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I. INTRODUCTION

One of the basic problems in life is: Given information (from the
past), make decisions (that will affect the future). One of the
classical actuarial examples is the adaptive ratemaking (or cred-
ibility) procedures; here the premium of a given risk is sequentially
adjusted, taking into account the claims experience available
when the decisions are made.

In some cases, the rates are fixed and the premiums cannot be
adjusted. Then the actuary faces the question: Should a given
risk be underwritten in the first place, and if yes, what is the
criterion (in terms of claims performance) for cancellation of the
policy at a later time ?

Recently, Cozzolino and Freifelder [6] developed a model in an
attempt to answer these questions. They assumed a discrete time,
finite horizon, Poisson model. While the results lend themselves
to straightforward numerical evaluation, their analytical form is
not too attractive. Here we shall present a continuous time, in-
finite horizon, diffusion model. At the expense of being somewhat
less realistic, this model is very appealing from an analytical
point of view.

Mathematically, the cancellation of policies amounts to an
optimal stopping problem, see [8], [4], or chapter 13 in [7], and
(more generally) should be viewed within the framework of dis-
counted dynamic programming [1], [2].

2. A DIFFERENTIAL EQUATION AND ITS SOLUTIONS

Our model will turn out to be very tractable because the dif-
ferential equation

0(1 — *)]* W'{x) = *W{x), a > 0 (1)

can be solved explicitly. Observe that this differential equation
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126 OPTIMAL CANCELLATION OF POLICIES

has (regular) singular points at x = o and x = i . The reader will
easily verify that

h(x) =
xc-x

is a solution, where c > i is the positive solution of c(c — i) = a,
i.e.

c = £ + } 1/1T4* (3)
For reasons of symmetry, also k(z —x) is a solution. Thus every
solution of equation (1) is a linear combination of h(x) and
A(i — #). Equation (1') of Section 5 will be of more general form
but can also be solved by a function of the type (2).

3. INDEPENDENT RISKS

In this section we assume that the income processes resulting
from different policies are independent. Therefore we can restrict
ourselves to the discussion of a single policy.

We shall suppose that the quality of a given risk is determined
by a well defined, but not directly observable random variable 8
(the risk parameter). Let Xt denote the aggregate gain that is
generated by the policy from o to <. Then we assume that, for
given 8,

Xt = (r 6 — a) t + aWt (4)

Here r,a,a are positive constants, and {Wt} is the standard
Wiener process (independent of 6). Having observed the aggregate
gains, we will be interested in the posteriori distribution of 6.
The discussion of this will be greatly simplified by our assumption
that 0 has only the values 0 or 1. So let

n = P[0 = i ] , I — T : = P [ 0 = O] (5)

be the priori probabilities (at time 0), and

- , = Pn[e = i | , Y u , o < M < * ] (6)

denote the posteriori probabilities (which depend on the priori
probability as well as on the observed profitability of the policy).
To make things interesting, we assume that r > a. Thus if 8 == 1,
our policy is a "good" risk; if 0 = 0, it is a "bad" risk (at least
as far as expected gains are concerned).
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Let 8 > 0 be a constant force of interest. The insurer's decision
is now the selection of a stopping rule T; for every it, 0 < TC < 1,
T = T(n) thereby defines a possibly defective stopping time. We
interpret T as the time when the policy is cancelled, with the
provision that the policy will not be cancelled if T = GO . Let

V(rc;T) = En[j e'** dXJ (7)

denote the expected present value of the total gain. If we extend
the integral to infinity, and subtract the correction term, we
obtain an alternative definition:

a - • - - (8)

The problem is now to find an optimal stopping rule T, i.e. one
that maximizes 7(it; T) for every n, or equivalently, one such
that

[ a

is maximal.

