
13 

Anomalies 

A characteristic feature of relativistic quantum field theories is that 
symmetries of the classical theory are not always present after quantization. 
We do not mean here the spontaneous breaking that is characterized by a 
non-invariant vacuum and by the presence of the Goldstone bosons. Rather 
we mean a situation where there is no conserved current for the symmetry 
despite the absence of any terms in the action that appear to break the 
symmetry. Such breaking of a symmetry is called anomalous. 

If the classical action is invariant, then a naive application of Noether's 
theorem gives us a conserved current. That is, there is no anomalous 
symmetry breaking. What prevents the argument from being correct is the 
presence of UV divergences. The current is a composite operator, i.e., a 
product of elementary fields at the same point, and to define it, some kind of 
regularization and renormalization is needed. The renormalization may 
invalidate the equations used to prove Noether's theorem. 

For simplicity, we will consider only global symmetries, as opposed to 
local, or gauge, symmetries. The simplest cases of global symmetries were 
considered in Chapter 9. These could be treated by using an ultra-violet 
regulator that preserved the symmetry. The proof ofNoether's theorem can 
then be made in the cut-off theory. We showed that only symmetric 
counterterms are needed. Consequently the symmetry remains good after the 
cut-off is removed. 

However, not all symmetries can be preserved after regularization. The 
case which we will treat in this chapter is that of chiral symmetries. These are 
transformations that act independently on the left- and right-handed 
components of Dirac fields. These are particularly interesting because 
sometimes the anomalous breaking of chiral symmetries cancels. Indeed 
there is a theorem, first proved by Adler & Bardeen (1969), that if 
anomalous breaking of a chiral symmetry is zero to one-loop order then it is 
zero to all orders. 

Our treatment will use dimensional regularization. Chiral symmetry is 
valid in the physical space-time dimension d = 4, but not when d =f 4. The 
anomaly in, say, an equation of current conservation will be an operator with 
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332 Anomalies 

in effect a coefficient proportional to d- 4, where d is the space-time 
dimension. This would vanish at d = 4, were it not for the existence of ultra­
violet divergences which allow the anomaly operator to havea pole at d = 4 
so that a non-zero anomaly results at d = 4. We will see explicitly how this 
works. 

There are two key issues. The first is to derive simple forms for the 
anomaly. Of these the most dramatic is the Adler-Bardeen theorem that 
tells us that in some cases there is complete cancellation of the anomaly. The 
second issue is to derive the results in a form that is applicable to the 
physical theory, i.e., after renormalization and removal of the cut-off. Even 
though a particular derivation depends on the choice of a particular 
regularization scheme, the final results must be independent of this choice. 

Nete that to prove existence of an anomaly, it is not sufficient to say that 
the symmetry in question is broken in the regulated theory. The breaking 
may go away after removal of the cut-off. For example, if one uses a lattice 
cut-off, then Poincare invariance is lost. However, one must prove that 
Poincare in variance is restored in the renormalized continuum limit, if the 
theory is to agree with real world phenomena. 

Aside from the case of chiral transformations, there are a number of other 
important situations where there are anomalies. One of the simplest is that of 
dilatations. These are scale transformations on space-time: X'"-d.x~'. A 
classical Lagrangian is scale-invariant if it contains no dimensional 
parameters, like a mass scale. But to cut-off ultra-violet divergences we 
necessarily introduce a mass scale. The symmetry is necessarily broken in the 
regulated theory and the question arises of whether the symmetry remains 
broken after the theory is renormalized and the cut-off is removed. This 
answer is, in general, yes, if the theory has interactions. The reason is that 
there is, in fact, a mass scale hidden in the renormalized theory, as we saw 
when we discussed dimensional transmutation and the renormalization 
group, in Chapter 7. Detailed treatments can be found in the literature (see 
Collins (1976), Brown (1980) and references therein). The simple form for the 
Ward identity is known as the Callan-Symanzik equation (Callan (1970) and 
Symanzik (1970b)). The information contained in the Callan-Symanzik 
equation is in fact also contained in the renormalization-group equation 
that we· studied in Chapter 7. 

Other situations which we will not treat include the following: chiral gauge 
theories (see Costa et al. (1977), Bandelloni et al. (1980), Piguet & Rouet 
(1981)), conformal transformations (Sarkar (1974)) and supersymmetries 
(Piguet & Rouet (1981), Clark, Piguet & Sibold (1979, 1980), and Piguet & 
Sibold (1982a, b, c)). 
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13.1 Chiral transformations 

We will consider QCD with two flavors of quark: up and down. (We could 
have more flavors, but no essentially new ideas would be needed.) The 
Lagrangian is (2.11. 7). H the quarks were all massless then the classical theory 
is invariant under the following transformations of the quark fields: 

1/1-+ exp {i[i(l- y5)(w~ + w~t") + !(1 + y5)(w~ + w:t")] }t/1. (13.1.1) 

Here the matrices t" are the generators of the isospin group acting on the 
flavor indices. The transformations (13.1.1) form a group that we will call 
U(1)L ® U(1)a_ ® SU(2)L ®SU(2)a_. The symmetry of the QCD Lagrangian 
under these transformations is broken by mass terms for the quarks. Since the 
masses of the u and d quarks are small, the chiral symmetries are only weakly 
broken. 

These symmetries and their breaking were understood well before the 
advent of QCD- see, for example, Treiman, Gross & Jackiw (1972). 
Treatments of chiral symmetries in the light of QCD can be found in 
Marciano & Pagels (1978) and in Llewellyn-Smith (1980). Thus it is 
unnecessary to go into details here. What we will emphasize is how the 
potential for anomalies arises. 

Since these transformations involve y5, they are in some sense coupled to 
the spin structure of the theory. Since spin is related to the symmetries of 
space-time, we can expect trouble when the theory is regulated, for 
imposition of an ultra-violet cut-off must alter the space-time structure. 

