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Machine learning with classical data

There has been significant recent interest in exploring the interplay between

quantum computing and machine learning. Quantum resources and quantum

algorithms have been studied in all major parts of the traditional machine learn-

ing pipeline: (i) the dataset, (ii) data processing and analysis, (iii) the machine

learning model leading to a hypothesis family, and (iv) the learning algorithm

(see [151, 242, 293] for reviews). In this chapter, we predominantly focus on

quantum approaches for the latter three categories—that is, here we mostly

consider quantum algorithms applied to classical data. These approaches in-

clude algorithms hinging on the quantum linear system solver (or quantum lin-

ear algebra more generally) as the source for possible quantum speedup over

classical learning algorithms. These also include quantum neural networks (us-

ing the framework of variational quantum algorithms) and quantum kernels,

where the classical machine learning model is replaced with a quantum model.

Additionally, in this chapter, we discuss quantum algorithms that aim to speed

up data analysis tasks, namely, tensor principal component analysis (TPCA)

and topological data analysis.

Quantum machine learning is an active area of research. As such, we ex-

pect the conclusions made in this chapter to evolve over time, as new results

are discovered. At present, our evaluation suggests that few of the considered

quantum machine learning algorithms show any promise of quantum advan-

tage in the immediate future. This conclusion stems from a number of factors,

including issues of loading classical data into the quantum device and extract-

ing classical data via tomography, and the success of classical “dequantized”

algorithms [976]. More specialized tasks such as tensor PCA and topolog-

ical data analysis may provide larger polynomial speedups (i.e., better than

quadratic) in some regimes, but their application scope is less broad. Finally,

other techniques such as quantum neural networks and quantum kernel meth-
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9.1 Quantum machine learning via quantum linear algebra 149

ods contain heuristic elements which make it challenging to perform concrete

analytic end-to-end resource estimates [915].

The authors are grateful to Ewin Tang for reviewing Section 9.1, to Eric An-

schuetz for reviewing Section 9.2, to Matthew Hastings and Robin Kothari for

reviewing Section 9.3, to Vedran Dunjko for reviewing Sections 9.4 and 9.5,

and to Marco Cerezo for reviewing Section 9.5.

9.1 Quantum machine learning via quantum linear algebra

Overview

Linear algebra in high-dimensional spaces with tensor product structure is the

workhorse of quantum computation as well as of much of machine learning

(ML). It is therefore unsurprising that efforts have been made to find quantum

algorithms for various learning tasks, including but not restricted to cluster-

finding [707], principal component analysis [708], least-squares fitting [917,

609], recommendation systems [608], binary classification [866], and Gaus-

sian process regression [1089]. One of the main computational bottlenecks in

all of these tasks is the manipulation of large matrices. Significant speedup

for this class of problems has been argued for via quantum linear algebra, as

exemplified by the quantum linear system solver (QLSS). The main question

marks for viability are (i) can quantum linear algebra be fully dequantized

[977] for ML tasks, (ii) can the classical training data be loaded efficiently

into a quantum random access memory (QRAM), and (iii) do the quantum ML

algorithms that avoid the above-mentioned pitfalls address relevant machine

learning problems? Our current understanding suggests that significant quan-

tum advantage would require an exceptional confluence of (i)–(iii) that has not

yet been found in the specific applications analyzed to date, though modest

speedups are plausible.

ML applications

The structure of this section differs from other sections in Part I, due to the

disparate nature of many of the quantum machine learning proposals and the

fact that they are often heuristic. Rather than cover every proposal, we explore

three specific applications. Each example explains which end-to-end problem

is being solved and roughly how the proposed quantum algorithm solves that

problem, arriving at its dominant complexity. In each case, the quantum al-

gorithm assumes access to fast coherent data access (log-depth QRAM) and

leverages quantum primitives for solving linear systems (and linear algebra
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150 9. Machine learning with classical data

more generally). Under certain conditions, these primitives can be exponen-

tially faster than classical methods that manipulate all the entries of vectors in

the exponentially large vector space. However, for these examples, it is crucial

to carefully define the end-to-end problem, as exponential advantages can be

lost at the readout step, where the answer to a machine learning question must

be retrieved from the quantum state encoding the solution to the linear algebra

problem. In the three examples below, this is accomplished with some form of

amplitude or overlap estimation, a primitive that brings a multiplicative O(1/ϵ)

factor into the overall complexity when seeking precision ϵ. This O(1/ϵ) read-

out cost could be avoided if it were the case that O(1) samples from the output

state prepared by quantum linear algebra were sufficient for solving the end-

to-end problem—situations where this may arise include training large neural

networks by solving nonlinear differential equations [701] and determining an

optimal set of random features in kernel-based supervised learning [1064]—

but we do not cover these examples in detail here.

Furthermore, even if these quantum algorithms are exponentially faster than

classical algorithms that manipulate the full state vector, in some cases this

speedup has been “dequantized” via classical algorithms that merely sample

from the entries of the vector. Specifically, for some end-to-end problems, there

exist classical “quantum-inspired” algorithms [977, 271, 924] that solve the

problem in time only polynomially slower than the quantum algorithm assum-

ing an analogous data-input model. Namely, the assumption that the quantum

algorithm has fast QRAM access to the classical data is analogous to the as-

sumption that the classical algorithm has fast “sample-and-query” (SQ) access

to the data—SQ access allows the classical algorithm to sample an entry from

the database with probability proportional to its value squared, or to compute

the value of any specific entry of the database. The reason that it is fair to com-

pare quantum algorithms relying on QRAM access with classical algorithms

relying on SQ access is that both utilize a certain tree-like data structure to

enable fast implementation at the circuit level. A large, one-time cost (scal-

ing linearly in the total size of the classical dataset) may be required to “load”

the data structure with the classical data, but the data structure is dynamic in

the sense that if a single entry in the database is added or changed, updating

the data structure has low cost (scaling logarithmically in the total size of the

classical dataset). Once the data structure has been set up, one can implement

QRAM access (resp. SQ access) using a quantum (resp. classical) circuit with

depth only logarithmic in the size of the database. We will not cover the par-

ticulars of the quantum-inspired algorithms in more detail, but we note that

most of the machine learning tasks based on linear algebra for which quantum
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9.1 Quantum machine learning via quantum linear algebra 151

algorithms have been proposed have also been dequantized in some capacity

[271].

However, it is worth emphasizing that in some cases it remains possible that

there could be an exponential quantum advantage if the quantum algorithm is

able to exploit additional structure in the matrices involved, such as sparsity,

that the classical algorithm cannot. The three examples below roughly illustrate

the spectrum of possibilities: some tasks are fully dequantized, whereas others,

to the best of our current knowledge, could still support exponential advantages

if certain conditions are met.

Example 1: Gaussian process regression

Actual end-to-end problem: Gaussian process regression (GPR) is a non-

parametric, Bayesian method for regression. GPR is closely related to kernel

methods [594], as well as to other regression models, including linear regres-

sion [858]. Our presentation of the problem follows that of [858, Chapter 2]

and [1088]. Given training data {x j, y j}Mj=1, with inputs x j ∈ RN and noisy out-

puts y j ∈ R, the goal is to model the underlying function f (x) generating the

output y

y = f (x) + ϵnoise,

where ϵnoise is drawn from i.i.d. Gaussian noise with variance σ2. Modeling

f (x) as a Gaussian process means that for inputs {x j}Mj=1, the outputs { f (x j)}Mj=1

are treated as random variables with a joint multivariate Gaussian distribution,

in such a way that any subset of these values are jointly normally distributed in

a manner consistent with the global distribution. While this multivariate Gaus-

sian distribution governing { f (x j)}Mj=1 will generally be correlated for different

j, the additional additive error ϵnoise on our observations y j is independent from

the choice of f (x j) and uncorrelated from point to point. The Gaussian process

is specified by the distribution N(m,K) where m is the length-M vector ob-

tained by evaluating a “mean function” m(x) at the points {x j}Mj=1, and K is an

M × M covariance kernel matrix obtained by evaluating a covariance kernel

function k(x, x′) at x, x′ ∈ {x j}Mj=1—N then denotes the multivariate Gaussian

distribution with the corresponding mean and covariance. The functional form

of the mean and covariance kernel are specified by the user and determine the

properties of the Gaussian process, such as its smoothness.1 These functions

typically contain a small number of hyperparameters which can be optimized

using the training data. A commonly used covariance kernel function is the

squared exponential covariance function k(x, x′) = exp
(
− 1

2ℓ2 ∥x − x′∥2
)

where

1 This can be visualized by sampling a function from the distribution, which means sampling a
value of f (x j) from the distribution for each x j, and plotting the values of f (x j) as a curve.
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152 9. Machine learning with classical data

ℓ is a hyperparameter controlling the length scale of the Gaussian process, and

∥·∥ denotes the standard Euclidean norm in the case of vector arguments and

the spectral norm in the case of matrix arguments.

Given choices for m(x) and k(x, x′) and the observed data {x j, y j}Mj=1, our

task is to predict the value f (x∗) of a new test point x∗. Because the Gaus-

sian process assumes that all M + 1 values { f (x1), . . . , f (xM), f (x∗)} have a

jointly Gaussian distribution, it is possible to condition upon the observed data

to obtain the distribution for f (x∗) which is p( f∗|x∗, {x j, y j}) ∼ N( f̄∗,V[ f∗]).

Our goal is to compute f̄∗, the mean (linear predictor) of the distribution for

f (x∗), as well as the variance V[ f∗], which gives uncertainty on the prediction.

Computing the underlying multivariate Gaussian distribution can be bypassed

by exploiting the closure of Gaussians under linear operations, in particular,

conditioning. This re-expresses the problem as linear algebra with the kernel

matrix. Assuming the common choice of m(x) = 0 and defining the length-M

vector k∗ ∈ RM to have its j-th entry given by k(x∗, x j), we obtain

f̄∗ = k
⊺

∗ [K + σ2I]−1y

V[ f∗] = k(x∗, x∗) − k
⊺

∗ [K + σ2I]−1k∗

which characterize the prediction for the test point. The advantages of GPR are

a small number of hyperparameters, model interpretability, and that it naturally

returns uncertainty estimates for the predictions. Its main disadvantage is the

computational cost.