The process {TCJ} is a diffusion process with vanishing drift and
infinitesimal variance

( ]

For a sophisticated proof of this, see Lemma 5 of Chapter 4 in [8].
A more heuristic derivation goes as follows: For given Xu,
0 < « < t, Xt is a sufficient statistic. Therefore

izn{Xt;rt — at, &H)
Kt = rm(Xt; rt — at, oH) + (1 — it) n(Xt; — at, aH) ^

where n (.; y., a2) denotes the normal density with mean JA and
variance az. This can be simplified to

it, = f(n,Xt,t) (12)

where

/(it, * , t) =
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and

g(x,t) = exp | _ - ^ , * _ ^ + o<jj (14)

Since {itt} is a Markov process (posteriori probabilities always are)
and can be expressed as a well behaved function of Xt, see (12),
it has to be a diffusion process, say with drift \x(ti) and infinitesimal
variance cr'2(7i). A Taylor series argument shows that

•bf G2 d2/ If
|t(w)«(nr_a)-+T-+--o (15)

= - a [*(!-«)]* (16)

(the argument in the partial derivatives is x = t = o). Of course
we could have anticipated the vanishing drift: Posteriori prob-
abilities always constitute a martingale (law of total probability)!

Let us introduce the function V (-),

7(TC) = supremum 7 (it; T) (17)
T

Then an optimal stopping rule T is given by the formula

( 00 if V{r.t) > 0 for t > 0
T = • (18)

(inf {t\ V(nt) = 0} otherwise

Obviously 7 (it) is a nondecreasing function. Therefore the set of
numbers TC such that 7(TC) > O is an interval (p, i j . Hence we
can restrict ourselves to stopping rules of the form

TP = inf {t\rH < p} (19)

Our initial problem is now reduced to the discussion of the function
7(TC, p) = 7(it; Tp), 0 < p < it < 1, and to the search for the
optimal value of p, call it po. Formula (8) reduces in this case to

iw — a pr — a
V{TZ, p) = r— — —,— W(TZ, p) (20)

where

W(n,p) = En[e->T>] (21)

\
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is the present value of a unit payable at the time when Tzt = p.
Furthermore it is clear that the policy should not be cancelled as
long as ntr — a > o . Therefore we expect that po <a/r.

It is well known (see for example Problem 19, Chapter 16 of
[3]) that the function W{iz,p) satisfies the differential equation

(22)

valid for p < n < I, where a2(it) is given by formula (10). (For
a short derivation of this equation, observe that the process
{e'st W(v:t, p)}, t <TP, is a martingale). Obviously, the function
W is continuous in the closed interval p < - < 1 and satisfies
the boundary conditions

W(p,p) = i, W(i,p) = 0. (23)

By recalling the results of Section 2, we find that the solution of
conditions (22) and (23) is

h{n)
1><*<i (24)

where h(x) is given by formula (2) with parameter

c = I + J ]/i + 88-TV2 (25)

Thus formula (20) becomes

•KT—a pr — a l l — - ) e p c ' 1

valid for p < iz < 1, and we are looking for the value of p that
maximizes

Differentiation leads to the optimal value:

Po = b ( ^ ) (28)

where b = a\r and c is given by formula (25).
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Remark I

If we let the force of interest increase from o to GO (and keep
the other parameters constant), c increases from i to oo, and
therefore Po increases from o to b. This is not surprising: The
smaller the rate of interest is, the more it pays off to postpone the
cancellation of the policy, hoping to obtain more reliable infor-
mation about the quality of the risk in the future.

Remark 2

For an arbitrary p, we obtain from formula (26) that

r (c — b) (p-p0)

8 p{*-p)
(29)

Thus the right side derivative at TT = p is positive (negative) if
P > pa {p < po) and zero for p = pa. Smooth pasting conditions
of this kind hold in more general models, see Section 6, Chapter
3 of [8].

Remark 3

Formulae (12), (13), (14) allow us to express the stopping rule
Tp in terms of {Xt} and iz. Let K = K(rz,p) be the solution of

W + ( ! - ! „ ) ^ 5 ? = P (30)

Then
Tv = inf {t I Xt < (r/2 - a) t - K) (31)

is equivalent to the original definition (19).

