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Summary. The methods of the first-order planetary secular perturbations 
are discussed in this paper. On the basis of Gauss' method, some concrete 
applicable formulae are derived. And then, orbital evolutions of the nine 
major planets in solar system during about 2,100,000 years are investigated 
numerically. The method applied here is in principle suitable for the 
orbits of arbitrary eccentricities and inclinations. 

FOREWORD 

In order to make an approach to the secular perturbation^ which some 
celestial bodies with rather special orbits ( for instances, the Mercury, 
the Pluto, asteroids and comets ) have undergone, the way in the classical 
method to solve the non-periodic part of disturbing function is not 
suitable, because it depends on developing the eccentricities and incli
nations regarded as small quantities. We tried to introduce here the 
Gauss' method. Making use of its complete analytical solution for part 
of the problem and also the combination of the analytical and numerical 
method, we study the orbital evolution of this kind of special celestial 
bodies during a comparatively long period. 

I. ON THE SECULAR PERTURBATIONS 

There is no secular perturbation on semi-major axis, and the secular ine
quality of mean anomaly is of no consequence. Therefore, only the varia
tions of the remaining four elements need to be considered. Let 

A = e sin(">+*2), 
k •= e cos(u) +SZ), (1) 
f = sintsini2 
7 = sin£cosI2 

*This paper has been published in Acta Astronomica Sinica, 
Vol. 23 (1982), No.l, 56, in Chinese. 
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For the sake of simplicity, we limit the problem to the disturbed planet 
and the disturbing planet. Their masses be designated by m and mi respec
tively. Developed up to square terms of the eccentricities and inclina
tions, the related non-periodic part of the disturbing function iscn 

- z&*,E(hh, + Ik,). (2) 

Accordingly, the secular inequalities of the related elements can 
be expressed in the following simple form: 

CM = 4&(4Z>-*,£); tfJ =-~£S'(AI>-A.O! 

l?lsi7fiP(1'-9h 11] = ^ (?-/>,)> (3) 

In which G is the gravitational constant, n the mean motion of disturbed 
planet; D and E are symmetrical functions of the two semi-major axes. 

If we exchange m, mi and their corresponding elements, the t/lj, 
l k ' l i IP>] and C M m aY t>e obtained in the same form as (3). 

With the simple form of (3)» replacing h, k, p, q by Chi, £k], £p] 
and [q], we can solve simultaneously the perturbation equations of all 
the major planets analytically, though it is very long and complicated. 
That is why for a long time it has been used as the classical method for 
studying secular perturbations of the major planets. 

The main disadvantage of this method is that only terms of second 
order in the eccentricities and inclinations are considered. It seems not 
accurate enough for rather special orbits. 

Gauss proposed another way to calculate the secular perturbations of 
elements avoiding the complication of dependence on the development of 
small quantities1''". 

We denote by V any one of the elements. Its perturbation equation 
is known as 

% = Ao+ J_ Z B cos (iM+jM. +C), 

Where ho corresponds to the secular perturbation on the left of (3), the 
second part on the right being periodic terms, M and M| are mean anomalies 
of the two planets and ^ is a function of other angular elements. 

The basic concept of Gauss' method is to calculate directly the C<r] 
according to the following formulas 
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Kegarding the mass of disturbing planet mf as a velocity-density 
distribution along its orbit, i.e., every mass d/u on the element arc of 
the orbit is proportional to the time dt taken by the planet to pass 
through the very arc, using coordinate transformation and introducing 
elliptical integral, Gauss obtained the analytical solution in (4) for 
dMi, i.e. the first integral. As for the second integral, it can be 
integrated by using numerical method of harmonic analysis. 

In order to compare the classical method with Gauss' method, taking 
a planet of Jupiter type ( mfO.001, a,=5.20, e,=0.05, ii=1.2 ) as a 
disturbing body, we have made many kinds of computation for a disturbed, 
body ( a=2.75 ) with various eccentricities and inclinations according 
to the two methods respectively (-the concrete formulae of Gauss' method 
are mentioned below ). Now, we list briefly the results about £ A1 in Table 
1, in each row and column, the value above is obtained from classical 
method (3) while the result in parenthesis is from Gauss' method. The 
latter is correct. 

