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GROUP RINGS WHICH ARE v-HC ORDERS AND KRULL
ORDERS
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Let R be a ring and G a polycyclic-by-finite group. In this paper, it is determined, in terms of properties of R
and G, when the group ring R[G] is a prime Krull order and when it is a price v-HC order. The key
ingredient in obtaining both characterizations is the first author’s earlier study of height one prime ideals in
the ring R[G].
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1. Introduction

Let R be a prime Goldie ring and let G be a polycyclic-by-finite group. The purpose
of this paper is to characterise those group rings R[G] which are prime Krull orders in
the sense of [5], and also those which are prime v-HC orders. The precise definition of
the latter class is given in Section 2, but as a rough guide it is worth bearing in mind
the following analogy: Noetherian v-H orders stand in the same relation to Noetherian
maximal orders as do hereditary Noetherian prime rings to Dedekind prime rings. An
account of their elementary properties can be found in [7], [8].

Recall that a subset X of G (or of R[G]) is (G-)orbital if X has only finitely many
distinct G-conjugates; following [1], G is called dihedral free if it contains no orbital
subgroup isomorphic to the infinite dihedral group D=<a,b:a”'ba=b"*,a*=1). The
join of all the finite normal subgroups of G is denoted A*(G). Our main results are as
follows.

Theorem A. Let R be a ring and let G be a polycyclic-by-finite group. Then R[G] is a
prime Krull order if and only if

(i) R is a prime Krull order,
(i) A*(G)=1, and
(i) G is dihedral free.

Theorem B. Let R and G be as in Theorem A. Then the following statements are
equivalent.

(a) R[G] is a prime v-HC order with enough v-invertible ideals.
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(b) (i) R is a prime v-HC order with enough v-invertible ideals,
(i) A*(G)=1, and
(iii) either G is dihedral free, or R has characteristic not equal to 2.

The notion of a v-invertible ideal is recalled in Section 2. (Naturally, invertible ideals
are v-invertible) Both of these results are generalisations of [1, Theorem F], which gave
Theorem A for commutative Noetherian coefficient rings R. Indeed the proof of
Theorem A is accomplished by using a result from [11] to allow the replacement of R
by its simple Artinian quotient ring Q (Proposition 2.7); then rather an easy argument
permits us to replace Q by its centre, and so finally we may appeal to [1, Theorem F].

The proof of Theorem B requires first a refinement (Theorem 3.1) of the description
of height one prime ideals of certain group rings given in [1, Theorem 3.2]. This result
and a reduction from Section 2, in the spirit of that used for Theorem A, together serve
to reduce the problem to the case of a group algebra of an abelian-by-finite group over
a coefficient field, as is shown in Section 4. Finally this special case is treated in Sections
5 and 6, exploiting the fact that the algebra is a finitely generated Cohen-Macaulay
module over its centre [3].

2. Definitions and reductions

All rings have 1, and all modules are unital. Unexplained notation and terminology is
as in [14]. Let S be an order in a classical quotient ring Q =Q(S). A right S-submodule
I of Q is called a (fractional) right S-ideal provided I contains a unit of Q and cI =S for
some regular element ¢ of S. If I=S, then it is said to be integral. Left S-ideals are
defined analogously. By an S-ideal of Q we mean a left S-ideal which is also a right S-
ideal. Let A, B be subsets of Q. We will use the notation: (4:B),={qeQ|qB< A},
(A:B),={qe Q|Bg< A}. In particular, we denote (4:A4), by 0,(A). For any right S-ideal I,
we define I,=(S:(S:1),),, and if I=1,, then it is called a right v-ideal. Similarly we define
o =(8:(S8:J),), for any left S-ideal J, and J is said to be a left v-ideal if ,J=J. An S-ideal
A is called a v-ideal or reflexive, if ,A=A=A,. An integral v-ideal is simply called a
v-ideal of S. Let F(o) be the right Gabriel topology cogenerated by E(Q/S), the injective
hull of the right S-module Q/S, in other words, ¢ is the idempotent kernel functor on
right S-modules cogenerated by E(Q/S). In an analogous way, we can define the
idempotent kernel functor ¢’ on left S-modules. For a right S-ideal I, we define the o-
closure of I as cl(I)={qeQ|qC<1 for some Ce F(o)}, and we say that I is o-closed if
cl(I)y=1. o'-closed left S-ideals are defined analogously. Consider the following three
conditions.

