
5
Strong interactions at high energies

5.1 The rôle of cross-channels

In this lecture we return to the study of the four-point amplitude A(s, t).
As we already know, it describes three different crossing reactions in
the corresponding channels on the Mandelstam plane s = (pa + pb)2,
t = (pa − pc)2, u = (pa − pd)2:

t = 0

ρ

ρ
tu

us

ρ
st

u = 0 s = 0 u = 4μ2 s = 4μ2 

t = 4μ2 

a + d → c +  b¯ ¯ a  d → c ++ b

a + c → b + d¯ ¯
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112 Strong interactions at high energies

In Lecture 3 we examined analytic properties of the amplitude at small
energies when, in fact, a small number of partial waves contributed. We
discussed that the behaviour of A(s, t) was governed by singularities of
these partial waves. We have shown that unitarity led to the appearance
of poles on unphysical sheets of the scattering amplitude – resonances –
as well as to threshold branch cuts related to these poles. We have also
discussed the physical origin of these singularities. Moreover, that was all
we could possibly say about the strong interaction since perturbation the-
ory is not applicable in principle (in terms of hadrons, g2/4π ∼ 14) and
the Lagrangian is not known. Even if we knew the underlying Lagrangian,
that would not have helped us in calculating amplitudes we were inter-
ested in.∗

The method we have employed in Lecture 3 fails when we increase the
interaction energy because the unitarity condition becomes prohibitively
complicated due to the opening of new multi-particle production channels.
In spite of this, at very high energies s, when the number of inelastic
channels becomes large, an interesting new simplification arises in certain
regions on the Mandelstam plane.

Take finite |t| and large s � m2 and consider near-to-forward two-
particle scattering at small angles Θs ∼

√
−t/s � 1. For |t| ∼ m2 it is

the nearest singularities in the t-channel that will determine the behaviour
of the amplitude, while u-channel singularities are irrelevant as they lie
far away: |u| � s � m2. Analogously, we can expect a similar for near-to-
backward scattering: |u| ∼ m2 fixed, s → ∞, in which case a finite number
of the nearest u-channel singularities will be relevant.

It is clear that the idea of extracting the asymptotic behaviour by means
of the analytic continuation in the scattering angle variable (either t or
u) is bound to be successful. At very large s when the number of the
opened inelastic channels is immense, adding one or two would by no
means affect the elastic amplitude. Therefore it seems natural to expect
that in the s → ∞ limit the t- (or u-) channel unitarity conditions will
play a major rôle. This, together with the s-channel unitarity, will allow
us to draw a possible picture of strong interactions at high energies.

The key instrument in the realization of this programme will be the
analytic continuation of the t-channel unitarity condition valid at finite
positive t ∼ m2 to unphysical scattering angles cos Θt ∼ s/t → ∞ which
region is relatively close to that of the physical s-channel scattering,
namely, −t ∼ m2.

Recall that it is the information coming from cross-channels that
makes a major difference between the relativistic theory and the usual

∗ Now that we know the Lagrangian – that of QCD – this does not help us much in calculating
hadron interaction amplitudes either. (ed.)
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5.2 Qualitative picture of elastic scattering 113

non-relativistic quantum mechanics. Still, to better understand the phys-
ical peculiarities of strong interactions it is often advisable to turn to
non-relativistic theory. Therefore, prior to addressing the specific conse-
quences of the relativistic nature of the theory we shall start our discourse
by looking, at a qualitative level, at the main characteristics of an inter-
action using familiar quantum-mechanical notions. Namely, we will look
at the possible behaviour of the interaction strength and the interaction
radius in the asymptotic high-energy regime.

5.2 Qualitative picture of elastic scattering

Consider a four-point amplitude at s → ∞. For the sake of simplicity we
will restrict ourselves to the elastic scattering of spinless particles with
equal masses μ. From general considerations it is clear that the scattering
is concentrated mainly at small angles, in the near-to-forward direction.

At high energy many inelastic channels contribute to the unitarity
condition,

ImsA(s, t) ≡ A1(s, t) =
1
2

∑
n

A(s + iε) A(s − iε)

(5.1)

so that at t = 0 (p1 = p′1, p2 = p′2) the imaginary part of the forward
amplitude is given by a sum of a large number of positive contributions.
According to the optical theorem,

ImA(s, 0) � sσtot, s � μ2. (5.2)

Therefore, if σtot is constant (or changing slowly) at high energies, which
is what experiment tells us, then the forward amplitude increases like s.
Let us see what such a behaviour corresponds to in the language of partial
waves:

ImA(s, t) =
∞∑
�=0

(2� + 1) Im f�(s)P�(z), (5.3a)

z ≡ cos Θs = 1 +
2 t

s− 4μ2
. (5.3b)

At t = 0 we have P�(1) = 1. Since from the unitarity condition (3.7) it
follows that

0 ≤ Im f�(s) ≤ 16π, (5.4)
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114 Strong interactions at high energies

see (3.9), each term in (5.3a) is positive and bounded from above. This
means that the growth of the amplitude A(s, 0) ∝ s that we are looking
for may come only from the increase of the number of terms �0(s) that
contribute significantly to the series, � < �0(s).

From quantum mechanics we know that high-energy scattering off a
finite-range potential with radius ρ0 is of quasi-classical nature. Therefore
we can introduce an impact parameter ρ by identifying

� = kcρ, (5.5)

with kc the cms momentum (3.8),

kc =

√
s− 4μ2

2
� 1

2
√
s.