It is thus evident that both results agree well in the case of small 
eccentricities and inclinations; the larger they are, the divergence 
becomes more prominent until beyond recognition. 

Table 1 io*x Ufa ( for each day ) 

O'.OOO 5*730 11". 459 17*189 22*. 918 28°.648 34*377 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

-0.024 
(-0.024) 

-0.056 
(-0.058) 

-0.088 
(-0.094) 

-0.121 
(-0.134) 

-0.153 
(-0.180) 

-0.185 
(-0.237) 

-0.218 
(-0.314) 

-0.024 
(-0.022) 

-0.056 
(-0.051) 

-0.088 
(-0.082) 

-0.121 
(-0.114) 

-0.153 
(-0.149) 

-0,185 
(-0.187) 

-0.218 
(-0.223) 

-0.024 
-0.017) 

-0.056 
-0.032) 

-0.088 
-0.045) 

-0.121 
-0.056) 

-0.153 
-0.062) 

-0.185 
-0.056) 

-0.218 
-0.029) 

-0.024 
(-0.011) 

-0.056 
(-0.006) 

-0.088 
(+0.002) 

-0.121 
(+0.015) 

-0.153 
(+0.036) 

-0.185 
(+0.070) 

-0.218 
(+0.H8) 

-0.024 
(-0.005) 

-0.056 
(+0.021) 

-0.088 
(+0.049) 

-0.121 
(+0.082) 

-0.153 
(+0.120) 

-0.185 
(+0.165) 

-0.218 
(+0.213) 

-0.024 
(0.000) 

-0.056 
(+0.044) 

-0.088 
(+0.089) 

-0.121 
(+0.136) 

-0.153 
(+0.185) 

-0.185 
(+0.233) 

-0.218 
(+0.277) 

-0.024 
(+0.004) 

-O.O56 
(+0.062) 

-0.088 
(+0.121) 

-0.121 
(+0.178) 

-0.153 
(+0.233) 

-0.185 
(+0.282) 

-0.218 
(+0.321) 

II. SOME COMPUTATION FORMULAE 

We adopt an appropriate system of units so that the gravitational 
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constant is equal to 1. 
It was proved long ago that indirect perturbation doesn't contain 

secular terras. Let S, T, and W denote respectively the direct perturbations 
along the disturbed planet's radius direction, transverse direction and 
normal to its orbital plane. Gauss' method can be summed up in calculating 
the following integrals: 

S'=M-f0
SdMlt T'=i^Te

rdM,i W.^^WdM,- (5) 

According to the principle of Gauss method, we made many trial 
computations and arrived at the conclusion that the following method is 
correct and practicable. 

1. General condition 

Let/>,Q,, f{ andP, , Q,, , R, denote the unit vectors along the directions 
of the orbital principal axes of the disturbed planet and the disturbing 
planet respectively. We refer to the heliocentric system corresponding 
to the directions thus mentioned as orbital coordinate system; denote by 
T the vector of radius direction of the disturbed planet; let ai and b( 
be the semi-major axis and semi-minor axis of the disturbing planet 
respectively and e, its eccentricity. Let 

«=r-P, , fi = r-Q„ r = r-R„ 

<f,,= aUI - a;/t'-b\« + a.e, f - ( aj + A,1 )r\ 
</>,= ( « + a,e, y + p+r'- a,1 - bf. 

With the basic parameter \ , the following equation should be 
satisfied: 

A3+"«A.J + ̂ A + £, = 0 . (6) 

After solving the cube equation (6) by usual method, we approach it 
once again in order to be more accurate: 

Of the three values of A two are positive, and one negative. According 
to an order from large to small, we write them as A( , Aa , A). 

To increase the accuracy, the smallest in absolute value should be 
calculated once again according to A,=-<̂ „/A.,Aj o r Aj=- ̂ ./A,A>. 