(M) S is a maximal order in the sense of Asano [13], ie., 0,(A4)=S=0,(A) for any
integral S-ideal A.

(K) [(A(S:A))=0,(A) for any integral S-ideal A with A=A, ((S:B),B),= 0,(B) for any
integral S-ideal B with B=B,,

(C) S satisfies the ascending chain condition on integral s-closed right S-ideals as well
as on integral o¢'-closed left S-ideals.

We say that S is a Krull order in the sense of [5] if it satisfies the conditions (M) and
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(C), and § is said to be a v-HC order if it satisfies the conditions (K) and (C). Let C be
a regular Ore set of S. Then we denote by S. the partial quotient ring of S with respect
to C. Let F be a division ring with centre K and let 4 be a K-algebra which is a prime
Goldie ring with quotient ring Q(A4). We begin with two easy lemmas.

Lemma 2.1. Let S=A® gF and T=Q(A)® xF. Then C={c ® l:c regular in A} is a
regular Ore set of S and T=S,.

Proof. See the proof of Proposition 1.4 of [15].

Lemma 2.2 With the same notation as Lemma 2.1, there is a one-to-one correspon-
dence between the set of all non-zero (8, S)-bimodules B in T and the set of all non-zero
(A, A)-bimodules B in Q(A), which is given by

B—>BnQ(4); B-B®F.

Proof. See the proof of Case 1 of Theorem 7.3.9 of [16].

In particular, we see from Lemma 2.2 that T is a simple ring. If T is a Goldie ring,
then § has a classical quotient ring Q(S) which is a simple Artinian ring.

Lemma 2.3. Assume that T is a Goldie ring and let B=B® F be a non-zero (S,S)-
bimodule in T, where B is an (A, A)-bimodule in Q(A). Then
(i) (S:B),=(A:B),® F. In particular, B,=B,® F.

(ii) There is a one-to-one correspondence between the set of all S-ideals B in T and the
set of all A-ideals B in Q(A).

Proof. (i) It is clear that (S:B), is an (S, S)-bimodule containing (4:B);® F. Let
a=)19;® d; be any element in (S: B),, where q;e Q(A4) and d;e F. We may assume that
dy,...,d, are linearly independent over K. Since S2aB2x(B® 1)=) ¢;B® d;, we have
q;B< A4 and so g;€(A:B),. Thus ae(4:B),® F.

(ii) Since A is a prime Goldie ring, B is a right A-ideal if and only if (4:B),#0 and
similarly, B is a right S-ideal if and only if (S: B),#0. Hence the assertion follows.

Lemma 24. Assume that T is a Goldie ring. Then

(i) A satisfies the condition (K) if and only if S satisfies (K).

(ii) A is a maximal order in Q(A) if and only if S is a maximal order in Q(S).

Proof. (i) Let B=B ® F be any ideal of S, where B is an ideal of A. Note that ,B=B
is equivalent to ,B=B and that (S:B),=(4:B),® F by Lemmas 2.2 and 2.3. It follows

that (B(S:B))) = ((B® F)((4:B), ® F))=,(B(4:B),® F)=,(B(A4:B),) ® F. Hence O(B)=
o« B(S:B))>1€0/(B)<>1€ 0,(B)<=>0,(B) = ,(B(4:B),).
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(ii) It follows, from similar arguments to (i), that O(B)=0,(B)® F. Hence S is a
maximal order if and only if 4 is a maximal order.