Dominant resource cost/complexity: In classical implementations, the cost

is dominated by performing the inversion [K+σ2I]−1, typically via a Cholesky

decomposition, resulting in a complexity of O(M3) (see [858, Chapter 8] and

[698] for approximations used to reduce the classical cost). In [1089], a quan-

tum algorithm was proposed that leverages the QLSS to perform this inver-

sion more efficiently. The quantum computer uses the classical data to infer

the linear predictor and variance for a test point x∗, and this process must be

repeated for the computation of each new test point output. We analyze the

complexity of computing f̄∗, with a simple extension for V[ f∗]. Given classi-

cally observed/precomputed values of y and k∗, the quantum algorithm uses

state preparation from classical data (based on QRAM) to prepare quantum

states representing |y⟩ and |k∗⟩,2 each with a gate depth of O(log(M)) (though

using O(M) gates overall). The algorithm also uses a block-encoding of clas-

sical data (also using QRAM) for A := [K + σ2I], with a normalization factor

2 For any vector v, the notation |v⟩ denotes the normalized quantum state whose amplitudes in
the computational basis are proportional to the entries of v, for example, |y⟩ = 1

∥y∥
∑

j y j | j⟩.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.011
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 26 Jun 2025 at 02:04:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.011
https://www.cambridge.org/core


9.1 Quantum machine learning via quantum linear algebra 153

of α = ∥K + σ2I∥F , where ∥·∥F denotes the Frobenius norm.3 The state-of-the-

art QLSS has complexity O(ακ∥A∥−1 log(1/ϵ)) calls to an α-normalized block-

encoding of matrix A with condition number κ (see Eq. (18.2)). In this case,

the minimum singular value of A is at least σ2, so κ/∥A∥ ≤ σ−2. The QLSS

produces the normalized state |A−1y⟩, and a similar approach yields an esti-

mate for the norm ∥A−1y∥ to relative error ϵ at cost Õ(ακ∥A∥−1ϵ−1) [248, 327].

Given unitary circuits performing these tasks, we can estimate the quantity

f̄∗ = ⟨k∗|A−1y⟩ · ∥k∗∥ · ∥A−1y∥ to precision ϵ using overlap estimation with gate

depth upper bounded by

Õ
log(M) · ∥K + σ2I∥Fσ−2 ·

∥k∗∥
∥∥∥[K + σ2I]−1y

∥∥∥
ϵ

 ,

where the three factors come from state preparation (i.e., QRAM), QLSS, and

overlap estimation, respectively. Using QRAM for state preparation as de-

scribed above would use O(M2) ancilla qubits. Note that classical “quantum-

inspired” methods for solving linear systems, based on SQ access, also have

poly(∥A∥F , κ, ϵ−1, log(M)) complexity [271, 433, 924], and thus the quantum

algorithm as stated above offers at most a polynomial speedup in the case of

dense matrices.

On the other hand, [1089] considers the case where the vectors and kernels

are sparse4 and uses this to reduce the cost of the quantum algorithm and of

QRAM. In this case, using block-encodings of sparse matrices, the factor ∥A∥F
in the complexity expression is replaced by a factor s∥A∥max, where s is the

sparsity of the matrix A and ∥A∥max is the maximum magnitude of any entry

of A—log-depth QRAM with Ω(M) ancilla qubits would still be necessary to

implement the sparse access oracle to the sM arbitrary nonzero entries of A in

depth O(log(M)). The upshot is that in the sparse case, because the algorithm

assumes the kernel is not low rank, this algorithm is not dequantized by SQ

access [271] and may still offer an exponential speedup over quantum-inspired

methods. However, we note that the assumption of sparsity in [K + σ2I] may

also enable the use of more efficient classical algorithms for computing the

inverse (see Chapter 18 on QLSSs). Moreover, we must include the classical

precomputation of evaluating the entries of this matrix. A related, and sim-

ilarly efficient, quantum algorithm is proposed in [1088] for optimizing the

3 It may be more efficient to load in the {x j} values and then coherently evaluate the kernel
entries using quantum arithmetic. Some ideas in this direction are explored in [264]. One
might also consider block-encoding K and σ2I separately and combining them with linear
combination of unitaries.

4 For the squared exponential covariance function mentioned above, the kernel matrix will not
be sparse, but [1089] notes several applications of GPR where sparsity is well justified.
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154 9. Machine learning with classical data

hyperparameters of the GPR kernel by maximizing the marginal likelihood of

the observed data given the model.

Example 2: Support vector machines

Actual end-to-end problem: The task for the support vector machine (SVM)

is to classify an N-dimensional vector x∗ into one of two classes (y∗ = ±1),

given M labeled data points of the form {(x j, y j) : x j ∈ RN , y j = ±1} j=1,...,M used

for training. The training phase solves a continuous optimization problem to

find a maximum-margin hyperplane, described by normal vector w ∈ RM and

offset b ∈ R, which separates the training data. That is, data points with y j = 1

lie on one side of the plane, and data points with y j = −1 lie on the other side.

Once trained, the classification of x∗ is inferred via the formula

y∗ = sign(b + ⟨w, x∗⟩) , (9.1)

where ⟨·, ·⟩ denotes the standard inner product between vectors.

In the “hard-margin” version of the problem where all training points must

be classified correctly (assuming it is possible to do so, i.e., the data is linearly

separable), the solution (w, b) is given by

argmin
(w,b)

∥w∥2, subject to: (⟨w, x j⟩ + b)y j ≥ 1 ∀ j . (9.2)

In the “soft-margin” version of the problem, the hyperplane need not cor-

rectly classify all training points. The relation (⟨w, x j⟩ + b)y j ≥ 1 is relaxed to

(⟨w, x j⟩ + b)y j ≥ 1 − ξ j, with ξ j ≥ 0. Now, (w, b) are determined by

argmin
(w,b,ξ)

∥w∥2 + γ∥ξ∥1, subject to: (⟨w, x j⟩ + b)y j ≥ 1 − ξ j ∀ j , (9.3)

where ∥·∥1 denotes the vector 1-norm, and γ is a user-specified hyperparam-

eter related to how much to penalize points that lie within the margin. Both

Eqs. (9.2) and (9.3) are convex programs, in particular, quadratic programs,

which can also be rewritten as second-order cone programs [612]. Another

feature of these formulations is that the solution vectors w and ξ are usually

sparse; the j-th entry is only nonzero for values of j where x j lies on or within

the margin near the hyperplane—these x j are called the “support vectors.”

In [972], a “least-squares” version of the SVM problem was proposed,

which has no inequality constraints:5

argmin
(w,b,ξ)

∥w∥2 + γ

M
∥ξ∥2, subject to: (⟨w, x j⟩ + b)y j = 1 − ξ j ∀ j . (9.4)

5 Our definition of the least-squares SVM is equivalent to the normal presentation found in
[972, 866]; however, we choose slightly different conventions for normalization of certain
parameters, such as γ, with respect to M. The goal of our choices is to make the final
complexity expression free of any explicit M dependence.
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9.1 Quantum machine learning via quantum linear algebra 155

This is an equality-constrained least-squares problem, which is simpler than a

quadratic program and can be solved using Lagrange multipliers and inverting

a linear system. Specifically, one introduces a vector β ∈ RM and solves the

(M + 1) × (M + 1) linear system Au = v, where

A =

(
0 1⊺/

√
M

1/
√

M K/M + γ−1I

)
, u =

(
b

β

)
, v =

1√
M

(
0

y

)
, (9.5)

with K the kernel matrix for which Ki j = ⟨xi, x j⟩, 1 the all-ones vector, and

I the identity matrix. The vector w is inferred from β via the formula w =∑
j β jx j/

√
M.

However, unlike the first two formulations, the least-squares formulation

does not generally have sparse solution vectors (w, b) (see [971]). Additionally,

its solution can be qualitatively different, due to the fact that correctly classified

data points can lead to negative ξ j that apply penalties to the objective function

through the appearance of ∥ξ∥2.

Dominant resource cost/complexity: The hard-margin and soft-margin

formulations of SVM are quadratic programs, which can be mapped to

second-order cone programs and solved with quantum interior point methods

(QIPMs). This solution was proposed in [612], and, assuming access to

log-depth QRAM it can find ϵ-accurate estimates for the solution (w, b)

in time scaling as Õ(M0.5(M + N)κIPMζ log(1/ϵ)/ξ′), where κIPM, ζ, and

ξ′ are instance-specific parameters related to the QIPM. This compares to

O(M0.5(M + N)3 log(1/ϵ)) for naively implemented classical interior point

methods. In [612], numerical simulations on random SVM instances were

performed to compute these instance-specific parameters, and the results were

consistent with a small polynomial speedup. However, the resource estimate

of [328] for a related problem suggests a practical advantage may be difficult

to realize with this approach.

The least-squares formulation can be solved directly with the QLSS, as pur-

sued in [866]. This can be compared to classically solving the linear system

via Gaussian elimination, with cost O(M3). The QLSS requires the ability to

prepare the state |v⟩, which can be accomplished in O(log(M)) depth through

methods for preparation of states from classical data, although requiring O(M)

total gates and ancilla qubits. One also needs a block-encoding of the ma-

trix A. One method is through block-encodings from classical data, which

requires classical precomputation of the O(M2) entries of K (incurring clas-

sical cost O(M2N)) and producing a block-encoding with normalization factor

α = ∥A∥F (Frobenius norm). Henceforth, we assume that ∥x j∥ ≤ 1 for all j,

which can always be achieved by scaling down the training data (inducing a
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156 9. Machine learning with classical data

scaling up of w and
√
γ by an equal factor). This implies ∥K/M∥F ≤ 1 and

hence ∥A∥F ≤
√

2 + 1 +
√

Mγ−1. A better block-encoding can be obtained

by block-encoding K/M via the method for Gram matrices6 and γ−1I via the

trivial method, and then combining these with the rest of A via linear combina-

tion of block-encodings. This avoids the need to classically calculate the inner

products ⟨xi, x j⟩, and has a better normalization α ≤
√

2 + 1 + γ−1.

Given these constructions, the QLSS outputs the state |u⟩ = (b|0⟩ +∑M
j=1 β j| j⟩)/

√
b2 + ∥β∥2; the cost is Õ(ακA/∥A∥) queries to the block-encoding

of A, where κA is the condition number of A. We may assert that ∥A∥ ≥ 1. This

follows by noting that the lower-right block of A (as defined in Eq. (9.5)) is

positive semidefinite, and that 1 is an eigenvalue of A when the lower-right

block is set to zero. The condition number should be upper bounded by an

M-independent function of γ due to the appearance of the regularizing γ−1I.

Reading out all M + 1 entries of |u⟩ via tomography would multiply the

cost by Ω(M). However, in [866], it was observed that to classify a test point

x∗ via Eq. (9.1), one can use overlap estimation rather than classically learning

the solution vector. In our notation and normalization, this can be carried out as

follows. Let |x j⟩ =
∑M

i=1 x ji|i⟩/∥x j∥, with x ji denoting the i-th entry of the vector

x j. Starting with |u⟩, we prepare |x j⟩ into an ancilla register, using methods for

controlled state preparation from classical data, forming

|ũ⟩ =
b|0⟩|0⟩ +∑M

j=1 β j| j⟩
(
∥x j∥|x j⟩ +

√
1 − ∥x j∥2|M + 1⟩

)

√
b2 + ∥β∥2

.

One also creates a reference state |x̃∗⟩ encoding x∗, defined as

|x̃∗⟩ =
1√
2
|0⟩|0⟩ + 1√

2M

M∑

j=1

| j⟩
(
∥x∗∥|x∗⟩ +

√
1 − ∥x∗∥2|M + 2⟩

)
.