Notice that there is a U(1)®SU(2) subgroup not involving y5 ; these 
transformations have wL = wR. For them the treatment of Chapter 9 is 
correct. The corresponding Noether currents are 

r = z{ly'J.t/1, 
i: = ZljJyPt"t/1. (13.1.2) 

The conserved charge derived from jll is the conserved quark number, while 
the transformations generated by i: are just ordinary isospin trans­
formations. 

For the other generators of chiral transformations, let us define axial 
currents 

j~ = ZljJi[yP, Ys]t/1, 
i:s = ZljJ![yP, Ys]t"t/1. (13.1.3) 

In four dimensions yPy s = - y 5yP, so that we could have written yPy 5 in place 
of the commutator in (13.1.3). However, because we will use dimensional 
regularization, we must use the form (13.1.3) in order to ensure that the 
currents are hermitian. 
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To define the theory we must regulate its ultra-violet divergences, and for 
this we will use dimensional regularization. We will see that the regulated 
theory is not invariant under the transformations generated by the axial 
currentsj~ andj~a· This allows the possibility of an anomaly. When the cut-off 
is removed we will find that we can arrange for the non-singlet currents j:5 to 
be without anomaly. Although we will not demonstrate it, it is true that the 
singlet current necessarily has an anomalous divergence. 

Our remarks above were addressed to the case that all the quarks are 
massless. But in the real world, there are quark mass terms in the Lagrangian, 
so we now generalize our discussion. The vector singlet current /' is the 
current for quark number- i.e., 1/3 of baryon number- so this remains an 
exact symmetry. The SU(2) symmetry given by the vector currents is broken 
by quark mass differences: 

a,J:= -i~[t",M]t/1, (13.1.4) 

where M is the quark mass matrix. Since the masses of the u and d quarks are 
small we have an approximate isospin symmetry of strong interactions. By 
the theory given in Chapter 9, thecurrentsj: and/', as defined by (13.1.2),are 
finite, since the breaking is from mass terms (Symanzik (1970a)). 

The axial symmetries are broken by the anomaly as well as by the quark 
mass terms: 

8j~ = - 2i~y5 Mt/J +anomaly, 

8,):5 = -i~y5 {t",M}t/J. (13.1.5) 

The u- and d-quark masses are light enough to give us an approximate 
SU(2) ® SU(2)symmetry. The axial part appears to be spontaneously broken 
as well as explicitly broken. The abnormally light mass of the pion is usually 
taken to mean that it would be a Goldstone boson if m" = m4 = 0. See 
Marciano & Pagels (1978) and Gasser & Leutwyler (1982) for more details. 

13.2 Definition of "'s 
In order to formulate consistently the dimensional regularization of theories 
withfermionswehad todefineaninfiniteset of matrices y~',(Jl. = 0, 1,2, ... ). As 
we saw in Chapter 4, they satisfied the algebra 

(13.2.1) 

Our task is now to find a generalization of the matrix which at d = 4 is called 
y5 • Its four dimensional definition is 

(13.2.2) 
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and it satisfies the anticommutation relation 

{y-'', y5 } = 0 (d = 4). (13.2.3) 

It would be natural to assume that this relation ( 13.2.3) can be maintained 
for arbitrary values of d. Unfortunately an inconsistency arises, as we will 
now show, when we wish to compute the trace of y5 with a product of the 
ordinary y11's. The ultimate result will be that stated in Section 4.6, where we 
used the definition (13.2.2) of y5 for all values of d. Then y5 has mixed 
commutation and anticommutation relations, (4.6.3). 

We now demonstrate the inconsistency in trace calculations, starting with 
tr Y5: 

dtr(y 5 ) = tr(y 5 y11y,J 

= tr(y~~y5y~<) 
=-tr(y5y~<y~') 

= - dtr(y 5). 

In the first and last lines we used 

ylty!l =Hylt,y~'} =g:1 =d. 

(13.2.4) 

In the second line we used cyclicity of a trace, and in the third line we assumed 
(13.2.3). From (13.2.4) we see that tr y5 = 0 except at d = 0. Now when we 
apply dimensional regularization we wish to obtain a result that is a 
meromorphic function of d. Hence we must have tr y5 = 0 for all d. 

Similarly 

dtrysY~tYv = try5Y~tYvY.tY" 
= tq•"YsY11YvY;. 

=- try5y''Y11YvY" 

= - 2g;tr Y5YvY;. + 2g: tr Y5Y~tY;.- d tr Y5Y~tY, 
=- 2 try 5 {ylt, yJ + (4- d)trYsY~tYv 

= (4- d) try 5y ~tYv· (13.2.5) 

Here we used the result try 5 = 0. Hence we find that (d - 2) try 5y ~< Yv is zero. 
Now, the same technique can be used to prove that 

(13.2.6) 

At d = 4 this equation permits the usual non-zero trace of y 5 with four other 
Dirac matrices. However, if the trace is to be meromorphic in d, equation 
(13.2.6) shows that it must be zero at d = 4, and we can therefore not obtain 
normalphysicsatd = 4. Thisistheinconsistencyreferred toatthestartofthis 
section. 
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We are therefore forced to drop one of the hypotheses that led to (13.2.6). 
Candidate hypotheses for removal include: 

(1) the anticommutation relation (13.2.3) ('t Hooft & Veltman (1972a)), 
(2) the use of dimensional regularization for fermion loops (Bardeen (1972), 

and Chanowitz, Furman & Hinchliffe (1979) ). 