To apply Lemma 2.4 to group rings, let Q =(F), be a simple Artinian ring, where F is
a division ring with centre K and let G be a polycyclic-by-finite group. Then it is well
known that the group ring Q[G] is Noetherian and has a classical quotient ring which
is an Artinian ring [18]. Furthermore Q[G] is a prime ring if and only if A*(G)=(1)
(Theorem 4.2.10 of [16]). Since F[G]=F ® K[G], we have:

Corollary 2.5. Assume that A*(G)={1>. Then

(i) Q[G] is a Krull order if and only if K[G] is a Krull order.
(i) QI[G] is a v-H order if and only if K[G] is a v-H order.

Let S be an order in Q(S) and let X be any v-ideal in Q(S). We say that X is
v-invertible if (X(S:X),),=S=,((S:X),;X). In this case, it follows that (S:X),=(S:X),, and
we denote it by X ~'. A ring S is said to have enough v-invertible ideals if any v-ideal of S
contains a v-invertible ideal of S. A v-ideal A of S is called v-idempotent if (A*)=A=
(A%),. We say that A is eventually v-idempotent provided there exists n=1 such that
(A", =(A"*"),. Let R be a v-HC order with enough v-invertible ideals. Then the
following hold.

(i) A,=,A for any non-zero ideal A of R (Lemma 1.2 of [7]).

(i) Any prime v-ideal of R is a maximal v-ideal of R (i.e. a v-ideal maximal amongst
the v-ideals of R) (Lemma 1.2 of [9]).
(iii) If A is any v-ideal of R, then A=(XB),, for some v-invertible ideal X of R and
eventually v-idempotent ideal B of R (Proposition 3 of [10] and (ii)).
“(iv) Suppose B is eventually v-idempotent and M,,..., M, is the full set of all maximal
v-ideals of R containing B. Then (B"),=((M,n...n M,)"), and is v-idempotent (Propo-
sition 1.4 of [8]).

Suppose that R is a v-HC order with enough v-invertible ideals and that any maximal
v-ideal of R is v-invertible. Then any v-ideal of R is v-invertible from (ii), (iii) and (iv).
Let A be any ideal of R. Then it follows that R€0(A)= 0,4, =R, because A, is a
v-ideal of R by (i) and so is v-invertible. Hence O,(4)=R and similarly, 0,(4)=R. This
implies that R is a maximal order. Thus we have:

Proposition 2.6. Suppose that R is a v-HC order with enough v-invertible ideals. Then
R is a Krull order if and only if every maximal v-ideal of R is v-invertible.

Before giving a further reduction, note that R satisfies the condition (C) if and only if
R[G] does by [12, Theorem].

Proposition 2.7. The group ring R[G] is a prime Krull order if and only if

(i) R is a prime Krull order in a quotient ring Q,
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(i) A*(G)=1), and
(iii) Q[G] is a Krull order.

Proof. Suppose that R[G] is a prime Krull order. Then it easily follows that R is a
Krull order. By Lemma 2.2 of [§], Q[G] is also a Krull order. Since R[G] is prime, (ii)
follows from Theorem 4.2.10 of [16]. Suppose that (i), (ii) and (iii) hold. Then R[G] is
prime. Let p be a maximal v-ideal of R. Note that it is a maximal v-invertible ideal of R,
because R is Krull. Then (R/p)[Gl= R[G]/p[G] implies that p[G] is a prime and v-
invertible ideal of R[G] by Theorem 4.2.10 of [16]. Hence R[G] is a v-HC order with
enough v-invertible ideals by Theorem 1.15 of [11].

To prove that R[G] is a Krull order, let P be a maximal v-ideal of R[G].

Case 1. Suppose that p=P n R#0. Then p is a prime v-invertible ideal and hence so
is p{G], because A*(G)=<1)>. By Lemma 1.2 of [9], p[G] is a maximal v-ideal and so
P=p[G], which is v-invertible.

Case 2. Suppose that P R=0. Then P'=PQ[G] is v-invertible by (iii) and so, in
particular, {2 (P'"),=0. On the other hand, either P is v-idempotent or v-invertible.
But since (P"),<(P'"), for all n>1, P must be v-invertible. Hence R[G] is a Krull order
by Proposition 2.6.

The following is almost a special case of Theorem 1.15 of [11].