The right-hand side of Eq. (9.1) is then given by
√

2
√

b2 + ∥β∥2⟨ũ|x̃∗⟩. Thus,

the overlap ⟨ũ|x̃∗⟩must be estimated to precision ϵ = 1/
√

2(b2 + ∥β∥2) in order

to distinguish ±1 and classify x∗. Additionally, the norm ∥u∥ =
√

b2 + ∥β∥2
must be calculated; this can separately be done to relative error ϵ′ at cost

6 We sketch a possible instantiation of this method here. Define |xi⟩ = ∥xi∥−1 ∑M
k=1 xik |k⟩ where

xik is the k-th entry of xi. Suppose M = 2m is a power of 2. Following the setup in
block-encodings and [431, Lemma 47], we must define sets of M orthonormal states {|ψi⟩} and

{|ϕ j⟩}. We choose |ψi⟩ = (∥xi∥|xi⟩ +
√

1 − ∥xi∥2 |M + 1⟩)(H⊗m |i⟩)|0m⟩, where H denotes the

Hadamard transform. We choose |ϕ j⟩ = (∥x j∥|x j⟩ +
√

1 − ∥x j∥2 |M + 2⟩)|0m⟩(H⊗m | j⟩). These

states can be prepared in O(log(M)) depth using O(M) total gates and ancilla qubits with
methods for controlled state preparation from classical data. It can be verified that these sets
are orthonormal, and that ⟨ψi |ϕ j⟩ = ⟨xi, x j⟩/M. Hence, the Gram matrix construction yields a
block-encoding of K/M with normalization factor 1.
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9.1 Quantum machine learning via quantum linear algebra 157

Õ(ακA/ϵ
′) (see Chapter 18 on QLSSs). We may also note that as u = A−1v

and ∥v∥ = 1, we have ∥u∥ ≤ κA/∥A∥. Thus, the overall circuit depth required to

classify x∗ is

Õ

ακ2

A

∥A∥2

 .

There is no explicit poly(N,M) dependence. However, for certain datasets and

parameter choices, such dependence could be hidden in κA or α, making an

apples-to-apples comparison with Gaussian elimination less clear.

Furthermore, this task has been dequantized under the assumption of SQ

access [350, 271, 924]. In time scaling as poly(∥A∥F , ϵ−1, log(NM)), one can

classically sample from the solution vector |u⟩ to error ϵ, and furthermore, one

can estimate inner products ⟨ũ|ṽ⟩ in time O(1/ϵ2) [976].7 However, the cost

can be reduced through a trick that is analogous to how the quantum algorithm

can block-encode the γ−1I part of A separately to avoid the dependence on

a large ∥A∥F . In particular, [271, Corollary 6.18] gives a classical complexity

that would be polynomially related to the quantum complexity above under

appropriate matching of parameters, but the power of this polynomial speedup

could still be significant. In any case, such a speedup crucially requires log-

depth QRAM access to the training data, which requires total gate complexity

Ω(NM) and O(NM) ancilla qubits.

Example 3: Supervised cluster assignment

Actual end-to-end problem: Suppose we are given access to a vector x ∈ CN

and a set of M samples {y j ∈ CN} j=1,...,M . We want to estimate the distance

between x and the centroid of the set {y j} to judge whether x was drawn from

the same set as {y j}. If we have multiple sets {y j}, we can infer that x belongs

to the one for which the distance is shortest; as a result, this is also called the

“nearest-centroid problem.” Specifically, the computational task is to estimate

∥x− 1
M

Y1∥ to additive constant error ϵ with probability 1− δ, where Y ∈ CN×M

is the matrix whose columns are y j, and 1 is the vector of M ones—the vector

Y1/M is the centroid of the set.

Dominant resource cost/complexity: Naively computing the centroid incurs

classical cost O(NM). In [707], a quantum solution to this problem was pro-

posed. Let x̄ = x/∥x∥ and let Ȳ be normalized so that all columns have unit

7 The method of doing so is succinct to describe (see, e.g., [978]). First, one uses sample access
to the vector ũ to generate an index i at random, with probability |ũi |2/∥ũ∥2. Then, one uses
query access to ũ and ṽ to compute the quantity R = (ṽi∥ũ∥)/(ũi∥ṽ∥). The expectation value of
R is precisely ⟨ũ|ṽ⟩, and the variance is upper bounded by 1. Thus, an estimate of ⟨ũ|ṽ⟩ to ϵ
precision is obtained by averaging O(1/ϵ2) samples of the random variable R.
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158 9. Machine learning with classical data

norm. Define the N × (M+1) matrix R and length-(M+1) vector w as follows:

R =
(
x̄ Ȳ/

√
M

)
, w =

(
∥x∥

−1Y/
√

M

)
,

where 1Y is the length-M vector containing the norms of the columns of

Y , defined such that Ȳ1Y = Y1. Then, Rw = x − 1
M

Y1. Using methods for

block-encoding and state preparation from classical data, one constructs

O(log(NM))-depth circuits that block-encode R (with normalization factor

∥R∥F = 2) and prepare the state |w⟩. If we apply the block-encoding of R to |w⟩
and measure the block-encoding ancillas, the probability that we obtain |0⟩ is

precisely (∥Rw∥/2∥w∥)2. Thus, using amplitude estimation, one learns ∥Rw∥ to

precision ϵ with probability at least 1 − δ at cost O(∥w∥ log(1/δ)/ϵ) calls to the

log-depth block-encoding and state preparation routines.

The advantage over naive classical methods essentially boils down to the as-

sumption of efficient classical data loading for a specific dataset. Subsequently,

this quantum algorithm was dequantized, and it was understood that a simi-

lar feat is possible classically in the SQ access model [977]. Specifically, the

classical algorithm runs in time Õ(∥w∥2 log(1/δ)/ϵ2), reducing the exponential

speedup to merely quadratic.

Caveats

The overwhelming caveat in these and other proposals is access to the clas-

sical data in quantum superposition. These quantum machine learning algo-

rithms assume that we can load a vector of N entries or a matrix of N2 entries

in polylog(N) time. While efficient quantum data structures, that is, QRAM,

have been proposed for this task, they introduce a number of caveats. In or-

der to coherently load N pieces of data in log(N) time, QRAM uses a num-

ber of ancilla qubits, arranged in a tree structure. To load data of size N, the

QRAM data structure requires O(N) qubits, which is exponentially larger than

the O(log(N)) data qubits used in the algorithms above. This spatial complex-

ity does not yet include the overheads of quantum error correction and fault-

tolerant computation, in particular the large spatial resources required to distill

magic states in parallel. As such, we do not yet know if it is possible to build a

QRAM that can load the data sufficiently quickly, while maintaining moderate

spatial resources.

In addition, achieving speedups by efficiently representing the data as a

quantum state may suggest that classical methods based on tensor networks

could achieve similar performance, in some settings. Taking this line of rea-

soning to the extreme, a number of efficient classical algorithms have been

developed by “dequantizing” the quantum algorithms. That is, by assuming an
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9.1 Quantum machine learning via quantum linear algebra 159

analogous access model (the SQ access model) to the training data, as well as

some assumptions on sparsity and/or rank of the inputs, there exist approxi-

mate classical sampling algorithms with polynomial overhead as compared to

the quantum algorithms [977, 976]. This means that any apparent exponential

speedup must be an artifact of the data loading/data access assumptions.

A further caveat is inherited from the QLSS subroutine, which is that the

complexity is large when the matrices involved are ill conditioned. This caveat

is somewhat mitigated in the Gaussian process regression and support vector

machine examples above, where the matrix to be inverted is regularized by

adding the identity matrix.

End-to-end resource analysis

To the best of our knowledge, full end-to-end resource estimation has not been

performed for any specific quantum machine learning tasks.

Outlook

Much of the promise of quantum speedup for classical machine learning based

on linear algebra hinges on the extent to which quantum algorithms can be

dequantized. At present, the results of [977] seem to prohibit an exponential

speedup for many of the problems proposed, but there is still the possibility of

a large polynomial speedup. The most recent asymptotic scaling analysis [271]

for dequantization methods still allows for a power 4 speedup in the Frobenius

norm of the “data matrix” and a power 11 speedup in the polynomial approx-

imation degree (see [86] for more details). However, the classical algorithms

are steadily improving, and their scaling might be further reduced.

It is also worth noting that the classical probabilistic algorithms based on

the SQ access model are not currently used in practice. This could be due to

a number of reasons, including the poor polynomial scaling, the fact that the

access model might not be well suited to many practical scenarios, or simply

because the method is new and has not been tested in practice (see [61, 270]

for some work in this direction).

On the other hand, some machine learning tasks based on quantum linear

algebra are not known to be dequantized, such as Gaussian process regression

under the assumption that the kernel matrix is sparse. In particular, avoiding de-

quantization and achieving an exponential quantum speedup appears to require

that the matrices involved are simultaneously sparse, high rank, and well con-

ditioned.8 In this situation, quantum algorithm can leverage block-encodings

8 Dequantization can also be avoided even when the matrices involved are dense, provided that
they are given by a product of a small number of sparse matrices. For example, it was
described in [1064] how an exponential speedup may be possible for a certain ML task, where

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.011
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 26 Jun 2025 at 02:04:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.011
https://www.cambridge.org/core


160 9. Machine learning with classical data

for which the normalization factor is equal to the sparsity, rather than gen-

eral block-encodings of classical data for which the normalization factor is

the Frobenius norm. The complexity of quantum-inspired classical algorithms

based on SQ access will still grow polynomially with the Frobenius norm even

when the matrices are sparse,9 although other classical algorithms may be able

to exploit the sparsity more directly. Perhaps unsurprisingly, the prototypical

matrices that satisfy these criteria are sparse unitary matrices, such as those

naturally implemented by a local quantum gate. For unitary matrices, the con-

dition number is 1, and the Frobenius norm is equal to the square root of the

Hilbert space dimension—exponentially large in the system size. (As a sim-

ple example, consider the identity matrix on n qubits.) A central question is

whether situations like this occur in interesting end-to-end machine learning

problems. Even if they do, an exponential speedup is not guaranteed. An addi-

tional hurdle arises in the quantum readout step, which incurs a cost scaling as

the inverse in the precision target. To avoid exponential overhead, the end-to-

end problem must not require exponentially small precision.

Further reading

For further reading on specific machine learning tasks where quantum algo-

rithms have been proposed, we refer the reader to [151, 293, 916]. We have not

covered dequantization techniques in great detail; for an accessible summary

and perspective, see [978], and for a more detailed overview, see [979].

9.2 Quantum machine learning via energy-based models

Overview

An important class of models in machine learning is energy-based models,

which are heavily inspired by statistical mechanics. The goal of energy-based

the matrix to be inverted is neither sparse nor low rank; rather, it is related to a sparse matrix
via the discrete Fourier transform (a dense unitary matrix). A block-encoding for the relevant
matrix is constructed by leveraging the quantum Fourier transform (QFT). Note that the QFT
can be decomposed into a product of sparse matrices corresponding to the local unitary gates
in the quantum circuit for QFT.