4. DISCUSSION OF THE TIME OF CANCELLATION

The function W{TZ, p) can be interpreted as the Laplace trans-
form of TP (for given n and p):

(1 — Tt)« pc-1

= £„[.-».] ^ 4 ^ - j ^ i (32)

where c = c(8) is given by formula (25). Thus the probability for
cancellation of the policy is

(33)
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If 0 = 0, the policy will be cancelled with probability one. There-
fore the probability for 6 = I and cancellation (i.e. "erroneous"
cancellation) is

and the conditional probability for cancellation, given that
0 = 1, is

i-fi *
Finally, we are interested in the distribution of the time of cancel-
lation, given that it occurs. Let i (8) denote the Laplace transform
of this proper distribution. Thus

4,(8) = <j>(8) I (/>(o) = «-»(e-i> (36)

where m = m(n, p) is given by the formula

i/p — i
m = l n 7TZ 7 (37)

1/,. — 1

We recognize that the distribution of Tv (given TP < 00) is
infinitely divisible. Its first two moments are:

- <y (o) = En[Tp \Tv<co] = - ^ «(«, p)

V(o) - <|,'(o)« = Varw[7p | Tp < 00] = - ^ - « ( « , *) (38)

Moreover, formula (36) can be inverted. The underlying density,
say g(t), t > o , is

m = Jy^ <-31* exp {--, jt \ (39)

This can be seen by a comparison with formulas (73) and (75),
Section 5.7 in [5], or from problem 14, p. 439 in [9].

5. LAPSES

In this section we modify the model of Section 3 and allow for
the possibility of termination of the policy by the insured. For
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simplicity we assume that the time of termination by the insured,
say S, is (for given 8) exponentially distributed but otherwise
independent of {Xt}.

PK[S >t] = *«-M + (!—*)«->-« (40)

Here Xi > 0 is the constant force of lapse of the "good" risks,
Xo > 0 the one of the "bad" risks.

The insurer is only interested in times t < S. Therefore we
investigate

r.t = PK[Q = 1 I Xu (0 < u < t), 5 > *]' (6')

Again Tzt is of the form (12), with / defined as in formula "(13)
where g is now

g(x, t) = exp [ - ^(x-'-t + at) + (X! - Xo) * J (14')

By the same arguments as in Section 3 we recognize that {7t(} is
a diffusion process with drift

y.(-) = (Xo — Xi) n ( l — n) (15 ' )

and infinitesimal variance a1 {it) as in formula (16).

We want to maximize

V(K;T) = Ea[
 M T ' r ) e-StdXt] (7')

and may restrict ourselves to cancellation times TP of the form

Tp = Min {t I 7c( < f or 5 = t} (19')

For -p < K < 1, its value V{iz,p) is

iz(r — a) (1 — n)a
V^> P) = -JTTT - TTT7

where

W(K, p) = E^e-w, \S>Tp] PK[S > Tp] (21')

Using the facts that {TT*} is a diffusion process and that

{*-" [n e-^ + (I - TT) «-*•«] W(nt, p)} (41)
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is a martingale for nt > p, we see that W (-, p) satisfies the
differential equation

i aafr) — r + H(TU) — — [8 -r wXi + (i — re) Xo] W = 0 (22')

valid for £ < TC < i , where <r2 (re) and ;x (TC) are given by formulas
(16) and (15')- The boundary conditions

W(p,p) = 1, W(i,p) = 0 (23')

are obvious.

Luckily, a differential equation of the form

^ [* (I - x)Y- W + (Xo - X!) *(i - *) W =

[S + x\, + {l—x) Xo] W {!')

can be solved explicitly. The solution that vanishes at x = i is
a multiple of the function h (x), see formula (2), whose parameter c
is the positive root of the equation

— c(c — 1) + (Xi — Xo) (c — 1) — (8 + Xo) = 0 (42)

i.e.

c =

, 1 i/T 2ff2 I2 8ff2 / /\

+ i |,< [l + — (Xo-Xi)J + — (S + XO (25 )

Observe that c > 1.

From this and conditions (22') and (23') we see that
h{n)

P<n<*. (43)
which then can be substituted in formula (20'). The optimal value
of p, say pa, is therefore the value of p that maximizes

\ p
S {I — PY (2?}
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Thus

p0 = b (23')

( 6 ) ( 6 )

as can be seen by differentiation.