Proposition 2.8. The group ring R[G] is a prime v-HC order with enough v-invertible
ideals if and only if '

() R is a prime v-HC order in a quotient ring Q, with enough v-invertible ideals,
(i) A*(G)=1>, and
(iii) Q[G] is a v-H order with enough v-invertible ideals.

Proof. The necessity follows from Theorem 4.2.10 of [16] and Theorem 1.15 of [11].
Conversely, assume that (i), (ii) and (iii) hold. Then R[G] is a prime ring by Theorem
4.2.10 of [16]. Let p be a maximal v-invertible ideal of R. Then it is a semiprime ideal
by Theorem 1.13 of [7]. So it follows that the ideal p[G] is semiprime and v-invertible
by (ii) and Theorems 4.2.12, 4.2.13 of [16]. Hence R[G] is a v-HC order with enough v-
invertible ideals by Theorem 1.15 of [11].

Proof of Theorem A. By Proposition 2.7 and Corollary 2.5 R may be assumed to be
a field. In this case the result is given by [1, Theorem F].

Let S=X @ S,(xeG) be a strongly graded ring of type G and let 4 be an ideal of §,,
the part of degree 1. We say that 4 is a G-ideal if S,-14S,= A4 for any xeG. By a
G-v-ideal we mean a G-ideal which is a v-ideal. We close this section with the following
easy lemma used in the next section.

Lemma 29. Let R be a Krull order and let G be a polycyclic-by-finite group with
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A*(G)=1. Let A be any integral R[G]-ideal such that A=A, Then A contains a
v-invertible ideal.

Proof. By Lemma 10.2.5 of [16], G has a normal subgroup N of finite index which
is poly-infinite cyclic. From the exact sequence

1-N-G5G/N-1,

where n is the canonical map, we derive the following strongly graded ring of type G/N;
R[G]=Z @ S, (g€G), where §,,,=Z ® Rx(xen(g)) and S,;,=R[N], a Krull order
by Corollary 3.9 of [15]. Since N has finite index in G, Q(R[G])=Q(R[N]) ® gv; R[G]
by Lemma 13.3.5 of [16]. Hence R[N]n A is a non-zero G-v-invertible ideal of R[N].
Hence ((R[LN] n A)R[G]), is a v-invertible ideal contained in 4 by Lemma 1.3 of [11].

3. Height one primes of group rings

For the proof of Theorem B we need a variant of [1, Theorem 3.2]. Recall that if I is
an ideal of a group ring R[G], then I * ={ge G:(g—1)eI}, a normal subgroup of G.

Theorem 3.1. Let R be a commutative Noetherian domain, and let H be a finitely
generated abelian-by-finite group with A*(H)=1. Set B=A(H), the largest abelian normal
subgroup of H. Let P be a height one prime ideal of R[H].

(a) Then either (i) P=(P n R[B])R[H]; or (ii) there exists an isolated orbital dihedral
subgroup D of H, and a prime ideal I of R[D], with

P= () I*R[H].

xeH

(b) Suppose that T is a group of operators on H, and that P is T-orbital. Then in (a)(i),
we may take B=Ar(H)={he H:|T:Cr(h)|< o0}, and in (a)(ii), D and I are T-orbital. In
either case, P n K[ B]+#0.

Proof. (a) There is a prime Q of R[B] with PnR[B]:ﬂxe,,Q", and ht(Q)=1 [17,
Section 8.1 and Corrigendum].

Case 1. Suppose that Q7 is finite. Then, as in the proof of Case 1 of [1, Theorem
3.2], P=(P n R[B))R[H].

Case 2. Suppose that Q7 is infinite. Let E=N4(Q), and let P, be a prime ideal of
R[E] with P, R[B]=Q. Thus P, has height one, and, since Q* =P/, P/ is infinite.
As |H:E|<oo, P, is H-orbital; so also is Py, and with it A*(P{). But then
A*(P{)=A*(H), and so A*(P;})=1. Since the Hirsch number of P is a lower bound
for the height of P,, P] must have Hirsch length 1, and so, by [1, Lemma 2.1], P is
either infinite cyclic or infinite dihedral. In the former case, the proof of [1, Theorem
3.2] shows that P=(P n R[B])R[H].

