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A CHARACTERISATION OF NEWTON MAPS
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Abstract

Conditions are given for a Ck map T to be a Newton map, that is, the map associated
with a differentiable real-valued function via Newton's method. For finitely differentiable
maps and functions, these conditions are only necessary, but in the smooth case, that is,
for k = oo, they are also sufficient. The characterisation rests upon the structure of the
fixed point set of T and the value of the derivative 7" there, and it is best possible as is
demonstrated through examples.

2000 Mathematics subject classification: primary 37N30, 39A11, 49M15; secondary
37EO5, 65H05.
Keywords and phrases: Newton's method, Newton map, fixed point set, attracting fixed
point.

1. Introduction

Newton's method (NM) for computing successive approximations of zeros of functions
is one of the most widely used methods in all of applied mathematics; variants and
generalisations also play a prominent role in numerous other disciplines [2, 3,6, 8,9].
Conceptually, NM becomes especially transparent within a dynamical systems context.
The purpose of this brief note is to characterise, in the simplest possible setting, the
local properties of the dynamical systems thus encountered.

Throughout, let / : / - > • K be a differentiable function, defined on some open
interval / c R , and denote by Nf its associated NM transformation, that is,

Nf(x) = x- | | | , for all x e I : f'(x) # 0; (1.1)
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212 A. BergerandT. P. Hill [2]

for Nf to be defined for every x e / , set N/(x) := x whenever f'{x) = 0.
NM for finding roots (zeros) of / , that is, real numbers x* with /(**) = 0, amounts

to picking an initial point x0 € / and iterating Nf, thus generating the sequence

xn = Nf(xn-i) = N"f(x0), for all n e N,

where, here and throughout, for any map T : I -+ R and any n e M, T"(x) =
T(T"-\x)), provided that Tn~\x) e /, and T°(x) = x. Note that Nf(x) = x
precisely if f(x)f'(x) = 0; that is, the only fixed points of Nf occur where either /
or / ' vanish. Thus for f(xn)f'(xn) = 0, and only then, does NM terminate at xn. If
/(*«) = 0, a root has been found, and otherwise (1.1) breaks down due to a horizontal
tangent to the graph of / at xn (see Figure 1).

x*, x* • •. roots of /

?) = 0

FIGURE 1. Visualising NM: The first few iterates Xi,x2,x} are found graphically, both by means of
tangents to the graph of / (broken line) and via the graph of Nf (solid line). Note how the point x\ with
/ ' ( JC | ) = 0 causes Nf to have a discontinuity.

Clearly, if (*„) converges to**, say, and if Nf is continuous at x*, then Nf(x*) = x*,
that is, x* is a fixed point of N/, and /(**) = 0. (The trivial alternative / = const.
is tacitly excluded here, see Lemma 2.4 below.) It is this correspondence between the
roots of / and the fixed points of Nf that suggests that NM be studied as a dynamical
system. Under a mild assumption, each (isolated) fixed point x* is attracting, that
is, lim^oo NJ(x0) = x* for all x0 sufficiently close to x*. (For JC0 further away from
any root, the sequence (xn) may exhibit a considerably more complicated long-term
behaviour [2, 3, 9].) This aspect of NM is put into perspective by the main result
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of the present paper, Theorem 3.2 below, which completely characterises the local
dynamical properties of Nf.

2. Newton maps

The definition of a Newton map given below entails a relationship between the
analytic properties of a function / and the analytic properties of its associated NM
transformation Nf. It is a simple fact, rarely alluded to in studies of NM, that in
general these properties are quite independent.

EXAMPLE 2.1. The function f(x) = \x\3/2 is C1 but not C2, yet it has a C°° NM
transformation, namely Nf(x) = x/3.

EXAMPLE 2.2. It is easily seen that the function

_ \exp(-x-2 + \x\ + cos(x"2)) if x £ 0,
nx)~\o if* = o,

is C°°, and both / and / ' vanish only at x* = 0. Nevertheless

- 1 = liminf Nf(x) < limsup Nf(x) = 1,

hence Nf is not even continuous atx*.

Since Nf may fail to be continuous even if / is C°°, in order to ensure the
applicability of NM, some explicit assumption on the smoothness of Nf has to be
imposed. To formulate such conditions concisely, let N^ = N U {oo} and stipulate
that oo""1 := 0 and oo ± j = oo for all j e N.