9 For example, consider the complexity of algorithms for pseudoinversion of an s-sparse matrix
A. Let the rank of A be r, which may be as large as the matrix dimension, and suppose all
nonzero singular values of the matrix lie in the interval [1/κ, 1]. This implies that√

r/κ ≤ ∥A∥F ≤
√

r, and thus κ∥A∥F ≥
√

r. As a consequence, the complexity of
quantum-inspired algorithms with SQ access in [271, 433, 924]—scaling as
poly(∥A∥F , κ, 1/ϵ)—will necessarily grow as a polynomial of the matrix rank, even for fixed
sparsity. On the other hand, the complexity of the quantum algorithm with QRAM that applies
the QLSS and amplitude estimation—scaling as poly(s∥A∥max, κ, 1/ϵ)—is independent of the
matrix rank for well-conditioned A (i.e., κ = O(1)).
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9.2 Quantum machine learning via energy-based models 161

models is to train a physical model (i.e., tune the interaction strengths between

a set of particles) such that the model closely matches the training set when

the model is in thermal equilibrium (made more precise below). Energy-based

models are an example of generative models since, once they are trained, they

can then be used to form new examples that are similar to the training set by

sampling from the model’s thermal distribution.

Due to their deep connection to physics, energy-based models are prime

candidates for various forms of quantization. However, one challenge faced

by quantum approaches is that the statistical mechanical nature of the learning

problem also often lends itself to efficient, approximate classical methods. As a

result, the best quantum algorithms may also be heuristic in nature, which pre-

vents an end-to-end complexity analysis. While energy-based models are less

widely used than deep neural networks today, they were an important concep-

tual development in machine learning [893] and continue to foster interest due

to their sound theoretical basis, and their connection to statistical mechanics.

There are a number of proposals for generalizing energy-based models to

quantum machine learning. The starting point is a graph where the vertices

are divided into visible {v} and hidden {h} nodes. When each node is assigned

a value in some discrete or continuous set, this constitutes a “configuration”

(h, v) of the model. A training set D is provided as input, containing a list

of configurations of the visible vertices. The hidden nodes are not part of the

training set, but including them is essential for the model to be able to capture

latent variables in the data.

A graphical model is then built on the vertices—each vertex is a physi-

cal system (such as a spin-1/2 particle) and edges between vertices represent

physical interactions. The model is described by an energy functional H(h, v),

which assigns an energy value to each possible configuration (h, v) of the ver-

tices. For example, in Boltzmann machines (BMs), the vertices are assigned

binary variables, and the interactions are Ising interactions. The model can be

used to generate samples (e.g., via Markov chain Monte Carlo methods) from

the thermal distribution (also known as the Boltzmann distribution or the Gibbs

distribution) at unit temperature, that is, the distribution where each configura-

tion (h, v) is sampled with probability proportional to e−H(h,v). In unsupervised

learning tasks, provided a set of training samples of configurations of the vis-

ible units v, the goal is to tune the interaction weights of the model such that

the model’s thermal distribution best matches the distribution that generated

the training set.

Quantum algorithms can potentially be helpful for training classical graphi-

cal models. One can also generalize the model itself by allowing the physical
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162 9. Machine learning with classical data

systems on each vertex to be quantum, and interactions between systems to be

noncommuting.

Actual end-to-end problem(s) solved

Classical graphical models: Let G = (V, E) denote a graph with vertices V

and edges E. For classical models, each vertex j is assigned a binary variable

z j = ±1. The variables are split into visible and hidden nodes, z ∈ {v} ∪ {h}.
For classical BMs, the energy functional is often taken to be quadratic10 with

weights {bi,wi j}:
H(z) =

∑

i∈V
bizi +

∑

(i, j)∈E

wi jziz j. (9.6)

Note that interactions can occur between any pair of nodes (hidden or visible).

In the special case of a restricted Boltzmann machine (RBM), each edge must

pair up a hidden node with a visible node (i.e., the graph is bipartite). This

restriction makes the model less expressive than graphs with edges between

hidden nodes, but it leads to simplifications for certain training approaches.

The thermal distribution corresponding to the energy functional (at unit tem-

perature) associates each configuration v of visible nodes with a probability

p(v) such that

p(v) =
∑

h

p(h, v), p(h, v) =
e−H(h,v)

Z , Z =
∑

h,v

e−H(h,v) ,

where Z, the partition function, is the normalization to ensure probabilities

sum to 1. Even though hidden nodes are integrated out in the calculation of

p(v), they impact the distribution of p(v) through their interactions with the

visible nodes.

Given a training set D = {v1, v2, . . . , v|D|} of sample configurations of the

visible nodes, the goal of the training phase is to modify the weights θ ∈ {bi} ∪
{wi j} such that samples from the thermal distribution of the model most closely

match the training samples. Ideally, this is done by finding the set of weights

that maximizes the likelihood of observing the samples, that is,
∏

v∈D p(v), or,

equivalently, minimizing the (normalized) log-likelihood loss function, defined

as

L(b,w) = − 1

|D|
∑

v∈D
log(p(v)) . (9.7)

10 This quadratic energy functional is related to the Sherrington–Kirkpatrick (SK) model [933]
with an external field, which is a model for spin glasses in the statistical mechanics literature.
For the SK model, the couplings wi j are chosen randomly for each pair of nodes, and it is
typically computationally hard to find configurations with optimal energy (see Section 4.2 on
beyond quadratic speedups in combinatorial optimization for additional information).
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9.2 Quantum machine learning via energy-based models 163

The loss function can be minimized using some variant of gradient descent,

which requires the evaluation of the derivatives ∂θL for θ ∈ {bi} ∪ {wi j}. For

the energy functional above, these derivatives can be readily calculated from

ensemble averages (see, e.g., [1041]). For example,

∂L

∂wi j

= ⟨ziz j⟩v∈D − ⟨ziz j⟩ , (9.8)

where ⟨·⟩ denotes an average over samples from the thermal distribution

p(h, v), while ⟨·⟩v∈D denotes an average where v is drawn at random from the

training set D, and h is sampled from the thermal distribution conditioned on

that choice of v. Without any further restrictions, the gradients will typically

be difficult to evaluate (or even to estimate accurately). An exact computation

requires computing a sum over the exponential number of configurations of

the vertices.

In some cases, good estimates of the gradients can be obtained by repeat-

edly drawing samples from the thermal distribution and computing averages.

Samples can be generated with Markov chain Monte Carlo (MCMC) methods

such as the Metropolis–Hastings algorithm or simulated annealing; however,

the time required to sample from a distribution close to the thermal distribution

depends on the mixing time of the Markov chain, which is generally unknown

and can also be exponential in the graph size. Additionally, many samples need

to be generated to produce a robust average, with precision ϵ requiring O(1/ϵ2)

samples. Approximate classical methods, such as contrastive divergence [531],

avoid this issue by initializing the Markov chain at one of the training samples

and deliberately taking a small number of steps—this does not exactly corre-

spond to optimizing the log-likelihood but in some cases has empirical suc-

cess [916]. Indeed, here we see the benefit of restricting to bipartite graphs in

RBMs: since there are no edges between hidden nodes, the Gibbs distribution

over the hidden nodes is independent from node to node, conditioned on a fixed

setting of the visible nodes. This enables a simple exact calculation for the first

term of Eq. (9.8), and it is also key to the success of estimating the second term

with contrastive divergence, where the hidden layer and the visible layer are

conditionally sampled in alternating fashion.

Once the model has been trained, new samples can also be generated via

the same MCMC methods. The end-to-end tasks are (i) training the model,

and then, (ii) generating samples from the trained model to accomplish some

larger machine learning goal.

Quantum graphical models: A separate end-to-end problem is found by gen-

eralizing the model itself to be quantum. For example, one can start with a clas-
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164 9. Machine learning with classical data

sical BM and promote the binary variables to qubits. The energy functional is

promoted to a quantum Hamiltonian and augmented with a transverse field,

which does not commute with the Ising interactions. The result is a quantum

Boltzmann machine (QBM), described by a transverse-field Ising (TFI) Hamil-

tonian [30] (cf. Eq. (1.4)):

HQBM = −
∑

i∈V
(κiXi + biZi) −

∑

(i, j)∈E

wi jZiZ j , (9.9)

where Xi and Zi are the Pauli-X and Pauli-Z operators on qubit i, and bi, κi,wi j

are real variational parameters of the model. The ground or Gibbs state of

HQBM can be prepared in a variety of ways, including the adiabatic algorithm,

Gibbs sampling, or as a variational quantum algorithm. These states can be

measured (in the Z basis or in the X basis), yielding samples of the variables

v, h drawn from different distributions than the thermal distribution for the clas-

sical BM. Alternatively, one can trace out the hidden nodes, viewing the left-

over quantum state on the visible nodes as the output of the QBM; this may

be suitable if the input data is also quantum. As in the classical case, the train-

ing phase for a QBM consists of varying the weights via gradient descent to

maximize a likelihood function. However, the noncommutativity of the Hamil-

tonian leads to complications: the gradients of the loss function are no longer

directly given by sample expectation values as was the case in Eq. (9.8), al-

though workarounds have been proposed [30, 614, 1037, 40, 1093]. For exam-

ple, in the case of classical input data, sample expectation values can be used

to optimize function that is not equal to the loss function, but can be shown

to be an upper bound on it using the Golden–Thompson inequality [30]. Al-

ternatively, in the case of quantum input data, and assuming the QBM has no

hidden nodes, the relevant loss metric is the relative entropy and its gradients

can again be related to sample averages [614]—this scenario is closely related

to the Hamiltonian learning problem. In any case, the end-to-end problem is to

train these models and generate samples.

Dominant resource cost/complexity

Complexity of classical graphical models: Recall that for classical BMs, one

wishes to produce samples from the thermal distribution corresponding to the

energy functional in Eq. (9.6), that is, Gibbs sampling (of diagonal Hamiltoni-

ans), either to assist in training the model or, if it has already been trained, to

make inferences or generate new data. Specifically, given H(h, v), one wishes

to draw samples of (h, v) with probability proportional to e−H(h,v), either with v

free or with v fixed (sometimes referred to as “clamped”) to a particular value

from the training set D. Classically, one approach is simulated annealing or
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9.2 Quantum machine learning via energy-based models 165

other MCMC algorithms. Quantumly, one can take one of several analogous

approaches, including “quantum simulated annealing” [944] and quantum an-

nealing, discussed as follows.

For quantum simulated annealing, one prepares the coherent Gibbs state∑
v,h

√
p(h, v)|v, h⟩, and a quadratic speedup is obtained over classical simu-

lated annealing. The method is to construct a Hamiltonian whose ground state

is the coherent Gibbs state at temperature T (i.e., for which probabilities p(h, v)

are proportional to e−H(h,v)/T ), and follow an adiabatic path from T = ∞ to

T = 1. Following the path is accomplished by repeatedly performing quantum

phase estimation (QPE) to project onto the ground state of the Hamiltonian at

a given temperature. As is typical for the adiabatic algorithm, the cost of this

procedure is dominated by the inverse of the spectral gap—this is the precision

required for QPE to succeed. Specifically, for a graphical model with |V | ver-

tices, the runtime will be poly(|V |)/∆, where ∆ is the minimum spectral gap.