These last authors have shown how to calculate with a totally 
anticommuting y5 • Bardeen chooses to use a regulator other than 
dimensional regularization for all fermion loops. On the other hand, 
Chanowitz et al. regulate fermion loops with an even number of y5's 
dimensionally. Their procedure is useful for low-order graphs, since the 
Ward identities are preserved for graphs without fermion loops. However, we 
then lose the use of dimensional regularization as a complete regulator; the 
theorems that we derived in Section 6.6 and in Chapter 12 no longer apply. 
The details of higher-order calculations by this method have not been spelled 
out. 

Therefore let us follow 't Hooft & Veltman (1972a) and Breitenlohner & 
Maison (1977a) and change the anticommutation relation. In fact, we may 
use the definition (13.2.2) for all values of d,just as stated in Section 4.6. Our 
definition is, of course, not completely Lorentz covariant, since the first four 
dimensions are picked out as special. But this is not an overwhelming 
objection, for our actual physics is confined to these dimensions. An 
important ad vantage of the definition is that it gives a concrete construction 
of y5• We are therefore guaranteed consistency. 

One notational inconvenience arises. We have a set of matrices y" for 
J1. = 0, 1, 2, .... Usually we only refer explicitly to the first four; the rest are 
referred to collectively. But there is y" with J1. = 5. It is not the same as y5 

defined by (13.2.2). However, we bow to standard usage and use y 5 to denote 
the matrix defined in (13.2.2). Confusion should be rare. 

They 5 so defined has mixed commutation and anticommutation relations 
that follow from (13.2.2) and the properties of y". These were stated in (4.6.3). 
The derivation of (13.2.4)-(13.2.6) now fails, because y5 does not anticom­
mu te with all of the y"'s. We can derive the correct relations easily. Since the 
trace of an odd number of y"'s is zero, we have 

tr(y"y5 ) = 0, tr(ysY''y''y") = 0, etc. (13.2.7) 

We may read off the trace of y 5 with an even number of y"'sfrom (4.5.13)and 
its relatives with more than four y-matrices. Thus we have 

tr(y 5) = 0,} 
tr(y 5y"y•) = 0. 

(13.2.8) 
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Finally 
(13.2.9) 

where t:.,;.ll• is given by (4.6.2). 
The relations ( 4.6.3) mean that thechiral transformations (13.1.1 )no longer 

generate a symmetry if dis not equal to 4. To discuss the resulting problems, 
the following notation is useful (Breitenlohner & Maison (1977a)): 

g = {gil•' if J-L and v are 4 or larger,} 
ll• 0, otherwise; (13.2.10) 

Here Vll is any vector. Then g ll)s a projector onto the unphysical dimensions. 
Thus, for example, 

g~ = gll•gllV = gll•gllV = d- 4, } 
(13.2.11) 

{Y.Ys}= L Vll{yll,Ys}=2fys=2ysf. 
ll>3 

We may also define projections onto the four physical dimensions: 

rr· = {gil• if J-L an~ v are less than 4} 
0 otherwise; (13.2.12) 

vll = ir· v •. 
The following results are elementary, but will prove useful: 

ylly•yll = (6- d)y•,l 
ylly•yll = (4- d)'}", 

ylly•yll = - 2y•, 
-IJ"v- 4'v y y yll =- y. 

(13.2.13) 

Let us define wa = (w~ + w~)/2 and w~ = (- w~ + w~)/2. Then the 
variation off£' under the chiral transformations (13.1.1) is 

bf£' = il}i(2w~y 5 + wa[M, t"] + w~y 5 {M, t"} )t/1- 21}iy//J(w~ + w~t")t/1. 

(13.2.14) 

Hence the divergences of the axial currents are 

a llj~a = - il}iy 5 { t", M}t/1 + l}iy 5 fJt"t/l 

= -il}iy5{t",M}t/J+I}iy5{t",fJ}t/l/2, 
allj~ = - 2il}iy 5Mt/J + l}iy 5fJt/J. 

(13.2.15) 

(13.2.16) 

The second term in each equation can potentially give an anomaly when we 
let d --.4. 
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13.3 Properties of axial currents 

There are a number of somewhat different situations in which axial currents 
appear. The original papers on chiral anomalies primarily addressed 
anomalies in Ward identities of the chiral currents of strong interactions. 
More general cases have since been worked out, with corresponding 
generalizations of the Adler-Bardeen theorem. In this section we will list the 
various cases and state what is known. 

13.3.1 Non-anomalous currents 

The following properties apply ,for example, to the non-singlet axial currents 
in QCD: 

(1) If there is no anomaly to one-loop order (as for thecurrentj~5 ), then there 
is no anomaly to all orders. The Ward identities of the current with 
elementary fields have no anomalies. 

(2) Under the same condition as in ( 1) there is no anomaly in the two-current 
Ward identities. 

(3) Under the same condition there is an anomaly in a three-current Ward 
identity (like the one for aK<OI Tj:5 (x)j~(y)j;(z)IO> ). However, the only 
non-zero term in the anomaly is the one-loop contribution. 

The theorem that the complete anomaly in these cases is determined by the 
one-loop value is due to Adler & Bardeen (1969). 

The lack of anomalies in the Ward identities of one current with 
elementary fields is essential if the currents are to generate the correct 
transformation law for the fields. These transformations imply commutation 
relations for the currents. Since these commutators are also given by the 
Ward identities with two currents, the two-current identities must be 
anomaly-free. 

No such consistency requirement applies to the three-current Ward 
identity. The value of its anomaly is related to the decay rate for n°---> 2y, and 
the lack of higher-order corrections enables a successful prediction to be 
made easily. (See Adler (1970); for reviews from the point of view of QCD, see 
Marciano & Pagels (1978) and Llewellyn-Smith (1980).) 