In the orbital coordinate system of disturbing planet, the unit 
vectors along directions of the principal axes of the transformed coordi
nate system that can be integrated are 

4 =[-CA,-(A,'-AfK« + a,«,J, -CX^af-XOfi, C(of'X0Uf~AOrJt (8) 
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here 

+ Uai -Kin*.'-*!)*?}""* i'l.'ti-

In order to be accurate and reliable, thed corresponding to the 
smallest A. in absolute value should also be computed once again according 
to dt = djxd, or </j = d, xdt 

Let tf = (A,-Aj)/(A,- A}), the corresponding effective integrals are 

(9) G>= bJ<A,-\s)-ln-4')F<4)-E<4)l/i<\< -A,)(A»-A»)], 

where 

-°(^)'-T^-(i*f)'-T*'- ] 
are the first and second standard elliptical integrals respectively. Let 

(10) 

Finally we have 

5*= [<Vr, /*/r, r / H , 

W*= [ * • ? . , A - g i . RKxl 

[ So,To ,wj - - f £ c c«r•«/, G,r-<& c,r«/jj 
S*</, 7";*/. W'J, 
S*'di T*'di wx-ii 
S'is Td5w*'di. 

(11) 

2. Special condition 
When a,/r « I or r/a, « f ( e.g. the mutual condition beteen Mercury and 
Pluto ), the solution of Gauss' method given above will be determined 
with great difficulty and the results thus obtained might be distorted 
seriously. Actually, the two bodies' orbits this time are a great distance 
apart. Compared with the attractive influence of their adjacent planets, 
the relative contribution of perturbations among them are very small. In 
this condition the two heliocentric radius vectors are very different in 
length, it is easy for using developing method to deal with. 

Being equivalent to the first integral (5) in Gauss' method, the 
three components along the orbital coordinate system of disturbing planet 
can be written as 
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r - Oil JL \ dMi r Oh. 3- \"' dHi r 
l* ~ 2ir d«)o A ' >p ~ 2Jt dp), A ' (1 

_ /ru_ d_ fe/M, 
dp), A ' fr~ 2n dr)0 A ' 

(12) 

here ol, /i and 7", as defined before, are the heliocentric coordinates of 
the disturbed planet in the orbital coordinate system of disturbing planet; 
A is the distance between them. 

Expanding 1/4 up to the cube of 7,/r or 7/Y, , we integrate the 
expansion, partially differentiate it, put it in order and finally obtain 
the result as follows: 
When a,/r«l ( the disturbing attraction of an inner planet on a far outer 
planet ), 

£/»>,= -(«+|a.fi, )/ri +[^aU, (l+|d?) 

-{2£a.,e,[7(l+ftV+ (l-*?)/?'] 

fr/">. = -/«/r» + /8[| (of+4*) + £atf+ 1 «.ft«]/r<' 

- /? { 7^,(6 + fi')« + ̂  [ («!̂ +*,>') > f' 3j 

+ ̂ e.VjJ/r7 + llga,e,"P [X&'+K?) 

+ 4*fe,,«x']/r7', 

_ r J 2f oftf, (i + ^ ) « + !£ [ faJoc'+^/s1; 

+ We,V]/r'. 

When r/a,«l ( the disturbing attraction of a far outer planet on an inner 
planet ), 

F«/"». =«/2A? + 3f t (3* ' + /« - 4 r ) / f 8 o , ^ ( l -fi!)J, 
Fjt/m,=p/Zti + 3e.«/8/f4<W(1 -A*)], 

It is easy from (13) or (14) to obtain 

(14) 

(15) 
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in whichS 17* ,W are defined as before, and 

F = t.F~,$,Frl. 

After So, To and w0 have been obtained, there is only an integral 
for dM left in (4): 

here {df/dt ) 0 represents dar/di in which So , To and M0 are used in place 
of the usual S, T and W. 

Let P and f denote the semi-parameter and the true anomaly of the 
disturbed planet respectively. Write 

Si = Sosinf, T, = Tc(p + r )sinf , W, - vi/crsinf, 
S j > = S „ c o s f » Ti = TdP •*• r )cosf , v/2 = W„r cosf , 

Z = T.r. 