Importantly, ∆ can be related to the maximum mixing time tmix of the simu-

lated annealing Markov chain, as 1/∆ = O(
√

tmix), which leads to the quadratic

speedup, although it is possible that ∆ is exponentially small in |V |.
An alternative method for preparing (and sampling from) the coherent Gibbs

state was proposed in [1041]. There, one begins in an easy-to-prepare co-

herent mean-field state approximating the coherent Gibbs state. Then, one

performs rejection sampling with amplitude amplification to gain a quadratic

speedup over the analogous classical method. Additionally, it was proposed

to use amplitude estimation to gain a quadratic improvement in the number

of samples needed to achieve precision ϵ, from O(1/ϵ2) to O(1/ϵ), mirroring

later analyses that work for general quantum-accelerated Monte Carlo methods

[773]. If these O(1/ϵ) quantum samples are each for the same training sample

v ∈ D, this is straightforward; however, if the samples are drawn randomly

from v ∈ D, achieving the quadratic speedup from amplitude estimation re-

quires accessing the data inD coherently and quickly. Such data access is pro-

vided by the quantum random access memory (QRAM) primitive, for which

the circuit depth can be logarithmic in the size of the training data, at the ex-

pense of a number of ancilla qubits (and total gates) that is linear in the size of

the training data.

For quantum annealing, the idea is to add a uniform transverse field, as in

the QBM of Eq. (9.9) with κi = κ j for all i, j. The transverse field is initially

strong, and slowly turned off. This is similar to the adiabatic algorithm, but

differs in that it is specifically carried out at finite ambient temperature. Thus,

the system-bath interaction of the device naturally drives the state to the Gibbs

state, which coincides with the classical thermal distribution once the trans-

verse field is turned off. This is a heuristic method; it is efficient but there are
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166 9. Machine learning with classical data

few success guarantees. The hope is that the inclusion of an initial transverse

field induces nonclassical fluctuations that help the system avoid becoming

trapped in local minima as the transverse field is turned off.

Overall, computing the gradient of the loss function with respect to one pa-

rameter, up to precision ϵ, will require complexity O(S/ϵ), where S is the

complexity of sampling from the Gibbs state. The above assumes log-depth

QRAM to be able to estimate the ⟨ziz j⟩v∈D term of Eq. (9.8). The complexity

of S will be poly(|V |)√tmix if a quantum simulated annealing approach is used,

or some hard-to-analyze quantity if the quantum annealing approach is used.

If the number of training samples is small, one can also sequentially compute

the sum over v ∈ D and avoid the assumption of log-depth QRAM, leading to

complexityO(S |D|/ϵ′) (where ϵ′ ≥ ϵ may be order-1). This must be carried out

for all |E| + |V | weights in the model, although these could be simultaneously

estimated to precision ϵ at cost Õ(
√
|E| + |V |/ϵ) samples, using methods from

[549], which leverage the quantum gradient estimation primitive. It is not clear

what value of ϵ is required in practice. Reference [1041] takes ϵ ∼ 1/
√
|D|, to

match the natural uncertainty coming from a finite number of training samples.

In this case, the overall complexity is dominated by

Õ
(
S ·

√
|V | + |E| ·

√
|D|

)
(9.10)

assuming log-depth QRAM, and

Õ
(
S ·

√
|V | + |E| · |D|

)
(9.11)

without log-depth QRAM (the precision for each training sample can be taken

as ϵ′ = O(1)). The linear dependence on |D| could potentially be mitigated

by first classically computing a “core set” D′ satisfying the requirements that

|D′| ≪ |D| and that replacing D with D′ causes minimal change to the loss

function in Eq. (9.7) [498].

Complexity of quantum graphical models: For QBMs, the dominant cost

comes from producing samples from the quantum Gibbs state for the sys-

tem in Eq. (9.9), that is, the state ρ ∝ e−HQBM , which can be accomplished

through methods for Gibbs sampling. Rigorous methods for Gibbs sampling

may scale exponentially in the size of the graph, without further assumptions.

Such scaling would likely not be tolerable in practice. However, Monte Carlo–

style methods for Gibbs sampling, which follow a similar approach as MCMC,

but in an inherently quantum way, may be more effective in this case. These

could have poly(|V |) scaling for some parameter settings, but must also have

exponential scaling in the worst case, as sampling low-energy Ising-model con-

figurations is known to be NP-hard.
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9.2 Quantum machine learning via energy-based models 167

One can also heuristically apply quantum annealing, beginning from a large

transverse field and reducing its strength slowly to some final nonzero value.

However, some hardware platforms may only admit global control over the

transverse field, preventing one from tuning the transverse-field strengths κi

individually. In any of these approaches, it is difficult to make any rigorous

statements about the Gibbs sampling complexity.

Existing resource estimates

There are no logical resource estimates for quantum annealing. However, [7,

116] discuss in detail how to embed the fully connected architecture of a RBM

into the 2D lattice architecture available on planar quantum annealers. Refer-

ence [116] reports an embedding ratio scaling which is roughly quadratic—that

is, a graphical model with |V | vertices requires O(|V |2) qubits to accommodate

the architectural limitations of the device. A proper resource estimation has not

been performed for the fault-tolerant algorithm of [1041].

Caveats

There are two main caveats to quantum approaches to training classical mod-

els, which apply to both the annealing and to the fault-tolerant setting. First,

classical heuristic algorithms, such as greedy methods or contrastive diver-

gence, often perform well in practice and are the method of choice for existing

classical analyses. These methods are also often highly parallelizable. If the

quantum algorithm offers a speedup over a slower, exact classical method, this

may not be relevant if the faster approximate classical methods are already

sufficient. Second, the situations where one might hope for the heuristic quan-

tum annealing approach to perform better might not be relevant problems, for

instance, in highly regular lattice-based problems.

A caveat of the QBM is that the gradients of the loss function are not exactly

related to sample averages, and imperfect workarounds, such as those proposed

in [30], must be pursued. Like many other situations in machine learning, the

resulting end-to-end solution is heuristic and evidence of its efficacy requires

empirical demonstration.

Comparable classical complexity and challenging instance sizes

For classical models, an exact computation of the gradients would scale expo-

nentially in the size of the graph, as O(|D|2|V |) for the gradient of a single pa-

rameter. Approximate methods based on simulated annealing or other MCMC

methods would scale as O(S c/ϵ
2), where S c is the classical sample time, scal-

ing as S c = poly(|V |)tmix. On the other hand, these methods can also be im-

plemented heuristically at reduced cost (e.g., contrastive divergence, where

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.011
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 26 Jun 2025 at 02:04:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.011
https://www.cambridge.org/core


168 9. Machine learning with classical data

one does not wait for the chain to mix), and they can also be implemented

on parallel architectures. For instance, in [618], an architecture was proposed

to train deep BMs efficiently. Experiments demonstrated that heuristic train-

ing methods could be carried out for graphs of size 1 million in 100 seconds

on field-programmable gate arrays available in 2010. Much larger sizes would

be accessible to a scaled-up version of the same architecture on modern hard-

ware. It is unlikely that any exact method, quantum or classical, could match

this efficiency.

For the quantum models, the classical complexity of sampling from the

Gibbs state of the model would be exponential in the graph size |V |. Thus,

training these models would likely not be pursued classically.

Speedup

For the classical models, the speedup can be quadratic in most of the param-

eters: producing a sample can in some cases be sped up quadratically, and

the number of samples required to achieve a certain precision also enjoys a

quadratic speedup (e.g., tmix to
√

tmix and O(1/ϵ2) to O(1/ϵ)). The methods

that give these provable quadratic speedups are based on primitives such as

amplitude amplification, where superquadratic speedups are not possible with-

out exploiting additional structure. Larger superpolynomial speedups are only

possible under optimistic assumptions about the success of heuristic quantum

annealing approaches at producing samples faster than classical approaches.

For the quantum models, the speedup is technically exponential, assuming

that for the models considered, quantum algorithms for Gibbs sampling scale

efficiently while approximate classical methods (e.g., tensor networks) scale

exponentially. Indeed, it was shown in [1042] that certain QBMs are BQP-

complete, in the sense that its ground state can be efficiently prepared on a

quantum computer, and any quantum computation (including those with ex-

ponential speedup) can be encoded into its ground state. However, this con-

struction is artificial, and it has yet to be demonstrated that there are specific

real-world machine learning tasks where these models offer a speedup over the

best available classical machine learning model for the same task.

Outlook

While energy-based models are naturally in a form that can readily be ex-

tended to the quantum domain, there still lacks decisive evidence of quantum

advantage for a specific end-to-end classical machine learning problem. There

remains some uncertainty on the outlook of these approaches due to the cen-

trality of heuristic quantum approaches. One may hold out hope that these

heuristics could outperform classical heuristics in some specific settings, but
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9.3 Tensor PCA 169

the success of classical heuristics and effectiveness of approximate classical

approaches present a formidable barrier to achieving any quantum advantage

in this area.

Further reading

We refer the reader to [916] for more information on quantum approaches to

energy-based models.

9.3 Tensor PCA

Overview

Inference problems play an important role in machine learning. One of the

most widespread methods is principal component analysis (PCA), a technique

that extracts the most significant information from a stream of potentially noisy

data. In the special case where the data is generated from a rank-1 vector plus

Gaussian noise—the spiked matrix model—it is known that there is a phase

transition in the signal-to-noise ratio [536]: above the transition point, the

principal component can be recovered efficiently, while below the transition

point, the principal component cannot be recovered at all. In the tensor ex-

tension of the problem, there are two transitions. One information theoretical,

below which the principal component cannot be recovered, and another com-

putational, below which the principal component can be recovered, but only

inefficiently, and above which it can be recovered efficiently. Thus, the tensor

PCA problem offers a much richer mathematical setting, which has connec-

tions to optimization and spin glass theory; however, it is yet unclear if the ten-

sor PCA framework has natural practical applications. A quantum algorithm

[509] for tensor PCA was proposed which has provable runtime guarantees for

the spiked tensor model; it offers a potentially quartic speedup over its clas-

sical counterpart and also efficiently recovers the signal from the noise at a

smaller signal-to-noise ratio than other classical methods. This algorithm was

further developed in [904] and extended to also give a quartic speedup for a

related discrete optimization problem called “planted noisy kXOR,” which is

argued to have possible relevance in cryptography.

Actual end-to-end problem(s) solved

Consider the spiked tensor problem. Let v ∈ RN (or ∈ CN)11 be an unknown

signal vector, and let p ∈ N be a positive integer. Construct the tensor

T = λv⊗p + V,

11 Reference [509] provides reductions between real and complex cases.
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170 9. Machine learning with classical data

where V is a random tensor in RN p

(or CN p

), with each entry drawn from a

normal distribution with mean 0 and variance 1. The vector v is assumed to

have norm
∑

j v∗
j
v j =

√
N and can be identified with a quantum state. The

quantity λ is the signal-to-noise ratio.

The main question we are interested in is for what values of λ can we de-

tect or reconstruct v from (full) access to T , and how efficiently can this be

done? In [874], it was shown that the maximum likelihood solution wML to the

objective function

wML = argmax
w∈Cn

⟨T,w⊗p⟩

will have high correlation with v as long as λ ≫ N(1−p)/2, where ⟨·, ·⟩ de-

notes the standard dot product after writing the N p entries of the tensor as a

vector. However, the best known efficient classical algorithm [1033] requires

λ ≫ N−p/4 to recover an approximation of v. Using the spectral method, that

is, mapping the tensor T to a N p/2 × N p/2 matrix and extracting the maximal

eigenvalue, recovery can be done in time complexity O(N p), ignoring logarith-

mic prefactors.