13.3.2 Anomalous currents 

The singlet current j 5 has an anomalous divergence. It has the form 

a~<j~ = C(g)G:vGa11 v +mass terms, (13.3.1) 

where G:v is the gluon field strength tensor and a:v is its dual: 

(;allv = BI'VKAG:A. (13.3.2) 
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The Adler-Bardeen theorem asserts that the coefficient of C(g) is equal to its 
one-loop value 

C(g) = Nng 2 /(32rr2). 

However, the operators j 5 and GG need renormalization, and there is not an 
obvious natural renormalization condition. So the value of Cis susceptible to 
change by redefinition of the renormalization prescription. We will not treat 
this case here. 

13.3.3 Chiral gauge theories 

Theories like the Weinberg-Salam theory of weak interactions have a 
gauged chiral symmetry. It is essential that there be no anomaly, for 
otherwise the theory is not renormalizable and loses other important 
properties (Gross & Jackiw (1972) and Korthals Altes & Perrottet (1972)). A 
generalization of the Adler-Bardeen theorem is that there is no anomaly to 
any order of perturbation theory if there is none to one-loop order. Proofs 
have been given by Becchi, Rouet & Stora (1976), and by Costa et al. (1977). 

13.3.4 Supersymmetric theories 

Supersymmetric theories have potential anomalies similar to the chiral 
anomalies. A completely general treatment has not yet been given, but many 
particular cases have been treated- see Piguet & Rouet (1981), Piguet & 
Sibold (1982a, b,c), Clark, Piguet &Sibold (1979, 1980),and Jones &Leveille 
(1982). 

13.4 Ward identity for bare axial current 

Without use of the equations of motion the divergence of the non-singlet 
current j~5 is 

a 11)~5 = iZ zl{ly 5 ta(if/.> - M 0 )1/J + he 

+ iZz{f{ M o• ta}y51/J + tZz{Jta{~, Y5}1/1 
(13.4.1) 

The first term we will call the equation of motion term. When inserted in a 
Green's function with elementary fields it gives 

(Oj TD:m(x)f]A fl 1/J(y;) fl tfr(z)jO) 
i j 

=I b(x- yJ(Oj TflA fl 1/1 fl tiijO)\il(y;J~ -y,r"\11 
i 

+I b(x- z)( Oj TflAfli/Jfl tii jO) ~(=Jl~.Pr,r"· (13.4.2) 
; 
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The variations of the fields are just their chiral transformations multiplied by 
i. (We set w~ = - w~ = w~ in (13.1.1) to obtain these transformatitms.) This 
equation (13.4.2) has the expected right-hand side for the Ward identity in the 
absence of anomalies. 

The mass term on the right of (13.4.1) is expected; it is the non-anomalous 
breaking. 

The anomaly term is v:nom· If we insert it in a Green's function with no 
divergences of any kind, then we may set d = 4. The result must be zero 
because v:nom vanishes if only the first four y-matrices are used (for then 
{.Q>, y5} = 0). But if the Green'sfunction has an overalldivergence,orifit has a 
divergent subgraph that contains the vertex for v:nom• then the result may be 
non-zero at d = 4, as we will see. The full Ward identity reads 

o~~' < Ol Tj~5 (x)flAfli/J flifi 10 >=right-hand side of (13.4.2) +mass term 

+ <OI TD:nom(x)flAfli/JflifiiO>. (13.4.3) 

Recall that in the case of a symmetry such as the isospin SU(2) ofQCD that 
has no anomaly, we used its Ward identity to prove the current finite. The 
only possible counterterm for the current is proportional to itself, so 
finiteness ofthe divergence ofthe current, o -j, implies finiteness of the current 
itself. The Ward identities imply that the divergence of the current is finite. 
However, for the axial currents the extra term in (13.4.3) prevents this 
argument from being made. 

13.4.1 Renormalization of operators in Ward identities 

Our aim will be to construct a finite currentj~as that at d = 4 satisfies a non­
anomalous Ward identity: 

a~~' <OI Tj~a 5 (x)flAfli/JflifiiO> =right-hand side of (13.4.2). 
(13.4.4) 

The first step is to observe that the only counterterm to j~5 is itself. No other 
operators have the correct dimension and quantum numbers. So we can 
define a minimally subtracted operator 

[ "I'] z "I' las = slas 

=-! Z sZ2tji[y~', Ys]tai/J. (13.4.5) 

Throughout this section we will use square brackets to indicate minimal 
subtraction. So the renormalization factor Z 5 has the form 

Z 5 = 1 +poles at d=4. 
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To obtain the operator iRas• we will later show that we have to invoke a 
further finite renormalization. 

We wills how that the Ward identity(13.4.4)isnotcorrect ifjRas is replaced 
by the minimally subtracted UasJ. Rather we must make a further finite 
renormalization too btain aWard identity without anomalies. Thus we have 

'I" ['I"] 1Ra5 = Zs las 

= !z5Z 5Z 2 t]i[y'", Ys]~t/1. (13.4.6) 

where z 5(g) is a finite factor. 
The anomaly operator v:nom is a dimension four scalar quantity, so there 

are several operators with which it can mix. It is proportional to thee-tensor 
times a fourth rank tensor, which we will call A.;.'""· Since ed'"• appears 
nowhere in the Lagrangian, the tensor A";.'". is invariant under all Lorentz 
transformations. Given these restrictions, a complete list of operators that 
mix with v:nom is 

a '"j~5• v:nom• t]i{ M O• ta}yst/1· 

No operator involving only ghost and gluon fields can be constructed such 
that it mixes with v:nom· The linearity in ei(AIJV implies the presence of four 
factors of vector objects (derivatives or A -fields). Therefore the coefficient of 
the operator is independent of mass, by our usual results. Gauge in variance of 
v:nom allows a restricted set of gauge variant counterterms (see Chapter 12) 
none of which have low enough dimension to appear. Sinceja5 is even under 
charge conjugation, so is v:nom· Therefore the only allowed counterterm 
proportional to quark mass has a flavor factor { M, ta} rather than the 
commutator [ M, ~];this gives us the operator D'f.c that appears in (13.4.1). 