The perturbation equation of the elements can be changed as 

(If) = 5 , v ^ " sin(to-t-n) - %Jf cos(«>+n) ^ 

+ [7J cos(io+ja) + Jj sin(to +11) + -£esin(cu 

+n)l//f~ + [w;ecos(uJ+il)cos4>itan-|' 

+ W21 cos(co +J2 )sinuJtan-i ]/J~f. 

(^)o= S(^"cos(to+i2) + StJT s\xii«>+n.) 

-[T,sin(uj +n) -T2 cos(<^ +11) - 7J5COS(M-> 

+J2 )J/V7~ - [l*{esin(^+il)cosu.tanJ- ^ (1?) 

+ Ĥ e sin(*> +11 )sin«tan - | ] / / ? , 

(jF/ = I ̂ f 0 0 3 ^ +-n) + 2sin-| sinftsinw;] 

+ Wt [ sin(n> +12) - 2sin i sinj}cosco] \/J~f~ 

(elf) ~ 1 ^ t" s i n ( u , + - f l ) + 2sin j cos/lsinco] 

+ Wx [ cos(tu+Jl) - 2sin-j cosHcosuJ] j / / T ~ 

In the condition of having given the orbital elements of both dis
turbing and disturbed planets, S„, T„ and W0 are functions of only the 
mean anomaly M of disturbed planet, and so are S; , Ti and W; . On the 
basis of (1?), with suitable number of points well-distributed according 
to M, i t is not difficult for using numerical method of harmonic analysis 
to solve and calculate (16) to obtain [<rj . 

https://doi.org/10.1017/S0252921100096937 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100096937


68 ZHANG JIA-XIANG 

With such method, the results of orbital computations for different 
conditions have been shown in Table 1. And now, we list an example of 
computation again in Table 2, which also contains the corresponding result 
obtained wholly by numerical method, to be a test for the entire method 
and formulae. 

Taking 

disturbing planet 
disturbed planet 
we have 

mass 
0.001 
^^ 

a e 
5.20 0.05 
2.75 0.15 

u> 

229' 18 
57.30 

a 
114'. 59 
57.30 

t 

1.15 
8.59 

Table 2 

Gauss' method 
numerical 
integration 

( for each day ) 

io'r*J io*cta 
-0.054532696 -O.O993I5468 

-O.O545327OI -O.O99315487 

10 'tfJ lo'WJ 
-0.092330152 +0.096448951 

-0.092330147 +0.096448949 

III. COMPUTATIONS, RESULTS AND DISCUSSION 

In order to study the orbital evolution during a long period, by integra
ting (4) further, we have 

*-= £w*=M\rsB
d^ j M d M i d t - (i8) 

It has been mentioned to obtain the integrals for dM, and dM. To 
obtain the integral for dt, we use Adams' method; for the nine major pla
nets of solar system, we solve jointly the equations of order 9x4x3=108 
in all. We regard whether a,/r or T/OIis smaller than 1/10 or not as a 
discriminating basis for taking (13) - (15) or (6) - (H). For harmonic 
analysis, we take 48 points a circle ( as e>0.l5, i.e. the condition of 
Mercury and Pluto ) and 24 points a circle ( as e<0.15, for the other 
planets ). We adopt 250,000 days as the step length of integration for 
dt. The initial epoch is adopted on 1941 1 6.0 E.T. ( 24J0000.5 ). We 
take the plane of total moment of momentum of the hine major planets in 
heliocentric system as a fundamental reference plane ( very close to the 
invariable plane ), dafine the ascending node of ecliptic plane to the 
reference plane as the zero point of longitude and transform the orbital 
elements of planets to this system. Thus making integration backward, we 
calculate the orbital variation of the nine major planets during the past 
2,100,000 years. 

To check it, we have also made a computation during the same period 
by doubling the step length. Both results are consistent. It shows that 
the numbers of points and the step length adopted are permissible and the 
repeated computations are correct. 