Hastings [509] proposes classical and quantum algorithms to solve the

spiked tensor model by first mapping T to a bosonic quantum Hamiltonian

with N modes, nbos bosons, and p-body interactions, where nbos is a tunable

integer parameter satisfying nbos > p/2

HPCA(T ) =
1

2


N∑

µ1,...,µp=1

Tµ1,...,µp


p/2∏

i=1

a†µi




p∏

j=1+p/2

aµ j

 + h.c.

 , (9.12)

where h.c. stands for Hermitian conjugate. Here, the operators aµ and a
†
µ are

annihilation and creation operators of a boson in mode µ, and we restrict to

the sector for which
∑
µ a
†
µaµ = nbos. As nbos increases, the number of particles

increases and the complexity of the algorithm grows, but the threshold for λ

above which recovery is possible also decreases.

Hastings shows that the vector v can be efficiently recovered from a vector in

the large energy subspace of HPCA(T ) when the largest eigenvalue of HPCA(T )

is at least a constant factor larger than Emax, where Emax corresponds to the

case where there is no signal. It is shown that, roughly,

Emax ∼ n
p/4+1/2

bos
N p/4 ,

E0 ≈ λ(p/2)!

(
nbos

p/2

)
N p/2 ≈ λn

p/2

bos
N p/2 ,

where E0 is the maximum eigenvalue of HPCA(T ). Thus, if λ ≫ N−p/4, there

will be a gap between E0 and Emax, and this gap grows as nbos increases. This
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9.3 Tensor PCA 171

enables the quantum algorithm to recover the signal even for signal strength as

weak as λ ≫ N−p/4.

Hastings considers the case where p is constant and N grows, and assumes

that nbos = O(Nθ) for some p-dependent constant θ > 0 chosen sufficiently

small. In fact, ultimately, it is determined that in the recovery regime λ ≫
N−p/4, the parameter nbos need only scale as polylog(N)(N−p/4/λ)4/(p−2). In

any case, terms in the complexity O(N p) are dominated by terms O(Nnbos ).

The idea of mapping the order-p tensor T to an order-2 tensor (i.e., a ma-

trix) HPCA, and then solving the planted inference problem by (classically)

extracting spectral information from HPCA, was also independently discovered

in [1033], where it is called the “Kikuchi method.” There, a tunable parameter

ℓ plays the role of nbos, although the two formulations offer different intuitions

to motivate the method; their relationship is discussed in detail in [904].

Dominant resource cost/complexity

Hastings shows that the dominant eigenvector of HPCA can be classically ex-

tracted in Õ(Nnbos ) time via the power method, where the tilde indicates that we

ignore polylogarithmic factors.

He proposes three quantum algorithms for the same problem. The first runs

quantum phase estimation on a random state. Since the random state will

have squared overlap Ω(N−nbos ) with the high-energy subspace, the expected

number of repetitions of phase estimation is O(Nnbos ). The second algorithm

proposes to further use amplitude amplification, reducing the complexity to

O(Nnbos/2). The third algorithm further improves the complexity by choosing a

specific initial high-energy state, and showing that the overlap with the state

scales as Ω(N−nbos/2), which combined with amplitude amplification, leads to

a O(Nnbos/4) complexity. As discussed above, the estimates assume that factors

of O(N p) can be ignored, since they are negligible with respect to the query

complexity of NO(nbos).

This constitutes a quartic speedup over the classical spectral algorithm act-

ing on HPCA for the same choice of nbos that is also presented in [509]. Since

the ansatz state is a product state, it can be prepared efficiently.

Hastings further argues that the Hamiltonian simulation of HPCA within the

phase estimation subroutine can be accomplished by viewing HPCA as a sparse

or local matrix. Specifically, we can view HPCA as a second-quantized Hamil-

tonian with N registers storing a O(log(nbos)))-bit number representing the oc-

cupancy of each mode. The total number of qubits needed is O(N log(nbos)).

Each of the O(N p) terms in Eq. (9.12) corresponds to a single nonzero entry of

one row of HPCA in this basis, so the O(nN
bos

) × O(nN
bos

) matrix HPCA is O(N p)-

sparse. Alternatively, a more compact representation would be to view HPCA in
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172 9. Machine learning with classical data

a first-quantized picture, allocating nbos registers each storing a O(log(N)) bit

number corresponding to which mode each of the nbos bosons are in—the total

number of qubits needed is O(nbos log(N)). In order to enforce permutational

symmetry, each term in Eq. (9.12) would decompose into (p/2)!
(

nbos

p/2

)
separate

terms that act locally on p/2 of the registers. This is closer to the approach

taken in the quantum algorithm of [904].

Either way, we can efficiently perform Hamiltonian simulation (e.g., by first

constructing a block-encoding of the sparse or local Hamiltonian) to perform

quantum phase estimation at total gate complexity poly(N, nbos) (here inter-

preting p = O(1)), which is negligible compared to Nnbos .

Caveats

The spiked tensor model does not immediately appear to be related to any

practical problems. Additionally, efficient recovery requires that the signal-to-

noise ratio be rather high, which may not occur in real-world settings, and

when it does, it is not clear that formulating the problem as a tensor PCA

problem will be the most efficient path forward. Relatedly, while the runtime

of the algorithm scales subexponentially in N, for large values of nbos, its N

dependence of O(Nnbos ) may still lead to a practically intractable algorithm.

Comparable classical complexity and challenging instance sizes

The algorithms proposed in [509] (see also [1033, 904]) improve on other spec-

tral methods for the spiked tensor model, whenever nbos > p/2 for sufficiently

large p. The threshold for which the new algorithms beat the older ones de-

creases as nbos increases, although the complexity of the algorithm increases

with nbos.

Speedup

The quartic speedup over the classical power method is achieved by combining

a quadratic speedup from amplitude amplification with a quadratic speedup

related to choosing a clever initial state for phase estimation. The existence of

the clever initial state is essential for the beyond-quadratic speedup, and it has

been related [904] to the BQP-hardness of the guided local/sparse Hamiltonian

problem [419].

As discussed above, there is no readout issue, as the vector v can be

efficiently recovered from the single particle density matrix obtained from

the eigenvector of HPCA(T ). The quantum algorithm has O(N log(nbos)) space

complexity, which is an exponential improvement over the classical spectral

algorithm presented in [509] for the same problem. Furthermore, the quartic

speedup in time and exponential speedup in space is possible even in the
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9.4 Topological data analysis 173

absence of a large-scale quantum random access memory (QRAM), since

the overall runtime of the algorithm is much larger than the size of the

input dataset (O(N p)), and linear (rather than logarithmic) data access cost is

tolerable.

In [904], the quartic speedup was extended to apply generally to instances

where the “Kikuchi method” is used; improvements to the classical algorithm

within this framework would imply commensurate improvements to the quan-

tum algorithm to maintain the quartic relationship.

Outlook

The quartic speedup is very compelling, as beyond-quadratic speedups are rare

in quantum algorithms. It is also appealing that the speedup also does not nec-

essarily rely upon an assumption of large-scale QRAM. However, it is cur-

rently unclear how applicable this quartic speedup can be in real-world situa-

tions.

Further reading

We refer the reader to [904] for a discussion on the intuition and scope of

the quartic speedup and additional technical details. We also note that [1091]

has studied the quantum approximate optimization algorithm (QAOA) applied

to the spiked tensor model, although the result is not directly comparable as

it is only shown to succeed for larger values of λ, where additional classical

algorithms are also successful.

9.4 Topological data analysis

Overview

In topological data analysis (TDA), we aim to compute the dominant topolog-

ical features (connected components and k-dimensional holes), known as Betti

numbers, of N data points sampled from an underlying topological manifold or

of a graph with N vertices. These features may be of independent interest (e.g.,

the number of connected components in the matter distribution in the universe)

or can be used as generic features to compare datasets. We refer to [519] for a

recent survey of applications of TDA.

Quantum algorithms for TDA leverage the ability of a register of qubits to

efficiently represent a quantum state that stores all cliques in the clique com-

plex built on the topological manifold. The textbook classical algorithm ex-

actly computes the Betti numbers, but its complexity scales polynomially with

the number of cliques in the complex, which may grow combinatorially with
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174 9. Machine learning with classical data

(N, k). In contrast, quantum algorithms naturally estimate Betti numbers nor-

malized by the number of cliques in the complex, and their complexity scales

polynomially in (N, k) for clique-dense complexes. If the error is rescaled so as

to be a constant additive error estimate for the Betti number, currently known

quantum algorithms provide a quadratic speedup over the best classical al-

gorithms for the equivalent problem. For relative-error estimates of the Betti

number, quartic and superpolynomial speedups have been shown for certain

families of graphs. In addition, a number of complexity-theoretic results have

been shown that provide evidence that estimating normalized Betti numbers

is efficient for quantum computers, but classically hard. Nevertheless, find-

ing practical applications for relative error estimates of high-dimensional Betti

numbers is an open research question.

Actual end-to-end problem(s) solved

We construct a simplicial complex built from N data points sampled from an

underlying manifold. The simplicial complex is a higher-dimensional general-

ization of a graph, constructed by connecting data points within a given dis-

tance of each other. A simplicial complex constructed in this way is known

as a clique complex or a Vietoris–Rips complex. We can consider a sequence,

known as a filtration, of complexes constructed by connecting points at in-

creasingly large distances (the distance is referred to as the length scale of the

clique complex). We denote the number of k-simplices in the complex at length

scale i as |S i
k
|.

We then compute the Betti numbers βi
k

(the number of k-dimensional holes

at a given length scale i) or the persistent Betti numbers β
i, j

k
(the number of k-

dimensional holes present at both scale i and scale j) of the simplicial complex.

The persistent Betti numbers β
i, j

k
are used to infer the dominant topological fea-

tures, considered to be those with the longest persistence as the length scale is

increased. The births and deaths of features are typically plotted on a “persis-

tence diagram.” Different datasets can be compared by using stable distance

measures between their diagrams, or by vectorizing the diagrams and using

kernel methods or neural networks. For graphs, there is only a single length

scale i, and so βi
k

is the quantity of interest. For statements common to both β
i, j

k

and βi
k
, we will use the notation β∗

k
. Typical classical applications consider low

values of k, motivated primarily by computational cost and interpretability of

the resulting topological features.

Dominant resource cost/complexity

Quantum algorithms naturally estimate β∗
k
/|S i

k
| to additive error ϵ [709, 469,

514, 755, 143]. For a complex built from N data points, we can either use N
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9.4 Topological data analysis 175

qubits to encode the simplicial complex, or O(k log(N)) qubits when k ≪ N.