We can therefore write the minimally subtracted operator corresponding 
to [ V:nomJ as 

(13.4.7) 

The equation of motion operator is finite by itself- see (13.4.2)- so we have 

(13.4.8) 

Note that the definition of v:m includes some counterterms, but these are 
manufactured from the wave-function, mass, and coupling renormalizations 
in the Lagrangian. 

We also need the renormalization of the mass operator 

(13.4.9) 

It is somewhat unobvious that the renormalization is multiplicative. The 
easiest method is to examine they-matrix structure of self-energy graphs with 
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an insertion of I[Jt"y 5 t/J or I{Jy 5 t/J. These operators can then be shown to be 
multiplicatively renormalizable with a common factor. 

By use of (13.4.6)-(13.4.9) we can express the equation (13.4.1), for the 
divergence of the bare axial current, in terms of renormalized operators to 
find 

[D:mJ = Z5 1(1- Za 5Z;; 1 )o11 [j~5] 

- [D~]Z5~(1 + zaMza- 1)- z;; I [D:noml (13.4.10) 

The renormalized operators on the right are all linearly independent, so the 
only way a linear combination of them can equal the finite left-hand side is for 
the coefficients to be finite. Since we use minimal subtraction this implies: 

Za=l, } 
ZaM: Z~M- 1, (13.4.11) 

Zas-1 Zs. 

We therefore have the renormalized Ward identity: 

;_<OJ T[j~5]flAflt/Jfli{JJO) = r.h.s. of (13.4.2) 
ux 11 

+<OJ T([D~] + [D:nomJ)flAflt/Jfli{J JO), 

(13.4.12) 

which apparently still has an anomaly. Before showing how the anomaly in 
fact disappears, let us examine some low-order graphs. 

13.5 One-loop calculations 

The tree approximation for the two-point Green'sfunction of[ v:nom] is given 
by Fig. 13.5.1. To save algebra we will set quark masses to zero. The graph's 
value is 

ip' - - ip 
--;z(- i)(p' + p)}•5ta2· (13.5.1) 
p p 

If we let the external momenta be physical, i.e., in the first four dimensions, 
then this vanishes. The vertex for v:nom has the property we define as 
evanescence: it vanishes when the cut -off is removed and we go to the physical 
renormalized theory. We will formulate a precise definition of evanescence 
later, when we have understood the subtleties associated with inserting the 
vertex inside loops. 

a 
Danom 

> X ) 
p p' 

Fig. 13.5.1. Tree approximation for two-point Green's function of [ D~noml 
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p p' 

l\}r 
(a) (b) (c) 

Fig. 13.5.2. Graphs up to order g2 for two-point Green's function of j:5 . 

Next let us examine the graphs for the two-point function ofthecurrentj:5 , 

as given in Fig. 13.5.2. Graph (a) has the value 

ip' ip 
p'2 y~'ysta p2. (13.5.2) 

Taking the divergence is the same as multiplying by i(p' - p)~'. The result is 

ip' . ip 
f-;f(j'- p)Iysta p2 

~ ' · aip 
= p'z(PYs+Ysp)It p2 

= i~~ (f'Ys + Ysf- f'Ys- Ysf)i~ i~ 
p p 

=- YstiljpfP2 - i(p'/p' 2)Ys~ + (13.5.1). (13.5.3) 

When we set p = fo' = 0, to get the four-dimensional result, we obtain the 
lowest-order case of the chiral Ward identity. 

The next order graph is Fig. 13.5.2(b). Its value, with the external 

propagators amputated, is 

r = ig2 CF (l )4-dfddk Y.(p' + ~WYs~(p + ~)y". 
Zb 16n4 1t/l kz(p' + k)z(p + k)z 

(13.5.4) 

This is evidently divergent. It is easy to calculate the pole at d = 4: 

pole (r 2b) = ----f pole --y.y,ji~'y 5yKy• g2tac { 1 } 
32n 4- d 

- gztaCF { 1 -~' z} 
- 32nz pole 4- d y Ys(d- 6) 

- g2 CF~ -1' 

-8n2 4-d y Ys· 

Here we have twice used the result that 

YKY~'YsYK = y,c')i~'YsYK + YKY~'YsYK 
= 2y~'ys- YKYKY~'Ys 

=(6 -dWYs· 

(13.5.5) 

(13.5.6) 
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There is a counterterm graph implicit in the definition j~5 = 

Zifr'ly5 tat/J, with the quark wave-function renormalization given by 

g2CF 0( 4) 3 z2 = 1 - 8n2(4- d)+ g . (1 .5.7) 

The resulting counterterm graph Fig. 13.5.2(c) therefore cancels the UV 
divergence of graph (b), leaving a finite result. No additional renormalization 
is needed: 

(13.5.8) 

Let us next take the divergence of (13.5.5) plus its counterterm, by 
multiplying byi(p'- p),...Itisleft asanexerciseforthereaderto verifythatthe 
Ward identity (13.4.3) holds at this order. What we will do is examine the 
graphs of order g2 for the Green's function of D:nom· These are listed in 
Fig. 13.5.3. Note that the definition includes a covariant derivative: 

tz2tii{.i$. Ys}rut/J = !tiiZ2{7, Ys}rut/1- igoZ2tii{-¢!0, Ys}tat/1 
_";! _....._ 

= Zzt/J~Yst/1- 2igoZzt/J-tfoYsrut/J. (13.5.9) 

The tiiktst/1 term gives rise to the graphs (b) and (c). 

p p' )0) 
k 

(a) (h) (c) (d) 

Fig. 13.5.3. Graphs of order g2 for two-point Green's function of [D:nomJ. 