Now, to define an interaction radius we equate

�0(s) = kcρ0. (5.6a)

Since our interaction is strong it is natural to expect the partial waves
with � < �0 (that is ρ < ρ0) to be saturated,

Im f�(s) = O(1) for � < �0, (5.6b)

and to be negligibly small for � > �0 when, in the classical language, the
projectile misses the target, ρ > ρ0. Now we estimate the size of the imag-
inary part of the forward elastic amplitude by simply truncating the sum
at � ∼ �0 � 1:

ImA(s, 0) ∼ �20 ∼ s · ρ2
0 . (5.7)

Invoking (5.2) gives then a natural formula for the cross section,

σtot ∼ ρ2
0. (5.8)

In the first lecture we discussed the strong interaction characterized by a
finite radius which is determined by hadron masses. In a relativistic theory
(in marked contrast with non-relativistic quantum mechanics) the ‘poten-
tial’ depends in general on particle velocities. Therefore the interaction
radius may vary with energy,

ρ0 = ρ0(s). (5.9)

Strictly speaking, the notion of the interaction potential is inapplicable
in relativistic theory. Therefore (5.6) in fact serves as a definition of the
interaction radius through the number of saturated partial waves.
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5.2 Qualitative picture of elastic scattering 115

5.2.1 Forward scattering

In the case of Θs �= 0 (t < 0) terms on the r.h.s. of (5.1) enter with different
phases and the resulting amplitude decreases fast with |t| increasing: the
elastic cross section has a sharp peak in the forward direction.

How could we estimate the range of angles the scattering amplitude is
concentrated in? Since essential partial waves have � ∼ �0 � 1, character-
istic scattering angles can be estimated as

Θ < Θ0 ∼ 1
�0

∼ 1
kcρ0

� 1. (5.10)

The cms momentum transfer at high energies is

|q| =
∣∣p′

1 − p1

∣∣ ∼ kcΘ0 ∼ 1
ρ0

. (5.11)

This means that in terms of Mandelstam variables the amplitude is con-
centrated in the region of finite momentum transfers, |t| ∼ 1/ρ2

0.

5.2.2 Backward peak

The qualitative expectation is that the scattering at finite angles is sup-
pressed in the s → ∞ limit holds provided the factor Im f� in the expan-
sion (5.3a) is a smooth function of �. That was the case in non-relativistic
quantum mechanics (where � enters analytically the centrifugal term of
the Hamiltonian). In the relativistic theory, on the contrary, Im f� oscil-
lates with � and this leads to a new, interesting phenomenon – the appear-
ance of the second narrow peak in the backward direction (π − Θ � 1).

To single out this oscillating behaviour of Im f� we need to employ
analytic properties of A(s, t). To this end it is convenient to express the
partial wave f�(s) defined by (3.10) in terms of the function

Q�(z) ≡ 1
2

∫ 1

−1

dz′ P�(z′)
z − z′

, (5.12)

representing the second solution of the Legendre equation, regular at
infinity:

Q�(z)
|z|→∞∼ z−�−1.

From (5.12) it immediately follows that Q�(z) has a logarithmic branch
cut between −1 to +1. Discontinuity over the cut returns the P� function:

Q�(z + ıε) −Q�(z − ıε) = −iπP�(z), −1 < z < 1. (5.13)

https://doi.org/10.1017/9781009290227.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.006


116 Strong interactions at high energies

′
z

z1−z2

Γ

−1 1

Γ′Γ

Fig. 5.1 Change of the integration contour Γ → Γ′ in the representation (5.14)
for the partial-wave amplitude.

Using this fact we can replace integration over real z by a contour integral∫ 1

−1
dz P�(z) · · · =

1
πi

∫
Γ
dz Q�(z) · · · ,

where Γ runs clock-wise embracing the interval [−1, 1] as displayed in
Fig. 5.1. This allows us to represent the partial-wave amplitude as

f�(s) =
∫ 1

−1
dz P�(z)A(s, z) =

1
2πi

∫
Γ
dz Q�(z)A(s, z). (5.14)

We took the liberty of replacing the second argument of the amplitude
t by the cosine of the scattering angle (5.3b); the two variables, when
s is kept fixed, are simply proportional. Now we look at the analytic
features of the amplitude. As a functions of t it has two unitarity cuts
corresponding to the opening of t- and u-channel thresholds, t ≥ tmin and
u ≥ umin, respectively. In the z plane they translate into the cuts

z1 < z < +∞; z1 = 1 +
2 · tmin

s− 4μ2
; (5.15a)

−∞ < z < −z2; z2 = 1 +
2 · umin

s− 4μ2
. (5.15b)

(In our toy model where all particles are identical, tmin = umin = (2μ)2.)
Since Q� falls on the large circle, |z| → ∞, we can deform and replace Γ
by another contour Γ′ which runs around the left and right cuts as shown
in Fig. 5.1. This gives us

f�(s) =
1
π

∫ ∞

z1

dz Q�(z)A3(s, z) +
1
π

∫ −∞

−z2

dz Q�(z)A2(s, z), (5.16)

where A3 = ImtA and A2 = ImuA denote discontinuities (‘imaginary
parts’) of the amplitude A(s, t) in the t and u channels. Using the relation
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5.2 Qualitative picture of elastic scattering 117

s
u

t

u =4μ 2

t =4μ2

s 
=4

μ
2

ρsu

ρst

Fig. 5.2 Integration over double spectral functions ρst and ρsu determining the
imaginary part of the partial wave, Im f�(s), in (5.20).

(valid for integer �)

Q�(−z) = (−1)�+1Q�(z), (5.17)

we may rewrite (5.16) in the following form (zu = −z):

f�(s) =
1
π

∫ ∞

z1

dz Q�(z)A3(s, z) +
(−1)�

π

∫ ∞

z2

dzuQ�(zu)A2(s,−zu).

(5.18)

Evaluating the imaginary part of the partial wave, we obtain

Im f� = Im f right
� + (−1)� Im f left

� , (5.19)

where

Im f right
� (s) =

1
π

∫ ∞

z1

dz Q�(z)ρst(s, t(z)), (5.20a)

Im f left
� (s) =

1
π

∫
z2

dz Q�(z)ρsu(s, u(−z)). (5.20b)

It is worth noticing that the imaginary part of the partial wave is deter-
mined by discontinuities across the Landau singularities – spectral func-
tions ρst and ρsu as shown in Fig. 5.2. Contributions of the right and
left cuts in the t-plane (5.20) are smooth functions of �. The oscillating
factor (−1)� is explicitly written in (5.19) so now we are ready to return
to the partial-wave expansion (5.3a) and scan through all angles to see
what happens to the amplitude.
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118 Strong interactions at high energies

θ � 0. In the forward direction we have z � 1 and P�(1) = 1.