In view of (1.1), for Nf to be C' for some / e M^, one might demand that / be at
least C/+1, but Examples 2.1 and 2.2 show that this assumption is neither necessary nor
sufficient. Simply imposing further conditions on Nf also seems problematic as long
as it is not clear whether any such condition is satisfied for a reasonably large class
of functions. Thus it is inevitable to address the following general inverse problem:
Given a Cl map T, does there exist a function / such that T = Nfl

DEFINITION 2.3. Let / c K be an open interval, and / € NTO. A map T e C'(I) is
called a Newton map (associated with / ) , if T = Nf for some differentiable function
/ : / - • R.

Clearly, not every T e C'(I) is a Newton map, even if / = oo, as the trivial
example T(x) = —x shows, for which every / with Nf = T lacks differentiability at
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x* = 0. As will become clear shortly, most maps are not Newton, but a satisfactory
characterisation is not available for finitely differentiable maps. However, in the
smooth case, that is, for / = oo, there is a simple characterisation of Newton maps, as
provided by Theorem 3.2 below.

For any map T, denote by Fix[T] the set of fixed points of T, that is, Fix[Y] :=
[x € / : T(x) = x], and say that Fix[J] is attracting if l i m ^ ^ T"(x0) € Fix|T] for
all x0 sufficiently close to Fix[T].

LEMMA 2.4. Let f : I —>• R be differentiable, and assume that Nf is continuous.
Then Fix[Nf] is either empty or a (possibly one-point) interval; in the latter case,

Nt(x) — x*
limsup s = S for some S e [0, 1] (2.1)

x-+x> X — X*

holds for every x* e Fix.[Nf].

PROOF. It will first be shown that both sets Zo := {x e I : f(x) = 0} and
Z\ := {x 6 / : f'(x) = 0} of zeros of / and / ' , respectively, are (possibly empty or
one-point) subintervals of / . Moreover, if Zi ^ / , that is, if / is not constant, then
Z\ C Zo; in fact, the two sets coincide unless Zo contains exactly one point, in which
case Z\ may be empty. Since Fix|W/] = Zo U Zj the first part of the lemma follows
immediately from this.

If Z, = / , then FixIWy] = / , so let Z, ^ 0 be different from / . Pick a e Zu

suppose, by way of contradiction, f(a) ^ 0 and, without loss of generality, that
b := sup{;t > a : f(y) = f(a) for all y e [a, x]} belongs to / . Clearly, f(b) = f(a)
and f'(b) = 0, hence Nf(b) = b. By the Mean Value Theorem there exists a sequence
bn\b such that 0 < \f'(bn)\ < 1 for all n. But then

liminf \Nf(bn) -b\ > lim \f(bn)\ = \f(b)\ = |/(a)| > 0,
n-+oo n—>oo

clearly contradicting the continuity of Nf. Therefore f(a) = 0, hence Z\ C Zo.
If ai < a2 both belong to Zo then, by the previous argument and the Mean Value
Theorem, Zo contains a point strictly between a\ and a2. Since Zo is closed, it
contains, with any two points, the whole segment joining these points. Thus Zo is an
interval. If Zo is not a singleton then Zo C Zx and therefore Zo = Zx. The latter
equality also holds if Zo is one-point because Zx ^ 0. Finally, if Zx is empty then
clearly Zo cannot contain more than one point.

Assertion (2.1) is trivially true if x* is an interior point of Fix|7V/]. Without loss of
generality therefore assume that x* is, say, a right boundary point of Fix|W/] = Zo.
Choose S > 0 so small that J := ]x*, x* + S] C / and, for 0 < t < S, let
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the function h is continuous on ]0, <5], and hit) ^ 1 for all t > 0. Since x ^ N/(x)
for x € J,

fix) 1 . n—— = — — , for all x 6 J,
fix) x - Nf(x)

which after integrating both sides from x to x* + 8, and using the auxiliary function h
defined in (2.2), can be written as

fix) = f(x* + 8) exp ( - f \ - ) , for all x e J. (2.3)