Suppose then that P{ is dihedral. Let D be the isolator in E of P{. Then D is also
dihedral, by [1, Lemma 2.1] again, and
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P, =(P; nR[D)RLE]

by [17, Corollary 22]. Since D is a normal subgroup of E, it follows that P, n R[D] is
semiprime, and there is a prime ideal I of R[ D], with P, n R[D]= ﬂerIx. Thus

P,=() *RLE].

xeE
By [6, Theorem 1.7].

P= () (P,R[H])~.

xeH
Combining these two expressions we deduce that

P,= () I"R[H],

xeH

as required.

(b) The first statement follows from (a) by applying [17, Theorem D], exactly as in
the proof of [1, Theorem 3.2]. Moreover, it is clear that D and I are I'-orbital in (i), if
P is. The final statement follows from the facts that ID:D N B|=2, and B is torsion free
abelian.

4. The proof of Theorem B—reduction to abelian-by-finite groups

This is achieved by means of the following lemma. Let G be a polycyclic-by-finite
group. A plinth of G is a torsion-free abelian orbital subgroup 4 of G such that A ® ,Q
is an irreducible Q[7T]-module for every subgroup T of finite index in G. The
characteristic subgroup generated by the plinths of G is denoted by P(G), and the
largest normal subgroup of G containing P(G) as a subgroup of finite index is denoted
by S(G).

For any ideal I of a ring R, €(I) is the set of all elements ¢ of R regular modulo I. If
%(I) is an Ore set then R, will denote the ring of quotients of R with respect to €(I).

Lemma 4.1. Let K be a field and let G be a polycyclic-by-finite group with A*(G)=1.
Suppose that K[S(G)] is a v-H order with enough v-invertible ideals. Then K[G] is a v-H
order with enough v-invertible ideals.

Proof. Let P be a prime v-ideal of K[G]. We show first that
ht(P)=1 1)
By [1, Theorem F] there exists a normal subgroup N of finite index in G such that

K[N] is a maximal order. Since K[G] is prime, by [16, Theorem 4.2.10], P~ K[N]#0.
Since Q(K[G])=Q(K[N]) @k K[G], it is easy to see that P~ K[N] is a v-ideal. Let Y
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be a prime ideal of K[N] with PAK[N]=(),.c Y% Thus Y is a v-ideal, and so has
height one by [14, Proposition 5.1.9]. Now (1) follows from [17, Lemma 29].
In view of (1), P=(P n K[S(G)])K[G] by Theorem A of [1]. Now

P~ K[S(G)] is a v-ideal, (2)

by [11, Lemma 1.1]. Thus P n K[S(G)]=(),cc % where I is a prime, G-orbital v-ideal
of K[S(G)]). Let J be the maximal v-invertible ideal of K[S(G)] contained in I. Thus, for
all geG, J? is the maximal v-invertible ideal in I°. Set Jo=\,ecJ? and J=J,K[G].
Then J is semiprime, since J, is an intersection of G-orbital primes and S(G) is isolated
in G. The v-invertibility of J, implies that J is v-invertible in K[G]. By [7, Proposition
2.7], K[G]j exists and is an HNP ring.

Let Z be the centre of K[G] and T the partial quotient ring of K[G] obtained by
inverting the non-zero elements of Z. We claim that

T has no proper v-ideals. (3)

For, let A be a non-zero prime v-ideal of T. It is easy to see that A~ K[G] is a
non-zero prime v-ideal of K[G]. By (2) and Theorem 3.1(b), there exists a non-zero
element ¢ in AN K[A(G)]. Thus [],.y¢% where V is a transversal to C4(c) in G, is a
non-zero element of A N Z, and so A=T, as claimed.