A1(s, z=1) =
∑
�

(2� + 1) Im f right
� +

∑
�

(−1)� · (2� + 1) Im f left
� .

The contribution of the left cut is small (of the order of a single
partial wave) and the large contribution ∝ s is coming from the
right cut.

θ � π
2 . For large angles z � 0 so that P2n+1(0) � 0 and, for large n,

P2n(0) � 2(−1)n√
πn

. We obtain

A1(s, z=0) �
∑
�=2n

(−1)n · 2(4n + 1)√
πn

(
Im f right

2n + Im f left
2n

)
.

The series is oscillating, resulting in A1 = O(1) � s.

θ � π. For backward scattering, z � −1, P�(−1) = (−1)�. Here

A1(s, z=−1)=
∑
�

(−1)� · (2� + 1) Im f right
� +

∑
�

(2� + 1) Im f left
�

and, contrary to NQM, we have again a same-sign series
which originates this time from the left cut of the relativistic
amplitude.

The qualitative behaviour of the amplitude as a function of the scattering
angle is shown in Fig. 5.3.

If particles are identical then ‘forward’ and ‘backward’ directions are
indistinguishable so that the scattering amplitude becomes obviously sym-
metric, A(Θ) = A(π−Θ), both in relativistic and non-relativistic theories.
However, if participating particles are different, then from the point of
view of NQM this situation looks totally bizarre.

Why would a 180◦ scattering – the full reflection of particle momenta –
be profitable? In NQM, to encourage backward scattering one would have

1 cos q

ds
d cos q

−1

Fig. 5.3 Angular dependence of relativistic two particle scattering.
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5.3 Analyticity of elastic amplitude and interaction radius 119

to organize a head-on collision whose probability is falling with energy as

σ ∝ λ2 ∼ 1/s (5.21)

(with λ the cms wavelength λ ∼ 1/kc). The answer lies in the following
consideration.

In a relativistic theory the ‘potential’ may carry quantum numbers.
Therefore there is another possibility as an alternative to the large mo-
mentum transfer: rather then exchanging momenta, colliding particles
may swap their identities instead. This means that by nature the back-
ward scattering phenomenon is not different from diffractive scattering
which is characterized by finite momentum transfer, but accompanied by
an exchange of quantum numbers!

Have we ever met such a phenomenon before? In fact we have. Recall
the Compton scattering in QED. In the leading order of perturbation
theory we had two contributing Feynman diagrams,

s

t

s = +

u

.

In the s → ∞ limit the first amplitude becomes negligible. It corresponds
to interaction in a single partial wave – a head-on collision – so that the
qualitative estimate (5.21) applies. At the same time the second amplitude
describes a peripheral interaction with finite momentum transfer |u| ∼ m2

e

so that high-energy electron–photon scattering occurs mostly backwards
(s � |t| � |u|).

5.3 Analyticity of elastic amplitude and interaction radius

Let us study the �-dependence of partial waves f�(s). We know that in
the physical region of the s-channel A(s, t) has no singularities. Therefore
the partial-wave expansion series

A(s, t) =
∞∑
�=0

(2� + 1)f�(s)P�(z) (5.22)

must be absolutely converging, together with all its derivatives. To ensure
such a regularity, f� must decrease fast with � in the � → ∞ limit.
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120 Strong interactions at high energies

5.3.1 f� at large �

At the first sight a power falloff would seem to be sufficient since at large �

P�(z) � J0(�Θ) �
√

2
π�

cos
(
�Θ − π

4

)
;

� � 1, Θ � 1, �Θ = O(1) .

(5.23)

We know, however, that the series must stay convergent in the unphys-
ical region of positive t as well, up to t = t0 where the first t-channel
singularity is positioned (for example, t0 = 4m2

π for ππ → ππ scattering).
According to (5.3b), t > 0 corresponds to z > 1 where the scattering angle
is imaginary,

z = cos Θ = 1 +
2 t

s− 4m2
π

= coshχ, Θ = iχ, (5.24)

and the Legendre polynomials start to grow exponentially with �:

P�(z) ∼ ei�Θ + e−i�Θ ∼ e� χ(t,s). (5.25)

Up to t ≤ t0, this increase has to be damped by the fall-off of partial
waves. Consequently,

f�(s)
��1= C(�, s) e−�χ0 , (5.26a)

where the factor C is non-exponential in � and

coshχ0 ≡ 1 +
2 · t0

s− 4m2
π

. (5.26b)

In the s → ∞ limit we have

coshχ0 � 1 +
χ2

0

2
→ 1, χ0 �

√
4t0
s

�
√
t0
kc

. (5.27)

In terms of the impact parameter (5.5), ρ = �/kc, the large-� asymptotic
regime (5.26) takes the form

f�(s) =⇒ f(ρ, s) = C(ρ, s) e−ρ/r0 , r0 ≡ 1/
√
t0. (5.28)

In particular, for ππ scattering (t0 = 4m2
π) the condition (5.27) gives

χ0 � 2mπ

kc
and r0 =

1
2mπ

.

We conclude that partial waves with large � that correspond to impact
parameters ρ exceeding the interaction radius, ρ � ρ0, fall exponentially
as exp(−ρ/r0).

It is important to stress that the nature of the two parameters ρ0 and
r0 is essentially different: the radius ρ0 we have introduced in (5.6a) as a
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5.3 Analyticity of elastic amplitude and interaction radius 121

|f |

exp −
kcr0

kc ρ0

Fig. 5.4 Qualitative picture of the magnitude of partial waves.

measure of the of the value of characteristic angular momentum �0 below
which partial waves are saturated, while r0 determines the rate of the
falloff of small partial waves with � � �0, see Fig. 5.4.