Graph (a) equals 

r = CFg2ru (2n )4-dfddk Y.(P' + ~)(# + i + 2~)Ys(P + ~)y• 
3a 167t4 fl. k2(p' + k)2(p + k)2 

where 

= i~;~J ta(2np.)4 -d J: dx J: -x dy x 

x {r(3- d/2)Dd12 - 3y.[f)'(1 - y)- px] [j'(l - 2y) + p(l - 2x)] 

x y5[f)(l- x)- t>'Y ]y• 

- fr(2- d/2)Ddil- 2y.(2(f}'(l- y)- px)yKy5 yK 

+ 2yKyKy5(P{1 - x)- p'y) 

+ yK(j'(l - 2y) + j(l - 2x))y5)•K]y'}, 

(13.5.10) 

D = - p2x(1- x)- p'2y(l- y) + 2p·p'xy. (13.5.11) 

If it were not that there is an ultra-violet divergence given by the 
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r(2 - d/2), we could let p and p' be four-dimensional, and then set d = 4 to 
obtain zero. (Note that y,f = f.cy" = d- 4.)The pole prevents this argument 
from being made. First of all, notice that the pole is 

pole(r3a)=- i:;~J t'pole{ 4 ~ d Y.Y"(i' + i)YsY"y•} 

- 3ig2CF (i' + i) 
= g7r2 ta 4 _ d · (13.5.12) 

The manipulations on the Dirac matrices are easy to do incorrectly, so let us 
be careful. We need the following result 

Y,.:f"'YsY" = Y"Y 11YsY" + Y"Y11YsY" 

= y"·rf"'Ys- .Y3"Y"'Ys + 2y"'ys 
= (10- d)y11y5 • (13.5.13) 

In the first line we split y" into a four-dimensional piece y" and a 
(d- 4)-dimensional piece y". Then in the second line we used the 
commutators or anticommutators of Y" and Y" with y"' and y5 • 

The graphs of Fig. 13.5.3(b)and (c)may be evaluated similarly. The sum of 
the pole terms for all three graphs is 

- ig2CF ta(j' + i)y 5 
pole (r 3a + r 3b + r 3c) = 8n2 4 - d , (13.5.14) 

which is cancelled by the counterterm Fig. 13 .5.3(d). This is in agreement with 
our general result (13.4.11). 

We are now ready to compute the value at d = 4 of the sum of the graphs of 
Fig. 13.5.3. Considerable simplification occurs. Since p and p' are now zero, 
the term in (13.5.10) that multiplies r(3- d/2) vanishes. Similarly the last 
term multiplying r(2- d/2) gives zero. The remaining two terms have a 
factor y"y" = d - 4, which cancels the pole to leave a finite result: 

ig2C 
r3ald=4,p=p'=O = 8n/ t'(P'- P)Ys· (13.5.15) 

Similarly r 3b and r Jc give 

ig2CF a -, :z 
(r3b + r3Jid=4.il=.D·=o = ~t (p - p)Ys· (13.5.16) 

Effectively Fig. 13.5.3 sums to g2CF/(4n2) times the vertex for 
o)as· It is easy to understand why the result should be of this form. 
Without the loop integration, the vertex for v:nom vanishes when 
k = p = P' = 0. When weincludetheintegrationoverthecomponentsofk, we 
can get a non-zero value for the graphs even if p = p' = 0. However, the 
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evanescence property of the basic vertex implies that it has effectively a factor 
d- 4. We only get a finite result by multiplying by an ultra-violet 
divergence- so the effect at d = 4 is of a local operator. 

A general theory of evanescent operators can be worked out. The results 
simply generalize what we have learnt from examples: 

(1) We define an evanescent vertex as one that is finite and that vanishes in a 
tree graph when we set d = 4 and when all momenta and polarizations are 
four -dimensional. 

(2) A Green's function or a graph or an operator is evanescent if it is finite at 
d = 4 and if it vanishes when its external momenta and polarizations are 
four-dimensional. 

(3) Consider a graph containing an evanescent vertex. If the graph is 
completely finite then it is evanescent. ('Completely finite' means that the 
graph and all its subgraphs have negative degree of divergence.) 

(4) A renormalized operator [ E] whose basic vertex is evanescent has the 
following expansion: 

[E] = L CEv[V] +evanescent operators. 
v 

(13.5.17) 

The sum is over operators V whose basic vertices are non-evanescent. 
The only operators that are needed are the ones that according to the 
usual power-counting and symmetry requirements will mix with E 

under renormalization. The general proof is left as an exercise to the 
reader. 

13.6 Non-singlet axial current has no anomaly 

13.6.1 Reduction of anomaly 

The only operator that can appear on the right-hand side of (13.5.17) for the 
case E = v:nom is o· UasJ. The restrictions are that it be pseudoscalar, 
isovector, gauge invariant and of dimension at most four. (If we had non-zero 
quark masses, then the operator [DM] could also appear.) So we have 

[D:nom] = C(g)o·[j:5] +evanescent, (13.6.1) 

which, when substituted into the renormalized identity (13.4.12), gives 

o~'" <OJ T(1- C)[j:sJDADt/IDtiiiO> 
= r.h.s. of (13.4.2) +evanescent. (13.6.2) 
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So we should define the renormalized current 

j~as = (1 - C) U:sJ 
= (1 - C)Z5 1 j:s. (13.6.3) 

which is (13.4.6) with z5 = 1- C. For the physical four-dimensional theory 
this implies thatj~as has Ward identities with no anomaly, viz. (13.4.4), as we 
wished to prove. 

From our calculations of Fig. 13.5.3 we see that 

C = g2CF/(4n2) + O(g4). (13.6.4) 

Our proof has been long and involves a general theory of evanescent 
operators summarized in Section 13.5. The basic idea, however, is simple. 
The only way an anomaly can appear in the physical theory is when a 

divergence cancels an effective factor of d - 4 for the evanescence of an 
anomaly. The anomaly in the four-dimensional theory is a local operator, 
and the only possible operators are those which power-counting would allow 
as counterterms to a·j. 