The main results of the whole computation can be listed in a simple 
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Table 3 

Mercury-

Venus 

Earth 

Mars 

Jupiter 

Saturn 

Uranus 

Neptune 

Pluto 

Eccentricity 

Max. 

0.2317 
(0.2372) 

0.0706 

(O.O63I) 

0.0677 
(0.0571) 

0.1397 
(0.1330) 

0.0608 

(0.0625) 

0.0843 
(0.0845) 

0.0780 

(0.0905) 

0.0145 
(0.0190) 

(0.2525) 

e 
Min. 

0.1215 
(0.1314) 

0.0000 
(0.0023) 

0.0000 
(0.0024) 

0.0185 
(0.0035) 

0.0255 
(0.0266) 

0.0124 

(0.0103) 

0.0118 
(0.0082) 

0.0056 
(0.0071) 

(0.2172) 

Inclinatic 

Max. 

9°.178 
(9.968) 

3.272 

(3.353) 

3.100 
(2.948) 

5.933 
(6.463) 

0.482 
(0.470) 

1.010 

(0.997) 

1.120 

(1.H9) 

0.788 
(0.768) 

(17.837) 

m i 
Min. 

4°.740 
(2.576) 

* 

(0.097) 

(0.050) 

* 

(0.126) 

0.240 

(0.251) 

0.788 
(0.802) 

0.907 
(0.906) 

0.562 
(0.030) 

(15.288) 
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table ( Table 3 )» in which are given the largest and the smallest values 
of the planetary eccentricities ane inclinations during the 2,100,000 
years. To be compared, the corresponding extreme values used all along') 
which were obtained by J.N.Stockwell in former times by making a tedious 
derivation and solving secular perturbation equations according to (3)i 
are also given here. In Table 3» listed above in each row and column are 
Stockwell's results; those undecided for reason of the smallness of certain 
coefficients in the analysis are marked by asterisk. Because Pluto had not 
yet been discoveredthat time, no results for it are there in the correspon
ding places. The results we obtained are in parenthesis. 

In Fig. 1 and Fig. 2, are given in detail the variations of eccentri
cities and inclinations of all the planetary orbits. It is another impor
tant contribution of this paper. 

From Table 3 and the figures, many things are clear at a glance. We 
need not say any more except a few points as follows: 

1. So-called secular variation is actually composed of many periodic 
variations. Except Mercury, Pluto and Neptune, most of planets present a 
continuous fluctuation with a period of tens of thousand years. 

2. It is worth noticing that the curves of both eccentricity and 
inclination of Jupiter are exactly the same as that of Saturn's respec
tively. Actually both amplitudes are different, but they are drawn in a 
ordinate of equal length. The main characteristic is that the elements 
concerned of both planets have the same period of variation respectively 
but differ from each other exactly in one phase of variation: as one falls, 
another rises. This takes some explanation. Due to the immense mass of 
Jupiter and Saturn, the disturbing effect of the other planets is rela
tively insignificant. In mutual perturbation of only one couple of planets, 
based on the approximate formula (3), it is not difficult to obtain the 
following integral : 

m/ae*+ m,Ja\e} = const, 
mJasin'i + rnt/a\ sin*i, = const. (19) 

that just explains the repeated variation of the two planets' elements 
concerned, as discussed above. 

3. Venus and Earth, for they are very close to each other, also have 
got similar circumstances in the main. 

h. The orbital variation of Pluto differs from that of the most 
planets. Its eccentricity and inclination all present a period of variation 
of about 700,000 years and there is no small fluctuation. As seen from the 
curves, the peak value of eccentricity is getting higher while the valley 
value of inclination is getting lower. 

5. As seen from recent data, the mass of Pluto (1/ 1812000) has been 
taken a little too large. It has little influence on secular variation of 
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Figures 1 and 2: Variations of eccentricities and inclinations 
of the planetary orbits. 

the orbit of Pluto but there may be some influence on the adjacent planet, 
the Neptune. 

All the computations of this paper are made by using the computers 
of our observatory. The author is deeply grateful to comrade Li Guang-yu 
and comrades in the computing laboratory for their constant help. 
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