5.3.2 Black disc

What can be said about partial-wave amplitudes below �0? It is impossible
to answer this question without knowing the details of strong interaction
dynamics. Nevertheless, it is straightforward to give an estimate from
above for elastic, inelastic and total cross sections at high energies.

In Lecture 3 we discussed elastic unitarity for partial waves. Above the
two-particle threshold the elastic unitarity condition (3.7) generalizes as

Im f� = τ |f�|2 + Δ�, (5.29)

where Δ� ≥ 0 accounts for contribution of inelastic scattering channels:
2 → 3, 2 → 4, etc. The general solution for partial waves reads

f�(s) =
1

2iτ(s)

[
η�(s) e2iδ�(s) − 1

]
, (5.30a)

where η� is the so-called elasticity parameter,

η2
� = 1 − 4τΔ�, 0 ≤ η� ≤ 1. (5.30b)

Elastic unitarity corresponds to

η� = 1, Δ� ≡ 0. (5.31a)

On the contrary, at very high energies when inelastic channels dominate
the unitarity condition it is natural to expect

η� � 0, Δ� � Δmax � 4π. (5.31b)

https://doi.org/10.1017/9781009290227.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.006


122 Strong interactions at high energies

Invoking the optical theorem (5.2) we have

σtot =
1
s

∑
�

(2� + 1) Im f� (5.32)

and, using (5.30a), for the total cross section obtain

σtot �
1

2τs

�0∑
�

(2� + 1) [ 1 − η� cos(2δ�) ] . (5.33a)

Then, integrating over angles the elastic amplitude squared, it is straight-
forward to derive

σel �
1

4τs

�0∑
�

(2� + 1)
[
1 − 2η� cos(2δ�) + η2

�

]
. (5.33b)

Finally, from σtot = σel + σin we get the total inelastic cross section,

σin � 1
4τs

�0∑
�

(2� + 1)
[
1 − η2

�

]
. (5.33c)

The maximal value of Im f� in (5.32) can be estimated as

[Im f�(s)]
max =

1
2τ(s)

� 8π , (5.34)

where we dropped the exponential term in (5.30a): it is unrealistic to
expect that all scattering phases with large � are artificially adjusted
so that this oscillating contribution will matter. This gives the upper
boundary

σtot ≤ [σtot]
max � 8π

s
· �20 � 2πρ2

0 . (5.35)

If we accept the natural maximal inelasticity hypothesis (5.31b), then the
relations (5.33) give

σel = σin = 1
2σtot = πρ2

0 . (5.36)

This corresponds to the well-known quantum-mechanical picture of scat-
tering off a black disc of radius ρ0: half of σtot is inelastic and corresponds
to the geometrical cross section of a fully absorbing disc (impact param-
eters ρ ≤ ρ0) while the other half is due to the elastic diffraction of the
plane wave (at ρ > ρ0) off the sharp edge of the disc.

Let us make a few additional remarks.

(1) The exponential falloff of partial waves at � � 1 is related to the
absence of massless particles in the theory.
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5.3 Analyticity of elastic amplitude and interaction radius 123

(2) The concrete value of r0 is different for different reactions. For ππ
scattering we had r0 = 1/2mπ. For nucleon scattering we would
have t0 = m2

π and r0 = 1/mπ instead since there is a pion pole in
the amplitude of the t-channel reaction NN̄ → π → NN̄ .

5.3.3 Behaviour of Im f� at large �

With the help of (5.26) and the unitarity relation (3.7) we can verify
that, as we have seen in Lecture 2, the behaviour of ImA(s, t) is governed
not by physical t-channel poles and/or thresholds but by the Landau–
Mandelstam singularities.

Indeed, in the finite energy region of ππ scattering 4m2
π < s < 16m2

π

where inelastic channels are ‘closed’ (Δ� ≡ 0, η� ≡ 1),

Im f� = τ |f�|2 ∼ e−2·�χ0 , � � 1. (5.37)

As a result, the series (5.3) for ImA(s, t) will stay convergent above t0 =
4m2

π. The critical value of t at which ImA will develop a singularity will
be determined not by χ(t, s) = χ0 as for the amplitude A itself but by the
condition χ(t, s) = 2 · χ0:

coshχ = 2 cosh2 χ0 − 1; 1 +
2t

s− 4m2
π

= 2
(

1 +
2 · 4m2

π

s− 4m2
π

)2

− 1. (5.38)

From (5.38) follows the relation

(s− 4m2
π)(t− 16m2

π) = 64m2
π. (5.39)

This is nothing but the Landau–Mandelstam equation describing the po-
sition of the singularity – one of the Karplus curves shown in Fig. 5.5 that
corresponds to the double discontinuity ρst of the graph (5.40). Let me
remind you that the ‘box’ graph that we
studied in Lecture 2 (with two instead of
four lines in the intermediate t-channel
state) is absent for true pions since
a pion cannot transfer into a ππ sys-
tem due to G-parity conservation. (We

t

s (5.40)

excluded another graph similar to (5.40) but with two vertical and four
horizontal lines by having chosen s < 16m2

π.)
Thus the behaviour of the imaginary part of the scattering amplitude,

ImA, is determined by the first Landau–Mandelstam singularity ti(s)
given by (5.39) rather than by t0 as the amplitude A itself. At high energies
the difference between ti(s) and t0 is, however, washed away. Indeed,
already for s > (4mπ)2 a two-π state in the t channel becomes allowed and
the corresponding Karplus curve on Fig. 5.5 appears. Since all Karplus
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t
u
s

t =(4mπ)2

t =(2mπ)2
s 

= (
2m

π
)2

s 
=(

4m
π
)2

ρst

Fig. 5.5 Karplus curves for two- and four-pion states in s- and t-channel. The
curve marked ρst corresponds to (5.39). The Landau–Mandelstam singularity
shown by dashed line is absent for ππ scattering.

curves corresponding to two-pion exchange in the t-channel (and any num-
ber of particles in the s-channel) tend to the same value ti(s) → (2mπ)2 =
t0 in the high-energy limit, we get

Im f� ∼ f� ∼ e−�χ0 � e−2mπρ, s → ∞.