In the case of our isovector current, the only such operator is a ·j itself. So a 
finite renormalization (13.6.3) serves to eliminate the anomaly at d = 4. 

13.6.2 Renormalized current has no anomalous dimension 

Let us apply the renormalization-group operator JJ.d/dJJ. to the Ward 
identity (13.4.4). For the right-hand side we get 

w~- right-hand side =right-hand side {l: anomalous dimensions of fields}. 
dJJ. 

To get the same result for the left-hand side, the currentj~as must have zero 
anomalous dimension (when d = 4): 

d 
Jl. dJJ.jRaS = Q. (13.6.5) 

This is a sensible result: the currentj~as is a physical object, and it should not 
depend on how we parametrize the theory by a renormalized coupling. 

Useful consequences follow, for the minimally subtracted current does 
have an anomalous dimension: 

(13.6.6) 
where 

y5(g) = JJ.dln(Z5)/dJJ. 

= [(2- df2)g + p(g)]aln(Z5 )/ag. (13.6.7) 

https://doi.org/10.1017/9781009401807.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.013


348 Anomalies 

Now, the coefficient Cis a function of g; it is dimensionless and even in the 
presence of masses cannot depend on them, just like the renormalization 
factor Z 5 • We also define it to have no cut-off dependence, since it is a factor 
between renormalized operators at d = 4. 

We therefore have 

0 = J1djRa5/dJ1 

= - P(oCjog)[ja5]- (1 - C)y5[ja5J, 

so that 
po(1 - C)jog = y5 (1 -C). (13.6.8) 

It follows that 

(13.6.9) 

where we used as a boundary condition the fact that C has a perturbation 
expansion starting at order g2 • In order that the integral in (13.6.9) be 
convergent, the order g2 term in y 5 must vanish. 

So from the definition ( 13.6. 7) it must be that Z 5 has no order g2 term; this 
we know by explicit calculation. Moreover, we know from ( 13.6.4) the one­
loop value of C, so that 

y5 = -A 1g4 CF/(2n2 ) + O(g6 ), (13.6.10) 

where the one-loop term in pis - A 1g 3• Hence (13.6.1 0) gives us a prediction 
of the leading divergence in Z 5 : 

AI CFg4 6 
Zs = 1- 4n 2(4 _d)+ O(g ). (13.6.11) 

The reader is invited to check this by Feynman graph calculations. 
We may use the techniques of Chapter 7 to sum the divergences. We find 

the full renormalization factor of j"Ra 5 to be 

j~a5 = (1 - C)z-1 
.ll 5 

las 

= exp { J: dg'y 5(g'{ p(~') - (d/2 _ 2)~' + p(g') ]} 

_ { Ig , y 5(g')(d/2 - 2)g' } 
- exp o dg p(g')[(d/2- 2)g' + p(g')] 

= 1 + (d- 4)0[1n(g2/(4- d))] 

-+ 1 as d -+4. 

Evidently the Noether current is finite in the complete theory. 

(13.6.12) 
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13.7 Three-current Ward identity; the triangle anomaly 

13.7.1 General form of anomaly 

We consider the Green's function 

D~l:c"(p,p') = Id4 xd 4yeip·x+ip'·y(OJ Tj~a5 (0)j~(x)j~(y)JO). (13.7.1) 

Only connected graphs contribute; Lorentz invariance forces the vacuum 
expectation value of a current to be zero. The currents are all renormalized 
currents, so all subdivergences are cancelled by counterterms, and the only 
possible infinity in (13. 7.1) is an overall divergence. In fact there is no overall 
divergence, as we will now show. 

£:s'+k 
~ k ~· 

+ 

Fig. 13.7.1. Lowest-order graph for (13.7.1). 

Individual graphs for ( 13.7 .1) have a linear divergence, as can be seen from, 
say, Fig. 13.7.1. Any divergence must be linear in external momenta and 
proportional to the t:-tensor. The only possibility is 

eKAflV [ a(d)pr< + b(d)p~]. (13. 7.2) 

There is also the constraint of conservation of the vector current. This is 
expressed by constructing a Ward identity in the dimensionally regularized 
theory. 

Consider 

p"D""" = -if ddxddyeiv·x+iv'·y o~" (OJ Tj~a5 (0)j~x)j~(y)JO). (13.7.3) 

By use of the result 

io"Zzljiy"~t/1 = Z2lji~il/>- M 0)t/l- Ztji(- i.(b- M 0 )tat/J 

and the equations of motion, we find 

p~'D'"~'" =I ddxiei<p + p')·x (OJ Tj~a 5 (0)Z 2 tP[t<, tb]y"t/J(x) 10) 

+I ddyieip·y<OJTZ 2~[t",tb]Y''Y 5 t/Jj;(y)JO). (13.7.4) 

In these equations we assumed that the currents j~ and j~ are conserved. Each 
of the terms in (13.7.4) is a Green's function of a vector and a pseudovector 
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current. Parity invariance forces them to be zero, so 

Similarly 
P D'-llv = 0 ll . (13. 7.5a) 

(13.7.5b) 

Thecounterterm (13. 7.2) must therefore give zero when multiplied by p~' or 
p~. This forces thewholecounterterm to be zero; the Green'sfunction (13.7.1) 
is finite as it stands. 