Assume fix* + 8) > 0 without loss of generality. If hit) > 1 for all t > 0, then (2.3)
implies that fix*) ^ 0, contradicting x* e Zo. Thus hit) < 1 for all t > 0, and in
particular

lim sup hit) = limsup < 1.
r\0 x\x* X — X*

Fix j 6 N. Dividing (2.3) by (* - x*)j = <5J exp (-j fxx, dt/tj yields

/(*) fix* + 3) / / • ' j-l-jh(t)dt\
exp / I, for all x e J. (2.4)

y\J Ihit) t ) '

exp /
(x-x*)J 8J y\Jx-x. I-hit)

To bound lim sup(^0 hit) from below, pick e > 0 and assume that hit) < —s for all
sufficiently small / > 0. In this case, (2.4) with 7 = 1 shows that

ix - x*)~lfix) > fix* + 8)8-{l+e)~\x - x*)-eil+e)~' -+ oo, as x \ x*,

which contradicts the differentiability of / at x*. Since e > 0 was arbitrary,
limsup/V)/i(0 > 0. •

REMARK. (i) Lemma 2.4 should be contrasted with the simple fact that for
every closed set A C K there exists a C°° map T with Til) c / and Fix|T] = A fl /.

(ii) Under the conditions of Lemma 2.4 there is no analogue to (2.1) for the
corresponding lim inf which, as simple examples show, can be any number between,
and including, the trivial bounds —oo and 8.

As pointed out earlier, the applicability of NM rests on the correspondence between
the roots of / and the fixed points of Nf — and the attractiveness of the latter. Mere
continuity of Nf does not guarantee that Fix[W/] is attracting.
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EXAMPLE 2.5. Consider the C1 function

f(x) = I '*|3/2 CXP ( " ̂ ' '"' S i n ' d t ) if x * °'
lo if JC = 0,

for which the associated NM transformation

N/(x) = { „
[0 if x = 0,

is continuous yet obviously not C1. The only fixed point of Nf, and correspondingly
the only root of / a n d / ' , is JC* = 0. Since, for every j e N, the points ±2 / (7r(4y —1))
are 2-periodic, Fix[iV/] = {0} is not attracting.

Thus while Fix[iV/] is topologically simple whenever Nf is continuous, to make
NM practical for approximating zeros, more smoothness is required. Only the case of
Nf being at least C1 will therefore be considered from now on. (For the same reason,
the legitimate case / = 0 has been excluded from Definition 2.3.) Also, the properties
of N'f, albeit not completely determined by the smoothness of / , do depend on the
latter. To describe this dependence, for every k € M^, define the set

A* := {0 ,1 /2 ,2 /3 , . . . , 1 - k~1} U ]l - k~\ l ] , (2.5)

and note that [0, 1] = Ai D A2 D • • • D AM = {1 - j~* : j e Nw}.

LEMMA 2.6. Let f : I - • K be differentiate, and assume that Nf e Clil). Then
Fix[Nf] is either empty or an attracting (possibly one-point) interval. Moreover, if
Fix[Nf] ^0andfe Ck(I) with k e MX then

N'f(Fix[Nf]) = {8} forsome8eAk. (2.6)

PROOF. The assertions are trivially true if / is constant or Fix[A^] = 0. Therefore
assume that / is not constant and Fix[W/] is not empty, hence a subinterval of /, by
Lemma 2.4. If x* is an interior point of Fix[Nf ] then N'f = 1 in a neighbourhood
of x*, and the assertion is again true. Thus assume without loss of generality that x*
is a right boundary point of FixfiV/]. By Lemma 2.4, N'f(x*) e Ai, so x* obviously
is attracting from the right, unless perhaps for N'y(x*) = 1. In the latter case, with
the notation introduced in the proof of Lemma 2.4, the function h defined in (2.2),
supplemented by h(0) := N'f(x*) = 1, is continuous on [0,8] and can be written as
h(t) = 1 — H(t), where H is also continuous on [0, 8], and H(t) ^ 0 unless t = 0.
With this, (2.3) takes the form

(- f
V Jx-x'

f(x) = f(x* + 8) exp ( - f -£-) , for all x e J.
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Since /(**) = 0 and f(x* + 8)j^0, the integral /„* dt/{tH{t)) must diverge to +oo.
As H is continuous and, except possibly at t = 0, does not change sign, H(t) > 0 and
so h{t) < 1 whenever 0 < t < 8. From Nf(x* +1) - x* = th{t) < t and /i(0) = 0 it
follows that x* < Nf(x0) < x0 and therefore N^(x0) \ x* provided that x0 € / • In
other words, x* is attracting from the right.