5.4 Impact parameter representation

We will find it convenient to use the impact parameter representation
in what follows. So let us look into the physical meaning of partial-wave
amplitudes f�(s) = f(ρ, s) in the ρ-space.

For fixed t = −q2 and large s-scattering occurs at small angles Θ �√
−t/s � 1. The momentum transfer q is then orthogonal to the cms

momentum of incident pions, q ⊥ kc, q � kcΘ. For small angles the fol-
lowing approximation applies:

P�(cos Θ) � J0(�Θ).

Since in the partial-wave expansion large � are essential, we can replace
the sum in (5.22) by the integral,

A(s, q2) �
∫

2�d�f�(s)P�(cos Θ) � k2
c

∫
2ρdρf(ρ, s)J0(qρ), (5.41)
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5.5 Constant interaction radius hypothesis 125

and make use of the integral representation

J0(qρ) =
∫

dφ

2π
ei(q·ρ), (q · ρ) ≡ qρ · cosφ (5.42)

to arrive at a well-known quantum-mechanical formula

A(s, q2) =
k2
c

π

∫
d2ρ ei(q·ρ)f(ρ, s). (5.43)

The amplitude (5.43) in NQM describes the following scattering process.
Consider a plane wave propagating along the z-axis and hitting the target
at z = 0. Right behind the target the wave function will be modified by
the factor λ(ρ) describing the absorption of the incident wave at a given
impact parameter,

ψout(z,ρ)|z=+0 = ψin(z,ρ) · λ(ρ), ψin(z,ρ) = eikz. (5.44)

For example, for a totally absorbing sharp-edge target (a ‘black disc’ of
radius R0)

λ(ρ) = ϑ(ρ−R0).

On the other hand, the plane wave expansion of the final field that we
observe at large distance from the target is given by

ψout = ψin ·
∫

d2q ei(q·ρ)a(q), (5.45)

where a(q) is the scattering amplitude. Comparing (5.45) at z = +0 with
(5.44) and inverting the Fourier representation (5.43) we conclude that
f(ρ, s) has the meaning of the impact parameter distribution of the field
right behind the target.

5.5 Constant interaction radius hypothesis

We found above that the partial-wave amplitude at large ρ has a structure

f(ρ, s) = C(ρ, s) e−2mπρ (5.46)

with C a non-exponential function of ρ. This factor may depend on its
two variables in a rather complicated way so that the interaction radius
may turn out to be energy-dependent, ρ0 = ρ0(s). This is what happens in
reality. However, before discussing seriously this phenomenon, it is natural
to look at the consequences of the hypothesis of a constant radius:

ρ0(s) = const.
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5.5.1 Consequences of the hypothesis ρ0(s) = const

It is easy to convince oneself that this hypothesis actually means that the
C-factor in (5.46) factorizes:

C(ρ, s) = c(ρμ) · h(s/μ2). (5.47)

Indeed, if the functional dependence on ρ and s did not separate, the
impact parameter distribution of the field would be changing with energy.

What are the main consequences of the hypothesis (5.47)? They are

Ael(s, t) = ish(s) · F (t), (5.48a)

σtot =
ImA(s, 0)

s
= h(s)F (0), (5.48b)

dσel

dt
=

1
16π

∣∣∣∣Ael(s, t)
s

∣∣∣∣2 =
σ2

tot

16π
·
∣∣∣∣F (t)
F (0)

∣∣∣∣2 . (5.48c)

From (5.48c) we conclude that the constant radius implies an energy-
independent shape of the differential elastic scattering cross section:

1
σ2

tot(s)
dσel(s, t)

dt
= const(s).

A constant radius is also consistent with the Pomeranchuk theorem
(Pomeranchuk, 1958).

5.5.2 Pomeranchuk theorem

Consider the scattering of a particle a and its antiparticle ā on the same target
b. If the total cross sections are asympotically constant,

lim
s→∞

σab
tot(s) =σa and lim

s→∞
σāb

tot(s) =σā,

then

σa = σā.

This is a non-trivial statement as it has nothing to do with charge conjuga-
tion invariance: σab

tot = σāb̄
tot. The isotopic structure of ab- and āb-scattering

amplitudes may be absolutely different as, for example, is the case of pp
and pp̄ interactions. Experimentally, cross sections of particle and antipar-
ticle interactions with a given target hadron differ remarkably at moder-
ate energies but become practically equal already at energies s above few
hundred GeV2 (see below, Fig. 14.3 on page 378).

Let us sketch the idea of the proof. Discontinuities of the amplitude
on the left and right cuts cannot be different if we want A(s, t) to be
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5.5 Constant interaction radius hypothesis 127

“regular” at infinity. Indeed, let

ImAab(s, 0) s→∞= σas,

ImAāb(u, 0) u→∞= σāu.
(5.49)

If the cross sections are different, σa �= σā, then the real parts ReA cor-
responding to discontinuities (5.49),

Aright(s) �
σas

π
ln(−s), Aleft(s) �

σāu

π
ln(−u), (5.50)

will not compensate one another:

Aab(s)
s→∞= Aright(s) + Aleft(−s) = iσas +

σa − σā
π

· s ln s,

Aāb(u) u→∞= Aright(−u) + Aleft(u) = iσāu +
σa − σā

π
· u lnu.

(5.51)

The amplitudes (5.51) contradict the initial assumption of the theorem
(namely, σtot = const.) as they produce

σel(s) ∝ (σa − σā)2 ln2 |s|
|s|→∞
� σtot = const.