ILLUSTRATION

The effect of lapses is illustrated in Tables i and 2. The para-
meter c and po (the optimal value of p) were computed for nine
combinations (Xo, Xi). Thereby the other parameters of the model
were kept fixed, namely « = i , r — 2, b = .5, a = 2, 8 = . i .
A glance at Table 2 shows that the po-values decrease in each
row as Xo increases. The explanation for this is: The higher the
lapse rates of the bad risk, the better this is for the insurer. On
the other hand, the ^o-values increase in each column (as Xi in-
creases) : The higher the lapse rates of the good risks, the worse
this is for the insurer. Finally, the po-values in the main diagonal
are increasing: If Xo = Xi = X, lapses simply amount to an in-
creased force of interest, 8 = 8 + X, and we know that po is an
increasing function of the interest rate (see remark 1 at the end
of Section 3). In any case the po-value is well below b = \: For
prior probabilities - with po < ~ < \ it pays off to postpone
cancellation and to suffer an expected loss of 1 — 2TC per unit
time in the nearest future.

TABLE I

Values of the parameter c

o

.1

.2

0

1.171

1.148

I.I3I

.1

1-348

1-307

1.272

2

1-531

1.472

1.422

\
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\ Xo
Xi \

0

.1

J.ABLE 2

Optimal values of p

0

.127

.205

•257

.1

.114

.190

•243

.2

.104

.176

.229

6. DEPENDENT RISKS

We shall consider only the most simple case, namely the case
of two dependent risks. Supposedly we observe the aggregate
gains X\, X\ of two policies, which can be represented as follows:

X] = [r(x-Z)-a]t + aWy (44)

Here {W\} denote standard Wiener processes, and 0, {W\}, {W\}
are assumed to be independent. Again, let 5 > o , 0 < a < r.
The random variable 0 assumes the values 0 or 1 and specifies
which policy constitutes the "good" risk: If 6 = 1, the gain of
policy 1 has drift r — a > 0 and the gain of policy 2 has gain
— r; if 0 = o, the roles are interchanged.

Let re = P[0 = 1] and

nt = Pre[9 = 1 I * i , Xi for 0 < « < t) (45)

At time t, X\ — X\ is a sufficient statistic for 8. From this we
get that

nt =f(*,X\-X)) (46)

where

f{*'X) ' * + {!-*) 8(X)

with

g(x) = e-TX>°% (48)
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Thus the process {TT<} is a diffusion process, namely with vanishing
drift and infinitesimal variance

= 2C72 [—. I = — [n(l-7z)y- (49)
' x-o'

Observe that this is just twice the infinitesimal variance that
would be effective if we could observe the gains process of only
one policy, see formula (10).

Cancellation rules T are defined as in Section 3. Of special
interest is the family of rules Tg such that (for 0 < q < |)

Tq = minimum {t/v:t <q or 7r{ > 1 —q} (50)

with the understanding that we cancel policy 1 if KT, < ? . but
that we cancel policy 2 if -XT, > 1 — q • We shall restrict ourselves
to cancellation rules of this type.

a) Variant 1: Only one cancellation

Here we allow for the cancellation of one policy only. If after
the cancellation it turns out that we made the wrong decision the
other policy cannot be cancelled.

Let V(n,q) be the value of Tq. Obviously

/ (1 — 7t) r — a
I for 0 <C 7c <C g

V{*,q) = (51)
J 7tr — a
f 5— for 1 — q < - < 1

As long as both policies are in force, their total gain has drift
r — 2a. Therefore, for q < r: < 1 — q,

— r — 2a qr — a —
V{n, q) = S ~ " ~ ^ j — W {•*, q) (52)

where

W(r.,q) = EK[e-ST<] (53)

Since {e'st W(nt, q)}, t< Tq, is a martingale, the function W
satisfies the differential equation
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subject to the boundary conditions

W(q,q) = W(l—q,q) = I (54')

Recalling formula (49) and the results of Section 2 we gather that

- A(7t) + A ( l — 7t)

where the parameter of h (x) is now

c = £ + i [/i + 45^/^ (56)

Substituting the above expression for W in formula (52), we
recognize that we should choose q in order to maximize the quantity

b) Variant 2: Possibly two cancellations

If we have the option to cancel the second policy, we will cancel
it according to the optimal rule that was established in Section 3.

Now the value of Tq, say V(n, q), is

valid for q < TT < 1 — q.
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