Let J denote the collection of ideals J of K[S(G)] which are maximal among v-
invertible G-invariant ideals. Set J=JK[G] for any J in J, and j={.7:J eJ}. Next we
show that

K[G]=OK[JJJHT- (4)

Let xe ﬂ K[G];nT. Since xeT, there is a v-invertible ideal X of K[G] with
Xx< K[G]; we can choose X maximal with this property. Suppose that X #K[G].
Then X is contained in a maximal v-invertible ideal E, and EeJ by the first part of the
proof. There exists c e (E) with xce K[G]. Thus X E"' X< K[G], and so

EE"'Xx<K[G]nEx<K[G]nEc 'cE.

Therefore, E~'Xx < 0,(E)= K[G]. This contradicts the maximality of X, and from this
contradiction we deduce that X = K[G], proving (4).

By (3) and [13, Proposition 1.3.1], T is a maximal order. Since each of the rings
K[G]1; is HNP, it follows from (4) that K[G] is a prime Noetherian v-H order, as in [7,
Theorem 2.23].

5. Sufficient conditions in the abelian-by-finite case

Our proof that certain group algebras are v-H orders proceeds by way of a local-
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global result whose proof requires the following concept ([2, page 78]). A Noetherian
ring S which is a finite module over a central subring C is centrally Macaulay if S is a
Cohen—-Macaulay C-module. The key property we require concerning such rings is
stated in the next lemma, which, though implicit in [2], [3], [4], is not stated explicitly
there.

Proposition 5.1. Let S be a prime Noetherian centrally Macaulay ring with centre Z.
Then

(i) S=(),S,, where the intersection is over the height one primes P of S, and, for each
such P,p=PnZ and S,=S®,Z,.
(i) If c is a regular element of S, then cS,=S, for all but finitely many p as in (i).
(iii) Suppose that each S, is hereditary. Let A be an ideal of S. Then ﬂpASp is the
smallest right [resp. left] reflexive ideal of S containing A.

(iv) S is a prime Noetherian v-H order with enough v-invertible ideals if and only if
each S, is hereditary.

Proof (i) This is a special case of [2, Theorem 4.13], together with Lemma 5.1 of
(31.

(ii) Let ¢ be a regular element of S. Since S is a finite Z-module, 0#cSn Z. Let
I=cSn Z. There are at most finitely many height one primes of S containing I. If P is
any height one prime not containing /, then /&p, so IS,=S5,, and so c¢S,=S§,.

(iii) Let A, be the smallest right reflexive ideal containing A. Since S, is hereditary,
AS,, is reflexive, and so A4,S,=AS,. Thus

A,=()AS,:=B.

4

For the converse, let T={qeQ(S):qA<S}. Then

TB<(\TAS,=()S,=S,
4 P

so that B€ A,. Similar remarks apply on the left.
(iv) This is immediate from [7, Theorem 2.23] and (i), (ii) and (iii).

We now apply the preceding result to group algebras. Let K be a field and let G be a
finitely generated abelian-by-finite group with A*(G)=1. Then S=K[G] is prime
Noetherian, by [16, Theorem 4.2.10 and Corollary 10.2.8], so S satisfies the hypotheses
for (i) and (ii) of Proposition 5.2, by [4, Theorems 6.4 and 3.4]. These observations yield
(i) of the following proposition.

Proposition 5.2. Let K be a field and let G be a finitely generated abelian-by-finite
group with A*(G)=1. For each height one prime P of K[G], let p=P ~ Z where Z is the
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centre of K[G], and let K[G], denote the localisation of K[G] at p (ie
K[G],=KG®;Z,). Then

(1) K[G] satisfies (i) and (ii) of Proposition 5.1.

(ii) Suppose that char K #2. Then for all height one primes P of K[G], K[G], is a
semilocal HNP ring.

Proof. (i) It only remains to prove that, when char K#2, K[G], is hereditary,
where p=Pn Z and P is a height one prime. With this notation, by Theorem 3.1, either
(a) P=(P n K[B])K[G], where B is the FC-subgroup of G, or (b) there is a prime ideal
I of the group algebra of an isolated orbital dihedral subgroup D of G, with
P=\secI"K[G].