It remains to verify (2.6) for / e Ck(I). To this end, assume first that k < oo and
/(**) = /'(**) = • • • = / w (**) = 0. In this case, since / is Ck, the left-hand side
in (2.4) with j = k tends to a finite limit as x \x*. Consequently,

/•' k - l - *ft(Q dt
lim / < +oo. (2.7)
e\0je l h ( t ) tj e () t

If h(0) < 1 — k~\ then the integrand in (2.7) would eventually be positive near t = 0,
which clearly is impossible. Therefore h(0) > 1 — &"1. Since h(0) < 1 by the same
argument,

If /: = oo and / 0 ) (**) = 0 for all j e H, then similar reasoning shows that

N'f(x*) € n y e N n - j ~ \ 1] = {1} C Aoo.
Finally assume that /(**) = f'(x*) = ••• = fj)(x*) = 0 yet f(i+i)(x*) ^ 0

for some j with 0 < j < k. The same argument as before with k replaced by j
shows that N'f(x*) e [1 - (; + I)"1, 1]. If h(0) > 1 - (j + I)"1, then (2.4) with y
replaced by y + 1 would imply that l i m ^ . (x — x*)~ij+1)f(x) = 0, which contradicts
/O+O(X*) jL o. Thus N'f(x*) = h(0) = 1 - (J + I)'1 e A^ C A*. D

EXAMPLE 2.7. Lemma 2.6 is best possible in the following sense: For every k e N^,
and S e Ak there exists a C* function / with Nf e C1 having a single fixed point x*
such that N'f(x*) = S. For fc € N and 5 € A*\{1} let y = (1 - 5)"1 and consider the
function

[ W l + (2fc + 4 ) ; c s i n ( ; c ' ) ) if 0 < |JC| < 1,
7 [0 if JC = 0 ,

where, for non-integer y, each argument x has to be replaced by |JC|. Taking / =
] - 1, 1[, it is readily checked that / e Ck{I) and Nf € C\I). Moreover, x* = 0 is
the only fixed point of Nf in I, and N'f(x*) = 1 — y~x = 8. For <5 = 1, an example is
provided by the Ck function

fix) = e~XM + Ie-<*+4>/w s i n ( ^ w ) ,

for which Nf is C1, has x* = 0 as its only fixed point, and NUx*) = 1. Simple
examples in the case k = oo are f(x) = xy for 8 < 1, and / ( * ) = exp(—1*|~') for
8=1, respectively.
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An important special case for which Lemma 2.6 can be strengthened is the case of
a root of finite multiplicity. Recall that x* e / is a root of / e Ck(I) of multiplicity
j e N if f{x) = (x - x*)Jg(x) for all x e / , where g G Ck(I) and g(x*) # 0.

LEMMA 2.8. Let x* be a root of f e Ck(I) of finite multiplicity j . Then, for
some open interval J d I containing x*, Nf € Ck~l(J), and N'f(x*) — 1 — j ~ l ; in
particular, Fi\[Nf] D J = {x*} is attracting.

PROOF. Since f(x) = (x - x*)jg(x) for some g e Ck with g{x*) ^ 0,

Nfix) -*• = <*- XliJ-l^iX-Xy[M = <x - x-Mx), (2.8)
Jg(x) + (x-x*)g'(x)

where h is Ck~l on some open interval J <Z I containing x*, and

Thus, for J chosen sufficiently small, Fix[Af/] (17 = {x*}, and the fixed point x*
clearly is attracting. •

3. Main theorem

Lemma 2.6 contains necessary conditions for a map to be Newton. In general it
is too much to expect that every T € C'(7) whose fixed point set is attracting and
satisfies (2.6) would be a Newton map associated with some / e Ckil).

EXAMPLE 3.1. Let / = ] — 1, 1[ and consider the map

Tix) = I
(0 if x = 0,

which has x* = 0 as its only and attracting fixed point and, with T'{x*) := 0, is
C" on / . Obviously T'(x*) 6 Ak for all k e Nro. Suppose that Nf = T for some
/ e C*(7). Then, with some nonzero constant C,

fix) = Cx(l - logx), for all x : 0 < x < 1.