Does the Pomeranchuk theorem teach us anything about f(ρ, s) and,
specifically, about the interaction radius? In other words, to what extent
does the asymptotic equality σa = σā depend on the hypothesis of the
constant radius ρ0?

Let us see how the logarithmic growth of ReA, which is necessary for
the theorem to be broken, could appear in principle:

ReA(s, 0) =
s

4π

∫
d2ρ Re f(ρ, s). (5.52)

From the unitarity condition (5.29) (τ � 1/16π for s � μ2) we have

Im f =
1

16π
|f |2 + Δ >

1
16π

|Re f |2 ,

which gives

Re f(ρ, s) <
√

16π Im f(ρ, s). (5.53)

On the other hand, to violate the Pomeranchuk theorem we have to have

Re f(ρ, s) ∼ Im f(ρ, s) · ln s (5.54)

in the essential integration region ρ <∼ ρ0(s). Combining (5.53) and (5.54)
produces

Im f <
const
ln2 s

. (5.55)

https://doi.org/10.1017/9781009290227.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.006


128 Strong interactions at high energies

Wishing to preserve the constancy of the total cross section,

σtot =
1
4π

∫
d2ρ Im f(ρ, s) = ρ2

0 ·
〈Im f〉

4
, (5.56)

and taking into consideration the inequality (5.55), we arrive at the ne-
cessity to abandon the constant radius, ρ0(s) >∼ c ln s. We shall learn soon
that the radius cannot grow faster than ln s. This means that only in
the extreme case of the fastest possible growth of the interaction radius,
ρ0(s) ∝ ln s, the Pomeranchuk theorem may fail.

5.6 Possibility of a growing interaction radius

We discussed the case when the interaction radius, and thus the shape of
the elastic peak, does not change with energy, the amplitude factorizes
and the Pomeranchuk theorem holds. In the next lecture we shall for-
mally demonstrate that the ρ0 = const regime is actually forbidden as it
contradicts t-channel unitarity.

Let us ask ourselves, whether we can force the radius to grow with
energy? What sort of physical processes might be responsible for that, at
a qualitative level? Strangely enough, such a possibility does exist.

Recall that in perturbative language we have obtained the constant
radius ρ0 ∼ 1/2μ by considering the nearest singularity in t of the ampli-
tude; two-meson t-channel exchange gave us

s

t

=⇒ A(s, ρ) ∝ e−2μρ. (5.57)

5.6.1 Long-living fluctuations and the growing radius

Let us study the space–time structure of the simplest perturbative dia-
gram corresponding to the processes (5.57):

1

1 y1

x2 y2

a a

bb

2

x

x0
1 < x0

2 < y0
2 < y0

1. (5.58)

The process (5.58) can be ‘spelled out’ in time as follows. First, the pro-
jectile particle a experienced a virtual decay at the point x1; one of its
offspring at x2 hit and excited the target b which, in its turn, decayed in
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y2, . . . . How far can a virtual particle migrate in the transverse plane?
From the uncertainty relation, during the lifetime of the fluctuation,

Δt ∼ ΔE−1 ∼ μ−1, (5.59a)

a virtual particle k1 may shift in the transverse plane at a distance

|x2⊥ − x1⊥| ∼ μ−1. (5.59b)

Could we allow it to move farther than that so as to make the interaction
radius growing? At the first sight this seems to be an easy thing to do:
by minimizing the energy uncertainty we may increase the lifetime t in
(5.59a) significantly. In the laboratory frame where the particle a is fast
and has a very large momentum p ≡ pz � s/2μ � μ, virtual splitting a →
1 + 2 introduces energy uncertainty

ΔE = Einterm − Einit =
√

k2
1 + μ2 +

√
k2

2 + μ2 −
√

p2 + μ2

� k2
1⊥ + μ2

2k1z
+

k2
2⊥ + μ2

2k2z
− μ2

2p
� 1

2p

[
μ2 + k2

⊥
x(1 − x)

− μ2

]
, (5.60)

where we used |k⊥| ∼ μ � p and have introduced the decay momentum
fraction x,

k1z ≡ xp, k1z = (1 − x)p (x ∼ 1 − x ∼ 1).

The energy difference

ΔE ∼ μ2
⊥

x(1 − x) p
, μ2

⊥ ≡ k2
⊥ + μ2 = O

(
μ2

)
.

is minimal for x ∼ 1
2 and can be made extremely small at high energy,

ΔE ∝ μ2/p. The corresponding fluctuation time gets Lorentz dilated:

Δt ∼ x(1 − x)p
μ2
⊥

� 1
μ
. (5.61)

Unfortunately this does not help us to achieve our goal: at high energies
the decay angle decreases in the same proportion as the lifetime increases,
so that the transversal displacement of the offspring remains finite,

|Δρ| ∼ Δt |v⊥| ∼
x(1 − x)p

μ2
·
∣∣∣∣k⊥
xp

∣∣∣∣ ∼ 1
μ
,

the same as in (5.59b).
However, our exercise was not completely useless as we learned that at

high energies long-living fluctuations may be constructed.
There is another problem with the process of (5.58). If our particle k1

is point-like and interacts with the target ‘head-on’, its cross section is
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proportional to the wavelength squared,

σ ∼ πλ2
1 ∼ 1

k2
1z

� 1
(x p)2

∝ 1
(x s)2

,

and falls very fast with s, unless we chose x ∼ μ/p � 1, which would take
us back to the small lifetime Δt ∼ 1/μ in (5.61)!

p/4

n

a

p/4

p/2

p/2

p/2

However, there is a way to reconcile a nor-
mal cross section with longevity. To this end we
have to allow the virtual particle k1 to decay
further in order to sequentially degrade its en-
ergy. Now the particle that hits the target b has
a momentum

pn ∼ p

2n
, (5.62)

with n the number of decays of the projectile particle a. Here we supposed,
for the sake of simplicity, that in each decay the longitudinal momentum
of the parent is shared equally, x ∼ 1

2 . Now, if we reach pn ∼ μ, the inter-
action with the target will have a normal cross section σ ∼ μ−2 typical for
interaction of particles with small collision energy. To get there we will
have to emit

n � ln(p/μ)
ln 2

(5.63)

particles. This would not have been easy if the interaction constant were
small. If, on the contrary, we accept that the probability of 1 → 2 splittings
is O(1) (which is not unnatural for strong dynamics), this would provide
us with a realistic model of the interaction radius growing with energy.