If (a) applies then P is principal since B is free abelian (see [16, Lemma 4.1.6]).
Suppose that (b) holds. Then there are elements x,,...,x, of G such that, as right
modules,

t

K[G],/P,= } & K[G],/I*K[G],,

i=1

“since K[G],/P, is simple Artinian. Consider the ith summand on the right hand side of
this isomorphism. Writing I for I* and D for D*, for convenience, we have

K[G],/IK[G],=(K[DY/I) @ kp K[C],. ()

But D has an infinite cyclic subgroup of index 2, and char K#2, so K[D] is hereditary
by [16, Theorem 10.3.9]. Therefore, K[D]/I has projective dimension 1. Since K[G], is
a flat K[D]-module, (5) shows that K[G],/IK[G], has dimension 1 as a K[G],-module.
That is, the unique irreducible K[G],-module has projective dimension I, and K[G], is
hereditary.

From Proposition 5.1(iv) and 5.2 we have:

Corollary 5.3. Let K be a field of characteristic not equal to 2, and let G be a finitely
generated abelian-by-finite group with A*(G)=1. Then K[G] is a prime Noetherian v-H
order with enough v-invertible ideals.

6. Necessary conditions, and proof of Theorem B

Lemma 6.1. Let G be a polycyclic-by-finite group with A*(G)=1, and let R be a
commutative Krull domain. Let D be an isolated orbital dihedral subgroup of G. Put
P={\xecd* Then P is a prime v-ideal of R[G].

Proof. Let D={a,bla”'ba=b"", a*=1). Routine arguments allow us to assume
that R is a field. It follows from the proof of Lemma 1.3 of [19] that
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(b—1)"*(a—1)e O,(d) =(R[D]:d),. Since (b—1)"'(a—1)¢ R[D], d,<R[D], and since d is
a maximal ideal we conclude that d is reflexive.

By [1, Lemma 2.2], P is a prime ideal. Let a€ P, so that (R[G]: P),a<R[G]. For
xeG, Pcd*R[G], and so

(R[D]:d*),=(R[G]: P),.

In particular, writing a=),.yo,t, where T is a right transversal to D* in G, and
a,€ R[D*] for all te T, we conclude from the reflexivity of d* in R[D*] that «,ed* for all
teT. Hence ae(),.c4"R[G]=P, and so P=P,.

Lemma 6.2. Let K be a field of characteristic 2 and let G be a polycyclic-by-finite
group. Suppose that A*(G)=1 and G is not dihedral free. Then K[G] is not a v—HC
order.

Proof. There is an orbital dihedral subgroup D in G, and by Lemma 2.1 of [1] we
may assume that D is isolated. Let P={"), .d*; P is a prime v-ideal by Lemma 6.1, and
P is localisable by Lemma 2.2(v) of [1]. By Lemma 2.9, P contains a maximal v-
invertible ideal, N. (In fact, it is easy to see that N=P.)

Suppose now that K[G] is a v-Hc order, (so it has enough v-invertible ideals, by
Lemma 2.9). By Proposition 2.7 of [7], K[G]y and its localisation K[G]), are HNP
rings. Since K[G]p is local, its Jacobson radical P, is principal. This contradicts Lemma
2.2(v) of [1]. Thus K[G] is not a v-HC order.

Proof of Theorem B. Suppose that R and G satisfy hypotheses (i), (i1) and (iii) of
Theorem B(b). Let Q be the quotient ring of R, and let K be its centre. By Proposition
2.8 and Corollary 2.5, we may replace R by K. If G is dihedral free, then K[G] is a
maximal order by Theorem F of [1]. Otherwise, the characteristic of K is not 2, and
K[S(G)] is a prime Noetherian v-H order with enough v-invertible ideals, by Corollary
5.3. (a) then follows from Lemma 4.1.

Conversely if R[G] is a prime v-HC order with enough v-invertible ideals, then it is
easy to deduce (i) (or see Theorem 1.15 of [11]), (ii) follows from Connell’s theorem [16,
Theorem 4.2.10], and (iii) follows from Proposition 2.8, Corollary 2.5 and Lemma 6.2.
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