Clearly, this function cannot be extended to even a dijferentiable function on / . Thus
Nf ^ T for every / e C*(7). The fact that in this example T is barely C1 is not
important, as it is easy to find similar examples with T showing any finite degree of
differentiability: For every / € N (and k e M^) there exist maps T e C(7) such that
r(Fix|T]) = [8] with S e A*, yet Nf£T for all / e C*(/).
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Example 3.1 shows that there is no hope for a converse of Lemma 2.6 to hold, even
if Nf is assumed to be more regular than C1. However, the situation is much clearer
for smooth maps, that is, for / = oo. In this case, the converse of Lemma 2.6 does
actually hold, that is, the stated conditions are also sufficient.

THEOREM 3.2. Letke M^, and suppose T e C°°(I). Then T is a Newton map,
associated with f e Ck(I), if and only ifFix[T] either is empty or an attracting
(possibly one-point) interval, and

T'(Fix[T]) = {8}, for some 8 e A*. (3.1)

Moreover, the function f is uniquely determined up to a multiplicative constant if
eitherS € {0, 1/2, 1/3 , . . . , 1 - k~l}\{\} or the set I\Fix[T] is connected.

PROOF. If T is a Newton map then, by Lemma 2.6, Fix[T] is an attracting interval
(which may be empty or one-point), and (3.1) holds. Thus only the converse statement
and the uniqueness assertion have yet to be proved. To this end, three cases will be
distinguished; throughout let g(x) := x — T(x).

Case 1. Assume that Fix[J] = 0. Then g is nonvanishing and C°° on / , and so is

for all x e / ,

where £ is any point in / . Since g is C°° and does not vanish on / , the solution / of the
first-order ODE / ' / / = \/g, or equivalently, Nf = T, is unique up to multiplication
by a constant.

Case 2. Assume that x* € Fix|T] and T'(x*) = 8 with 8 e At\{l}. Clearly this
implies that Fix[T] = {x*}, and T can be written as

T(x) = x* + 8(x - x*) + (1 - 8)(x - x*fh(x),

with a uniquely determined h e C°°. Note that (x — x*)h(x) ^ 1 for all x e / . Let
y = (1 — 8)~\ pick points x~, x+ € I with x~ < x* < x+, and define / : / -> OS by

fix) :=

c+(x+-x*y<*p(-ffdt/g(t)) if X > X

if x = x*, (3-2)

c-(x* - x-y exp (/;. dt/g(t)) if x < x*;

here c+,c are nonzero real constants. Since x* is the only fixed point of T in / it
follows that / € C°°(/\{x*}), and Nf = T. By using the identity

(x-x*)Y = (x+ -x*)yexpl-y f - ^ 7 ) , forall x > x*, (3.3)
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a short computation yields

I rx* h{t) dt \
(x — x*) y f(x) = c exp I — y I J , for all x > x*.

An analogous computation for x < x* yields

/ fx h(t)dt \
= c exp [y / — — - , for all x < x .

Since the integrand h(t)/(l — (t — x*)h(t)) is C°° on /, both one-sided limits for
\x — x*\~Y f(x), as x approaches x*, are finite and nonzero. If 8 = 1 — _/"' for some
1 < j < k then, for / to be C on /, these two one-sided limits have to be equal or,
equivalently,

c = ( - -JL M ^
must hold. In the latter case, for all x e /,

which shows / € Ck(I). Since the two-parameter family defined in (3.2) contains all
solutions of TVf = 7 on x < x* and x > x* separately, the solution of Nf = T is
unique up to multiplication by a nonzero constant if 8 e {0, 1/2, 1/3, . . . , 1—/C~'}\{1}-

If, on the other hand, 8 > 1 — k~\ and correspondingly y > k, then / e Ck(I) for
any choice of the constants c+, c~, and /(**) = /'(**) = • • • = f(k)(x*) = 0.