In the regulated theory the axial current is not conserved, so we cannot 
prove the Wardidentity(p + p')._D'-~'v = Obythesamemanipulations. Indeed 
we have 

(p + p')._D'-~'v =commutator terms+ Jd 4 xd4 yei(p·x+p'·y) x 

X (OI TEa(O)j~(x)};(y)iO). (13.7.6) 

Here E is the evanescent operator in (13.6.2): 

E = [ v:nomJ - Co· Uas] 
(13.7.7) 

The commutator terms in (13. 7.6) vanish, as in the Ward identity for the 
vector currents. Hence, finiteness of the left-hand side implies that the Green's 
function of E with}~ and};isfinite. Even thoughgraphsfor it are quadratically 
divergent, the divergences cancel. 

Now, E is an evanescent operator. This means that its Green's functions 

with elementary fields vanish in the four-dimensional theory. The general 
theory of evanescent operators, which we summarized at the end of 
Section 13.5, then tells us that the only way that the right-hand sideof(13.7.6) 
will fail to vanish is forE to be part of a graph or subgraph with overall degree 
of divergence at least zero. Now, the definition of E has ensured that these 
subgraphs are all evanescent. Hence we are left with the complete graphs. So 
we have (at d = 4) 

(p + p');.D'-Ilv = A(g)ellva.(Jpa.p'Peabc 

= 1Aellva.p(P + p')a.(p- p')fleabc· (13. 7.8) 

The tensor structure is the only one possible. The coefficient A is 
dimensionless at d = 4, so it can only be a function of g. Note that the right­
hand side of (13.7.8) obeys vector current conservation, so that 

as should be. 

PiP+ p');.D'-IlV = 0, 

p~(p + p')._D'-Ilv = 0, 
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13. 7.2 One-loop value 

The lowest -order value of A is easily computed from the graphs of Fig. 13.7 .1. 

" 'P _ 3 f ddk tr [(j- J' + 2P}y5(t'J + ~)y"~y·(~- p')] 
As11 vafJP P - 4 (2n)d P(p + k)2(p' _ k)2 

+ charge conjugate. (13. 7.9) 

The factor 3 is the number of quark colors. To evaluate this, notice that 

' ' (13.7.10) 
tr(yd'y;.)=O, } 

tr(Ys'lYAY/lYV) = 4ieKA/lV• 

Since eK.J."v is restricted to the first four dimensions, it follows that the trace of 
)'s with four Dirac matrices is zero if one of the matrices is a y: 

(13.7.11) 

Let us commute the - p' + ~ in (13.7.9) to the left, and use (13.7.11) 
whenever possible. We will also set p = p' = 0. The result is 

tr [(j- J' + 2~)y5{P + ~)y~'~y•(- p' + ~)] 
= tr [2~y 5(p + ~)y"~(p'- ~)y•] + 0 

= tr [2~y 5(p + ~)y11~p'y•] + 0 

= - tr [2~y5(p + ~)~y~'p'y•] + 0 

= - tr [2~y5#yl'p'y•] + 0 

= - tr [2~~y5py"p'y•] + 0. (13. 7.12) 

The terms indicated by '0' vanish by use of (13.7.11). The charge conjugate 
term gives an equal contribution. 

We now have 

(13.7.13) 

This is now only a logarithmically divergent integral. After use of Feynman 
parameters the standard result (4.4.14) gives 

The evanescence of the vertex has effectively given a factor of d - 4 which 
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cancels the UV pole to leave a finite result 

A = - 3/(8n2) + O(g2). (13. 7.15) 

This result for the anomaly in the axial Ward identity for (13.7.1) was first 
found by Adler (1969), and Bell & Jackiw (1969). 

13.7.3 Higher orders 

There are, in fact, (Adler & Bardeen (1969) )no higher-order corrections to the 
anomalyfor(13.7.1). Wewillfollowthe proofduetoZee(1972). The basic idea 
is simple. Each of the currents in (13.7.1) is RG invariant, and there is no 
overall counterterm. Therefore this Green's function is invariant when we 
make an RG transformation. The anomaly must therefore be invariant 
also. But the anomaly coefficient A(g) depends on the coupling g and on no 
other parameter of the theory. We can change g arbitrarily by changing the 

renormalization mass J.l· Hence A is independent of g. 
This proof may easily be written out. Renormalization-group in variance 

of v;g; is the equation 

Hence 

j_A( ) ~t•aP , - ( ') ~D.<."v- 0 J.l dJ.l g eabce PaPp- P + P ;.J.l dJ.l abc - • 

Since J.ld/dJ.l = J.lO/OJ.l + pojog, this gives 

paA;ag =0. 

Then A is independent of g, so it equals its lowest-order value: 

A = - 3/(8n2) exactly. (13. 7.16) 

This is a very striking result. The proof we have given is very simple, butthe 
reader should not suppose it is not a deep result. The whole power of the 
renormalization apparatus is needed for its derivation. We first had to show 
thatthereisnoanomalyin thedivergenceoftheaxialcurrent. Then we had to 
show that there was no counterterm needed to make v;gc• finite. These results 
involved considerable cancelation ofUV infinities. Since the anomaly in a ·ja5 

disappears when the UV cut -off is removed, it can affect a Ward identity only 
by being enhanced by a UV infinity which has not made its appearance 
earlier. 

Thus the anomaly is associated with a UV pole implicit in the Feynman 
graphs. It is precisely for this reason that it must have the dependence on the 
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parameters of the theory and on the external momenta that is characteristic 
of a renormalization counterterm. In particular, it is polynomial in the 
momenta and masses of the degree determined by UV power-counting. Once 
this is clear, the most general possibleformoftheanomalyis(13. 7.8). The final 
step to show that A is independent of g is trivial. 

An important phenomenological consequence of the anomaly is a 
calculation of the decay rate for n°-+ 2y (see Marciano & Pagels (1978) and 
Llewellyn-Smith (1980)). The amplitude is proportional to the number of 
quark colors, so the decay rate is proportional to the square of this number. 
The measured rate in fact agrees with the standard theory that there are 
three colors. 
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