which will be the sum of two waves of the
form exp{—ik(x — ai)} and exp{ik(x — 02)}, will be dominant as all other modes
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are O(exp{—7r(ai — a2)/(di — ^2)}) in comparison. As in standard waveguide
theory, resonances will be established with standing waves in the duct when
k(ai - 02) = n.7r. For the value ai - a<2 = 0.3, resonances can be expected at
k = 10.5, 21.0, etc., which is consistent with Figure 3. The far-field strength is
thus closely coupled to the tuning of the source to the resonancy conditions of
the duct.

Note that the plane wave approximation may be derived by multiplying all
fields by the factor

y/irkro/2exp{-ikro + itf/4} (4-14)

and letting r 0 -»oo .
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