Quantum algorithms have two subroutines:

(i) Preparing a state that encodes the simplices present in the simplicial

complex. This reduces to finding k-simplices present in the complex

at the given length scale (using either classical rejection sampling or

Grover’s algorithm / amplitude amplification). Using Grover’s algorithm

this scales as
((

N

k+1

)
/|S i

k
|
)1/2

. More efficient clique-finding methods can

be used for special classes of graphs [474].

(ii) Projecting onto the eigenspace of an operator that encodes the topologi-

cal features of the complex in the amplitude of the quantum state (using

either quantum phase estimation or quantum singular value transforma-

tion). This introduces a dependence on the gap(s) Λ of the operator(s)

used to encode the topology.

The most efficient approaches use amplitude estimation to compute the nor-

malized (persistent) Betti number. The most expensive subroutines within the

quantum algorithms are the membership oracles that determine if a given sim-

plex is present in the complex, the cost of which we denote by mk. In the clas-

sically challenging clique-dense regime, the overall cost of the most efficient

known quantum algorithms for computing β∗
k
/|S i

k
| to error ϵ is approximately

Õ


mk

ϵ

√
β∗

k

|S i
k
|



√√(
N

k+1

)

|S i
k
|
+

poly(N, k)

Λ



 .

When we choose ϵ = ∆/|S i
k
| (i.e., computing β∗

k
to constant additive error ∆)

the complexity is

Õ


mk

√
β∗

k

∆



√(
N

k + 1

)
+

√
|S i

k
| · poly(N, k)

Λ




.

It is clear that regardless of how |S i
k
| and β∗

k
scale, the runtime is polynomial in(

N

k+1

)
.

When we choose ϵ = rβ∗
k
/|S i

k
| (i.e., computing β∗

k
to relative error r) the

complexity is

Õ


mk

r



√√(
N

k+1

)

β∗
k

+

√
|S i

k
|

β∗
k

· poly(N, k)

Λ



.

For clique-dense complexes with large Betti numbers, where β∗
k

and |S i
k
| are

only polynomially smaller than
(

N

k+1

)
, the runtime is polynomial in N and k.
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176 9. Machine learning with classical data

Existing resource estimates

In [755], the gate depth (and non-Clifford gate depth) of all subroutines (in-

cluding explicit implementations of the membership oracles) was established

for computing β
i, j

k
and βi

k
. However, that reference did not consider a final com-

pilation to T /Toffoli gates for concrete problems of interest.

In [143], the Toffoli complexity of estimating βi
k

was determined. The Toffoli

complexity for estimating βi
k

to relative error for a family of graphs with large

βi
k

was determined for k = 4, 8, 16, 32 and N ≤ 104. The resulting Toffoli

counts ranged from 108 (N = 100, k = 4) to 1017 (N = 104, k = 32), using

O(N) logical qubits.

Caveats

Quantum algorithms naturally solve a different problem than the textbook clas-

sical algorithm solves. Namely, the quantum algorithm estimates β∗
k
/|S i

k
| to er-

ror ϵ, with runtime poly(ϵ−1), for a single length scale (pair of length scales).

The algorithm must be repeated for all length scales to compute the persis-

tence diagram. In contrast, the textbook classical algorithm for dimension k

and length scale j exactly computes the full persistence diagram for all β
i, j′≤ j

k′≤k
.

Quantum algorithms (and classical algorithms based on the power method

discussed below) depend on the eigenvalue gap(s) Λ of the operator(s) that

encode the topology. The scaling of these gaps has not been studied for typical

applications.

Finally, typical classical applications consider dimension k ≤ 3, and appli-

cations of high-dimensional Betti numbers are not yet known.

Comparable classical complexity and challenging instance sizes

While classical algorithms are technically efficient for constant dimension k,

they are limited in practice. For a number of benchmark calculations on sys-

tems with up to 109 simplices, we refer to [819].

The textbook classical algorithm, which for dimension k and length scale j

exactly computes the full persistence diagram for all β
i, j′≤ j

k′≤k
(rather than a sin-

gle Betti number), has a worst-case scaling of O(|S j

k,k+1
|ω) where ω ≤ 2.37 is

the exponent of matrix multiplication, and we have defined a shorthand nota-

tion |S j

k,k+1
| := |S j

k
| + |S j

k+1
| [764]. In practice, the textbook classical algorithm

is observed to scale as O(|S j

k,k+1
|) due to sparsity in the complex [764]. More-

over, for problems that do not naturally have this sparse structure, well-studied

classical heuristics can be applied to sparsify the complex [765].

Classical algorithms based on the power method [403] can achieve worst-

case scaling of O(|S i
k
|) for computing individual Betti numbers βi

k
(an improve-
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9.4 Topological data analysis 177

ment over the worst-case scaling of the textbook algorithm above). The classi-

cal power method scales approximately as

Õ

|S i

k
|(Nkβi

k
+ (βi

k
)2)λmax

Λ
log

(
1

ϵ

)

to compute βi
k

to additive error ϵ, where λmax is a bound on the largest eigen-

value of the operator encoding the topology. The power method has recently

been extended to compute persistent Betti numbers, with a similar complex-

ity [755]. Although the power method for persistent Betti numbers is more

efficient than the worst-case performance of the textbook classical algorithm

described above, it must be repeated for each pair of length scales to compute

the persistence diagram, which is a disadvantage in practice.

Recently, randomized classical algorithms have been proposed for estimat-

ing βi
k
/|S i

k
| to additive error [143, 53]. The algorithm of [53] scales as

(
N

λmax

)O
(

1√
Λ

log( 1
ϵ )

)

· poly(n)

assuming that we can efficiently sample and check k-simplices. When k =

Ω(N), the algorithm runs in polynomial time for clique complexes with con-

stant gapΛ and error ϵ = Ω(1/poly(N)) (or ϵ constant andΛ = Ω(1/ log2(N))).

Speedup

As discussed above, quantum algorithms naturally compute β∗
k
/|S i

k
| to additive

error ϵ, with runtime poly(ϵ−1). A number of complexity-theoretic results

have been shown for this problem. Reference [474] showed that estimating

the kernel dimension of general Hamiltonians is DQC1-hard.12 In [214], it

was shown that estimating normalized quasi-Betti numbers (which accounts

for miscounting low-lying but nonzero singular values) of general coho-

mology groups is also DQC1-hard. The hardness of estimating normalized

(persistent) Betti numbers of a clique complex, subject to a gap assumption

of Λ = Ω(1/poly(N))—which is the problem solved by existing quantum

algorithms—has not been established (see [214, Section 1.1]).

Reference [903] showed that determining if the Betti number of a (clique-

dense) clique complex is nonzero is NP-hard in general. This was superseded

by the results of [319, 620] which showed that this problem is QMA1-hard.

We can consider the speedup of quantum algorithms for TDA in two

regimes, constant additive error and relative error:

12 DQC1 is a complexity class that is physically motivated by the “one clean qubit model” [635].
This model has a single pure state qubit which can be initialized, manipulated, and measured
freely, as well as N − 1 maximally mixed qubits.
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178 9. Machine learning with classical data

• For constant additive error, the most natural comparison is between the

quantum algorithm and classical algorithms based on the power method.

Quantum algorithms are able to achieve a quadratic speedup over the clas-

sical power method in the clique-dense regime [403, 755]. An exponential

speedup is not possible for general graphs, due to the aforementioned NP-

and QMA-hardness results [903, 319, 620].

• For the task of computing βi
k

to relative error, graph families have been iden-

tified for which the quantum algorithm provides superpolynomial [143] or

quartic [143, 903] speedups over the classical power method. Recently in-

troduced randomized classical algorithms [143, 53] may scale efficiently

for this same task of estimating βi
k

to relative error. For example, when

k = Ω(N) the algorithm of [53] runs in polynomial time for clique com-

plexes with constant gap Λ and error ϵ = Ω(1/poly(N)) or ϵ constant and

Λ = Ω(1/ log2(N)). These are more restrictive conditions than quantum al-

gorithms (which can simultaneously have bothΛ, ϵ = Ω(1/poly(N))). These

features will not occur for all graphs.

NISQ implementations

In [13], a NISQ-amenable compilation of the quantum algorithm described

above was proposed, trading deep quantum circuits for many repetitions of

shallower circuits, which comes at the cost of worsening the asymptotic scal-

ing of the algorithm (see the table in [755] for a quantitative comparison). A

proof-of-principle experiment was performed demonstrating this method [13].

In [214], it was shown that the TDA problem can be mapped to a fermionic

Hamiltonian, and it was proposed to use the variational quantum eigensolver

to find the ground states of this Hamiltonian (the degeneracy of which gives

βi
k
). It is unclear what ansatz circuits one should use to make this approach

advantageous compared to classical algorithms, as naive (e.g., random) trial

states would have exponentially small overlap with the target states.

Outlook

The complexity-theoretic results that provide evidence for the classical hard-

ness and quantum tractability of estimating normalized (persistent) Betti num-

bers suggest that quantum algorithms for TDA may be an interesting area to

search for new quantum speedups.

Nevertheless, it is important to emphasize that current quantum algorithms

do not provide more than quadratic speedups for the practical problem solved

in current TDA applications, and complexity-theoretic results suggest that ex-

ponential speedups will not be possible for general graphs for this task.
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9.5 Quantum neural networks and quantum kernel methods 179

As such, an important open problem is to identify applications for the task

naturally solved by quantum computers (providing relative error estimates for

clique-dense graphs with large Betti numbers). If new applications can be iden-

tified for datasets that are both clique-dense and have large high-dimensional

(persistent) Betti numbers (that are practically interesting to compute to rela-

tive error), then quantum algorithms may be of practical relevance.

9.5 Quantum neural networks and quantum kernel methods

Overview

In this section, we discuss two collections of proposals to use a quantum com-

puter as a platform to execute machine learning models, often known as quan-

tum neural networks and quantum kernel methods. Some early ideas in this

space were motivated by the constraints of near-term, “NISQ” [843] devices.

Despite this, not all subsequent proposals are necessarily implementable on

NISQ devices. Moreover, the proposals need not be restricted to running on

NISQ devices, but could also be run on devices with explicit quantum error

correction. For simplicity, we present concrete examples based on supervised

machine learning tasks. However, outside of these examples, we keep our dis-

cussion more general and note that the techniques are also applicable to other

settings, such as unsupervised learning and generative modeling.

Given access to some data, our goal is to obtain a function or distribution

that emulates certain properties of the data, which we will call a hypothesis.

This is obtained by first defining a hypothesis set or model family, and using a

learning algorithm to output a hypothesis from this set. For example, in super-

vised learning, we have data xi ∈ X that have respective labels yi ∈ Y . The goal

is then to find a hypothesis function h : X → Y that approximates the “true”

unknown underlying labeling function, such that it correctly labels previously

unseen data with high probability. Note that we have left the exact descriptions

of the sets X and Y ambiguous. They could, for instance, correspond to sets

of numbers or vectors. More generally, this description encompasses the pos-

sibility of operating on quantum data such that each xi or yi corresponds to a

quantum state.