Indeed, in the course of n ∼ ln(s/μ2) decays a virtual particle experi-
ences n moves in the transverse plane of the typical size |Δρ| each. If
emission processes are strongly correlated as shown in Fig. 5.6(a), we can
get the growth as fast as

ρ0(s) ∼ n(s) · |Δρ| ∼ 1
μ

ln
s

μ2
. (5.64a)

(b)

(ΣΔρ)2 = n(ΣΔρ)2 = n2

(a)

Fig. 5.6 Correlated (a) and uncorrelated (b) motion in the ρ-space.
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5.6 Possibility of a growing interaction radius 131

If, on the other hand, sequential emissions are independent, as in
Fig. 5.6(b), then our particle experiences a Brownian motion in the im-
pact parameter space and, on the average, moves away from the origin
by

ρ0(s) ∼
√
n(s) · |Δρ|2 ∼ 1

μ

√
ln

s

μ2
. (5.64b)

Thus we have constructed a viable picture of how the interaction radius
may become energy-dependent from the point of view of interaction dy-
namics.

5.6.2 Growing radius and causality

How the possibility of a growing interaction radius can be envisaged from
analytic properties of the amplitude? Suppose that the factor C(ρ, s) in
the expression for the asymptotic of partial waves (5.46) grew as a power
of energy, C(ρ, s) ∝ sN , so that

f(ρ, s) � const sN · e−2μρ, ρ � μ−1. (5.65)

Recall now how the notion of the interaction radius was introduced in
(5.6). Partial waves f(ρ, s) are exponentially small at very large ρ. With
ρ decreasing, the partial wave grows and eventually hits the saturation
limit. The radius ρ0 was defined as the value of ρ where it happens:

f(ρ0, s) � 8π .

Applying this definition to (5.65), we obtain

ρ0(s) � N

2μ
ln s. (5.66)

Formally speaking, we could have forced the radius to increase with s even
faster. For example, if instead of a power we chose C(ρ, s) ∝ exp(a

√
s) this

would have led to ρ0(s) ∝
√
s.

However, such a steep growth of partial waves looks intrinsically dan-
gerous: we know that this type of growth of the full amplitude A(s, t) may
result in the violation of causality.

It is time to reverse the logic. Let us impose the usual inequality that
suffices to ensure causality,

|A(s, t)| ≤ sN(t) for s → ∞, (5.67)

and derive a possible growth of ρ0(s) that would dutifully respect it.
Here N(t) is limited in a finite interval of t (the number of necessary
subtractions in the dispersion relation in s for a given t, see Lecture 2).
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First we will take a rough model in which all partial waves with � ≤
�0(s) are saturated while those with � > �0(s) are negligible. Then for the
amplitude we have an estimate

|A(s, t)| ≤ 16π
�0(s)∑
�=0

(2� + 1)|P�(z)| . (5.68)

In the t > 0 region we have z = coshχ > 1, Legendre polynomials increase
exponentially with �, see (5.25), so that (5.68) is dominated by the last
term of the sum:

|A(s, t)| ∼ �0 e�0χ0(s), (5.69a)

where, according to (5.27),

χ0(s) = χ(t, s)
∣∣
t=4μ2 � 2μ

kc
, coshχ(t, s) = 1 +

2 t
s− 4μ2

. (5.69b)

By comparing (5.69) with (5.67) we obtain the maximal growth of the
characteristic angular momentum,

�0(s) ≤ N1

χ0(s)
ln s = kc ·

N1

2μ
ln s,

where N1 ≡ N(t)|t=4μ2 is the maximal number of subtractions that we
need for positive t up to the first t-channel singularity at t = 4μ2.

Thus from the boundary (5.67) motivated by the causality considera-
tion we derive two remarkable results:

ρ0(s) ≤ N1

2μ
ln s, (5.70a)

σtot ≤ c ln2 s, c =
(
N1

2μ

)2

· 〈Im f〉
4

, (5.70b)

where we have used the impact parameter representation (5.56) in order
to derive the upper bound for the total cross section (5.70b).

Inequalities (5.70) constitute the essence of the Froissart theorem.
Two remarks are in order concerning these results.

(1) Since Im f does not exceed the unitarity limit, the coefficient c in
(5.70b) is restricted by

c ≤
(
N1

2μ

)2

· 4π.
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(2) Moreover, we can claim that N1 < 2 since otherwise we would have
had among hadrons, as we shall see later, an elementary particle
with spin σ = 2 and mass smaller that 2mπ.

Combining these two observations we obtain

c ≤ 4π
m2

π

� 240 mb.

5.6.3 Froissart theorem

The previous consideration was not very accurate as we arrived at (5.70)
using a rough truncation of the partial-wave expansion in (5.68). Now we
are ready to give a more rigorous proof of the Froissart theorem (Froissart,
1961).

We will exploit analytic properties of the elastic amplitude A(s, z) as a
function of the cosine of the scattering angle Θ,

z ≡ cos Θ = 1 +
2 t

s− 4μ2
.

To prove the theorem not much is needed. It suffices to state that, as in
the perturbation theory:

(1) singularities of A(s, z) in z lie outside the physical region of the
s-channel, −1 ≤ z ≤ +1; and in addition that

(2) for finite |z| A(s, z) is polynomially bounded,

|A(s, z)| < csN .