Case i. Assume that r'(Fix(T]) = {1}. If Fix[Y] = / , then trivially T is the
Newton map associated with / = 1. Without loss of generality, therefore, assume
that x* is the right boundary point of Fix[T]. In this case

T{x) =x-(x- x*)2h(x),

where h e C°°(/) and h(x) > 0 whenever x > x*, and h(x) = 0 for all x e Fix|Y];
in particular, therefore, h(x*) = 0. As before, pick x+ € / with *+ > ** and,
analogously to (3.2), let

F V Jx g ( " /
[0

Using (3.3), with y replaced by j , and recalling that g(t) = (t—x*)2h(t), it follows that
lim^-Oc - x*)~Jf+(x) = 0 for all j e N. Thus / + g C°°(/) and Nf+(x) = T(x)
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T(x) T(x)

221

s

FIGURE 2. Three C°° maps T which are not Newton maps associated with any Ck function on the interval
/ because Fix[7"] is not attracting (left), Fix|T] is not an interval (middle), and T'{x*) & Aj for any
k 6 Noo, respectively.

whenever* > x* or x e Fix[T]. If Fix [T] has a left boundary point in / as well, then
define / " in a "mirrored" manner and let / = c+f+ + c~ f~ with nonzero constants
c+, c~. Clearly, / e C°°(I) and Nf = T for any choice of c+, c~.

The assertion concerning uniqueness up to multiplication by a constant is now
obvious from the three cases detailed above. •

COROLLARY 3.3. Suppose T e C°°(7). Then T is a Newton map, associated with
f e C°°(I), if and only if¥ix[T] is either empty or an attracting (possibly one-point)
interval, and

r(Fix[j]) = {i - for some j e Nc (3.4)

Moreover, f is uniquely determined up to a multiplicative constant unless j = oo
in (3.4) and the set I\ Fix|T] is not connected.

The next corollary requires T to be not only C°° but even real-analytic. Recall that
a map is real-analytic if it can be represented by its Taylor's series in a neighbourhood
of every point in its domain. Real-analytic Newton maps are especially easy to
characterise. Although analyticity is a strong assumption indeed, the class of real-
analytic functions is of great historical [5, 9] and practical relevance, as it contains,
for example, all rational and trigonometric functions and compositions thereof [1,4].
If / is real-analytic then so is Nf, provided the latter map is continuous [1,2].

COROLLARY 3.4. Let T be real-analytic on I, and T(x) # x. Then T is a Newton
map, associated with a real-analytic function f, if and only ifT has at most one fixed
point in I, and, in case a fixed point x* exists, T'(x*) = 1 — j ~ x for some j e N.
Moreover, f is unique up to multiplication by a constant.
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EXAMPLE3.5. Forf(x) = exp(-x) and /_,(x) = xJ, j e N , clearly Nf(x) = x + 1
and Nfj(x) = (1 — y ~')x, respectively. Thus all cases referred to in Corollary 3.4 can
actually occur.

EXAMPLE 3.6. The much-studied logistic map F^(x) = ixx{\ — x) is a Newton
map associated with a real-analytic function on / = ]0, 1 [ if and only if /x e M, with
M := ] - oo, 1] U {1 + y—' : j € N}. Indeed, F^ = Nu with functions

/ x \ ( 1"M r '

and fi(x) = exp(—x"1)- Note that while /M is real-analytic on / for all [i e M, it
is only in the trivial case \x = 0 that /^ could be extended to a real-analytic function
such that Nfii (x) = F^(x) for all x e K. Consequently, FM is not a Newton map on E.
unless ix — 0.

EXAMPLE 3.7. It must be emphasised that Theorem 3.2 and Corollaries 3.3 and 3.4
do not force the set Fix[J] of a C°° or real-analytic Newton map T to attract all points
in / . In fact, the map T may at the same time exhibit some stable dynamical feature
other than a fixed point. For a simple concrete example consider the (real-analytic)
function

fix) = x
1 + X1

for which the associated Newton map

4A;3

has the stable (in fact, super-attracting) 2-periodic orbit {-s/3, —%/3~}.

REMARK. It is well known that if / is a rational function (that is, a quotient of
two polynomials) then Nf can be extended uniquely to (and studied appropriately
as) a smooth function Nf on K, the one-point compactification of K. Though finite,
Fix[W/] generally contains more than one point [2, 3]. Corollary 3.4, however, clearly
still applies to Fix[A^] n / for every interval / on which / is real-analytic.

The above results about Newton maps have an immediate bearing on the distribution
of the floating-point fractions of the iterates xn = N"AXQ), that is, on the numerical data
generated by NM. (See [7] for an account on the relevance of fraction parts distributions
for practical computations.) In particular, this distribution depends significantly on
the analytic properties of Nf discussed in this note; the interested reader is referred
to [4] for details.
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