Quantum neural networks and quantum kernel methods use a quantum com-

puter to assist in constructing the model family, in place of a classical model

such as a neural network. Specifically, here we prepare some quantum state(s)

encoding the data and measure some observable(s) to ultimately construct

model predictions. We first elaborate on both quantum neural networks and

quantum kernel methods.
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180 9. Machine learning with classical data

Quantum neural networks

Actual end-to-end problem(s) solved: Given data x, we consider a model

constructed from a parameterized quantum circuit:

hθ(x) = f
(
tr
[
ρ(x, θ)O

])
, (9.13)

where ρ(x, θ) is a quantum state (output of some parameterized quantum cir-

cuit) that encodes both the data x as well as a set of adjustable parameters θ,

O is some chosen measurement observable, and f is some function that can be

enacted as classical postprocessing on the measurement result (we remark that

O itself can also be trainable [475], but we do not explicitly indicate this in

the notation for simplicity of exposition). As a basic example, if x corresponds

to a classical vector, ρ(x, θ) could correspond to initializing in the |0⟩⟨0| state

and applying some data-encoding gates U(x) followed by parameterized gates

V(θ). Alternatively, the data itself could be a quantum state, and a more general

operation in the form of a parameterized channelV(θ) could be applied. There

is also no a priori reason why data encoding and trainable gates need to be

applied each once in separate steps rather than in a mixed or repeated fashion.

The model is optimized via a learning algorithm which aims to find the op-

timal parameters θ∗ by minimizing a loss function. For instance, in supervised

learning, given some labeled training dataset T = {(xi, yi)}, a suitable choice of

loss should compare how close each hθ(xi) is to the true label yi for all data in

T . The quality of the model can then be assessed on a set of previously unseen

data outside of T . It is important to pause here and reflect that an optimized loss

does not guarantee good performance on unseen data. This is referred to in the

literature as the gap between empirical and total risk, or simply the generaliza-

tion gap/error. Conversely, a small generalization error alone is not sufficient

to guarantee good performance (one should then also ask for a good loss on

training data).

We remark that the setting we presented has substantial overlap with the

setting of variational quantum algorithms (VQAs)—indeed, a quantum neural

network can be thought of as a VQA that incorporates data—thus, the same

challenges and considerations that apply to VQAs also apply here. There will

additionally be extra considerations due to the role of the data.

Dominant resource cost/complexity: The encoding of data x and parame-

ters θ in Eq. (9.13) should be sufficiently expressive that it (i) leads to good

performance on data and (ii) is (at minimum) not efficiently simulable classi-

cally [243], if one is to seek quantum advantage. These requirements set some

criteria for minimum circuit complexity.
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9.5 Quantum neural networks and quantum kernel methods 181

The learning algorithm to find optimal parameters is usually performed by

classical heuristics, such as gradient descent, and can have significant time

overhead, requiring evaluation of Eq. (9.13) at many parameter values (see

Chapter 20 on VQAs for more details).

The size of the training dataset required can also have direct implications for

runtime, with a larger amount of training data typically taking a longer time

to process. Reference [235] proves that good generalization can be achieved

with the size of the training data |T | growing in tandem with the number of

adjustable parameters M. Specifically, it is shown that the generalization error

with high probability scales as O(
√

M log(M)/|T |). Thus, only a mild amount

of data is required for good generalization. We stress again that this alone does

not say anything about the ability for quantum neural networks to obtain low

training error.

Scope for advantage: Quantum neural networks could achieve advantage in

a number of ways, for example, by improving on runtime or by using less

training data. In supervised learning settings, generalization performance is a

separate consideration and an additional domain for possible advantage. Ma-

chine learning with quantum neural networks has yielded some promising per-

formance empirically and encouraging theoretical guarantees exist for certain

stages of the full pipeline in restricted settings [901, 234, 235, 700, 1070] (loss

minimization can remain a challenge [663, 243], see Chapter 20 on VQAs

again for more details). Nevertheless, there are currently no practical use cases

with full end-to-end performance guarantees in the same way that we have

for other quantum algorithms. However, due to the heuristic nature of classi-

cal machine learning, one may debate whether such a guarantee is possible,

or even if seeking theoretical quantum advantage in the traditional algorithmic

sense is the most appropriate goal [915].

Quantum kernel methods

Actual end-to-end problem(s) solved: Quantum kernel methods are a quan-

tum instance of a class of techniques known as kernel methods, of which sup-

port vector machines are a prominent example. We first briefly review the gen-

eral framework. Given a dataset T = {xi} ⊂ X, the model can be written as

hα(x) =
∑

i : xi∈T
αik(x, xi) , (9.14)

where α = (α1, α2, . . .) is a vector of parameters to be optimized, and

k(x, x′) : X × X → R is a measure of similarity known as the kernel function.

This model has several theoretical motivations:
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182 9. Machine learning with classical data

• The matrix with entries Ki j = k(xi, x j) is usually defined to be symmetric

positive semidefinite for any choice of {x1, . . . , xm} ⊆ X and k(xi, x j). By

Mercer’s theorem, it is thus an inner product of feature vectors ϕ(xi), ϕ(x j)

which embed the data xi and x j in a (potentially high-dimensional) Hilbert

space. Linear statistical methods can be used to learn a linear function in this

high-dimensional space, only using the information of the inner products

k(xi, x j) and never having to explicitly evaluate ϕ(xi) and ϕ(x j), which can

be much harder to compute.

• The Representer Theorem [905] states that the optimal model over the

dataset T (optimal for T , though not necessarily for expanded datasets)

can be expressed as a linear combination of kernel values evaluated over

T—that is, the optimal model exactly takes the form in Eq. (9.14). This is

known as the kernel trick.

• Further, if the loss function is convex, then the dual optimization program to

find the optimal parameters α∗ is also convex [913].

A key question that remains is then how to choose a kernel function. Quantum

kernel methods embed data in quantum states, and thus evaluate k(xi, x j) on a

quantum computer. Similar to quantum neural networks or any other quantum

model, the quantum kernel should be hard to simulate classically [243]. As an

example, we present two common choices of quantum kernel (see [425] for a

more general discussion).

• The fidelity quantum kernel

kF(x, x′) = tr[ρ(x)ρ(x′)] , (9.15)

which can be evaluated either with a SWAP test or, given classical data

with unitary embeddings, it can be evaluated with the overlap circuit

|⟨0|U(x′)†U(x)|0⟩|2.

• The fidelity kernel can run into issues for high-dimensional systems (in-

creasing qubit count), as the inner product in Eq. (9.15) can be very small

for x , x′. This motivated the proposal of a family of projected quantum

kernels [542], of which one example is the Gaussian projected quantum ker-

nel

kP(x, x′) = exp

−γ
n∑

ℓ=1

∥∥∥ρℓ(x) − ρℓ
(
x′
)∥∥∥2

2

 , (9.16)

where ρℓ(x) is the reduced density matrix of the n-qubit state ρ(x) on qubit

ℓ, and γ is a hyperparameter.
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9.5 Quantum neural networks and quantum kernel methods 183

Dominant resource cost/complexity: During the optimization of the dual

program to find the optimal parameters α∗, O(|T |2) expectation values cor-

responding to the kernel values in Eq. (9.14) need to be accurately evalu-

ated, as well as when computing hα∗ (x) for a new data point x with the opti-

mized model. This can lead to a significant overhead in applications with large

datasets. Alternatively, the primal optimization problem has reduced complex-

ity in the dataset size, but greatly exacerbated dependence on the error [415].

The gate complexity is wholly dependent on the choice of data encoding lead-

ing to the kernel function. As the kernel function should be classically nonsim-

ulable, this sets some minimum requirements in terms of circuit complexity.

However, in the absence of standardized techniques for data encoding, it is

hard to make more precise statements.

Scope for advantage: In [704], the authors demonstrate that using a particu-

lar constructed dataset and data embedding, concrete quantum advantage can

be obtained for a constructed machine learning problem based on the discrete

logarithm problem. The original work was based on the fidelity kernel, but a

similar advantage can also be more simply obtained for the projected quantum

kernel [542] and adapted beyond kernel methods to the reinforcement learning

setting [573]. Beyond this, concrete advantage (up to similar computational as-

sumptions) can be shown more generally for any learning problem where the

underlying (unknown, to be learned) labeling function constitutes a BQP-hard

family [473]. While great strides have been made in understanding the com-

plexity of quantum kernel methods [88, 542], at present there do not yet exist

examples of explicit end-to-end theoretical guarantees of advantage for classi-

cal data relevant for a real-world problem. As with quantum neural networks,

it may be debated whether or not this is a reasonable question for theoretical

research efforts.

Caveats

One consideration we have not discussed so far is how to encode classical data

into a quantum circuit, which is a significant aspect of constructing the quan-

tum model. There are many possibilities, such as amplitude encoding or en-

coding data into rotation angles of single-qubit rotations (see, e.g., [711, 513,

547, 664]). While certain strategies are popular, there is no universal strategy.

In general, it is unclear what is the best choice for a given problem at hand, and

thus selecting the data-encoding strategy can itself be a heuristic process. The

same question extends to the choice of quantum neural network or quantum

kernel. While certain choices may perform well in specific problem instances,
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184 9. Machine learning with classical data

there is at present a lack of strong evidence why such approaches may be ad-

vantageous over their classical counterparts in general.

While optimization of parameterized quantum circuits is predominantly a

concern for quantum neural networks, the search for good quantum kernels

has also motivated proposals of trainable kernels [547, 414, 436] where a pa-

rameterized quantum circuit is used to construct the quantum kernel (note that

this is distinct from the “classical” optimization of α in Eq. (9.14)). In the

case that the parameter optimization process is performed using heuristics, it

is subject to the same challenges and considerations that arise with VQAs (see

Chapter 20 for more details).

Finite statistics is an important consideration for both settings. Where there

is optimization of parameterized quantum circuits, one must take care to avoid

the barren plateau phenomenon [663] (again, see Chapter 20 for more details

and further references). Analogous effects can also occur in the kernel setting

[655], which can arise even purely due to the data-encoding circuit [542, 988].

Outlook

The use of classical machine learning models is generally heuristic, guided

by empirical evidence or sometimes physical intuition. Despite this, classi-

cal machine learning has found remarkable success in solving many practi-

cal problems of interest. The quantum techniques outlined in this section also

broadly follow this approach (although theoretical progress has also been sub-

stantial in certain areas), and there is no a priori reason why they cannot also

be useful. Nevertheless, it can be challenging to make concrete predictions

for quantum advantage, particularly for learning problems with classical data

(see [704, 473] as some exceptions). For practical problems this is exacerbated

by our limited analytic understanding for end-to-end applications, even in the

fully classical setting. Indeed, it may ultimately be challenging to have the

same complete end-to-end theoretical analysis that other quantum algorithms

enjoy, aside from a few select examples [915]. Within the realm of quan-

tum data, there appears to be ripe potential for concrete provable advantage

[543, 265, 236], however, this is beyond the scope of this section.

Further reading

We refer the reader to [913, 547] for pedagogical expositions of quantum ker-

nel methods, to [118, 241] for comprehensive reviews of quantum neural net-

works, and to [242] for a review of quantum machine learning models at large,

including an exposition of machine learning with quantum data.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.011
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 26 Jun 2025 at 02:04:17, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.011
https://www.cambridge.org/core