Then the energy growth of the interaction radius and of the total cross
section is limited by (5.70). Move the integra-
tion contour C in the Cauchy representation,

A(s, z) =
1

2πi

∫
C

A(s, z′)
z′ − z

dz′,

away from the s-channel cut −1 ≤ z ≤ 1 into
the unphysical region. This can always be
done if there are no massless particles in the

C

z0z0 1−− 1

z

theory (in which case the t-channel singularities at z = ±z0 collide with
the tips of the physical interval, ±1). Then for the partial-wave amplitude
(3.10),

f�(s) =
1
2

∫ 1

−1
dz A(s, z)P�(z) =

1
2πi

∫
C
dz′A(s, z′)Q�(z′), (5.71)
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we have a simple estimate

|f�(s)| <
LC
2π

|A(s, z)|max · |Q�(z)|max , (5.72)

with subscripts max denoting maximal values of the functions on the
contour, and LC the length of the latter.

For |z| > 1 the exact boundary for the Legendre function on the contour
has the form

|Q�(z)| < c′� exp(−�χmin) , χmin ≡ min
z∈C

{
cosh−1 z

} s→∞�
√
t

kc
, (5.73)

where factor c′� is non-exponential in � at � → ∞. Then (5.72) gives

|f�(s)| < c� s
N exp

{
− �

kc

√
tmin

}
, (5.74)

which estimate is valid for arbitrary �. So, tmin in (5.74) is the minimal
value of t along the integration path C. But the contour can be moved!
Were it not for the cross-channel cuts [−∞,−z0], [z0,+∞], we could have
kept ‘inflating’ the contour. By so doing we would increase tmin and thus
strengthen the upper bound (5.74). Therefore the strongest boundary
for |f�| that we may get is determined by the condition (5.74) with tmin

equated with the position of the nearest singularity t0 = 4μ2:

min
C

min
z

{χ(t, s)} = cosh−1

(
1 +

2 t0
s− 4μ2

)
=⇒

√
tmin =

√
t0 = 2μ.

The rest of the proof proceeds as above. Namely, we define �0(s) from the
saturation condition |f�0 | = const in (5.74) and immediately obtain the
maximal growth of the radius,

ρ0(s) ≡
�0(s)
kc

≤ N

2μ
ln s ≡ ρF (s), (5.75)

and of the total cross section,

σtot �
1
s

�0(s)∑
�=0

(2� + 1) Im f� ∝
�20(s)
s

≤ c̃ ln2 s.

Let us note that the extreme Froissart regime ρ0 = ρF corresponds to a
clear physical picture of a disc which grows fast with energy, changing
neither its transparency nor the sharpness of the edge (the latter being
determined by the parameter r0 = 1/2μ, see Section 5.3).
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5.6.4 Pomeranchuk theorem for the case of growing radius

Now that we know that both ρ0 and σtot may grow logarithmically, we
return to the question of what can be said about the asymptotic behaviour
of particle and antiparticle total interaction cross sections with a given
target. Let

σa
tot = C1 lnγ s, σā

tot = C2 lnγ s, γ ≤ 2.

We can easily construct the corresponding amplitudes in analogy with the
case of constant cross sections considered in Section 5.5, cf. (5.51):

Aab(s, 0) s→∞= Aright(s) + Aleft(−s)

� sC1

π(γ + 1)
lnγ+1(−s) − sC2

π(γ + 1)
lnγ+1 s

= isσa
tot +

s ln s

π(γ + 1)
· Δσ, Δσ ≡ σa

tot − σā
tot.

(5.76)

Suppose that C1 �= C2 (Δσ �= 0). Then the imaginary part of the ampli-
tude is relatively small and can be neglected, and not only for t = 0 but
for finite t < 0 as well. The generalization of (5.76) will read

Aab(s, t) �
s ln s

π(γ + 1)
Δσ · F (t, s) (5.77)

with the factor F such that for forward scattering F (0, s) ≡ 1. Now we
construct the differential elastic scattering cross section,

dσel

dq2
=

1
16π

∣∣∣∣A(s, t)
s

∣∣∣∣2 � |F (t, s)|2
16π

(
Δσ ln s

π(γ + 1)

)2

. (5.78)

Integration over momentum transfer gives the total elastic cross section:

σel =
∫

dq2dσel

dq2
�

(
Δσ ln s

π(γ + 1)

)2 1
16π

∫
dq2

∣∣F (q2, s)
∣∣2 . (5.79)

The integral in (5.79) is determined by the interaction radius (see Fig. 5.4
on page 121): ∫

dq2
∣∣F (q2, s)

∣∣2 =
1

ρ2
0(s)

.

To avoid contradiction we need to impose the restriction

σel =
(

Δσ ln s

π(γ + 1)

)2 1
16πρ2

0(s)
≤ σa

tot.
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This inequality can be translated into

Δσ(s)
σ(s)

≤ const

√
ρ2
0(s)

σ(s) ln2 s
=

const√
σ(s)

· ρ0(s)
ρF (s)

, (5.80)

with ρF the radius corresponding to the Froissart regime (5.75).
There are two possibilities.

γ = 0. Constant total cross sections σab
tot, σāb

tot. From (5.80) then fol-
lows that the asymptotic inequality σab

tot �= σāb
tot is possible only when

ρ0(s) = ρF (s), that is in the case of the extreme energy growth of the
radius.

0 < γ ≤ 2. Logarithmically growing cross sections:

σ = C1 lnγ s, Δσ ≤ const [ ln s ]γ/2 · ρ0(s)
ρF (s)

. (5.81)

In this case C1 = C2, that is the particle and antiparticle cross
sections have the same asymptotic behaviour; their difference may
grow with s as well though slower, with (at least) a twice smaller
exponent.

In fact, it is unclear how the interaction radius ρ0(s) behaves with
energy. Formally we only proved that it cannot increase faster than ln s.
More physical information is needed in order to choose between different
regimes, e.g. ρ ∼

√
ln s and ρ ∼ ln s, which possibilities were offered by

the picture with the number of interactions increasing with energy that
we have discussed above, see (5.64).
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