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Abstract

The central projection transform can be employed to extract invariant features by
combining contour-based and region-based methods. However, the central projection
transform only considers the accumulation of the pixels along the radial direction.
Consequently, information along the radial direction is inevitably lost. In this paper, we
propose the Mellin central projection transform to extract affine invariant features. The
radial factor introduced by the Mellin transform, makes up for the loss of information
along the radial direction by the central projection transform. The Mellin central
projection transform can convert any object into a closed curve as a central projection
transform, so the central projection transform is only a special case of the Mellin central
projection transform. We prove that closed curves extracted from the original image
and the affine transformed image by the Mellin central projection transform satisfy
the same affine transform relationship. A method is provided for the extraction of
affine invariants by employing the area of closed curves derived by the Mellin central
projection transform. Experiments have been conducted on some printed Chinese
characters and the results establish the invariance and robustness of the extracted
features.
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1. Introduction

Images of an object taken from different viewpoints often suffer from perspective
distortions [1, 3]. The affine model is a reasonable approximation if the object is
small compared with the camera-to-scene distance. An affine transform is defined as(
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where A is a nonsingular matrix. A similarity transform, which includes rotation,
scaling and translation, is only a special case of an affine transform [3].

1School of Mathematics and Statistics, Nanjing University of Information Science and Technology,
Nanjing, China, 210044; e-mail: yjianw@nuist.edu.cn.
© Australian Mathematical Society 2017, Serial-fee code 1446-1811/2017 $16.00

256

https://doi.org/10.1017/S1446181116000341 Published online by Cambridge University Press

http://orcid.org/0000-0002-2022-6002
mailto:yjianw@nuist.edu.cn
https://doi.org/10.1017/S1446181116000341


[2] The Mellin central projection transform 257

In pattern recognition and computer vision, the extraction of affine features plays a
very important role. Many methods, which can be classified into region-based methods
and contour-based methods, have been developed.

The contour-based methods provide better data reduction. There are many examples
of these approaches, which include Fourier descriptors [1] and wavelet descriptors [7].
However, the performance of these contour-based methods is strongly dependent on
the success of the boundary extraction process. Most of these contour-based methods
can only be applied to objects with a single boundary instead of objects with several
separable components. In contrast to contour-based methods, region-based techniques
take all pixels of the image into account. The moment-invariant methods are the most
widely used techniques. The commonly used affine moment invariants (AMIs) [3]
are extensions of the classical moment invariants. Teh and Chin [13] have shown that
high-order moments are more vulnerable to white noise than low-order moments. This
makes their use undesirable in pattern recognition. Some novel region-based methods
have also been proposed to extract affine invariant features. These methods give high
accuracy, but usually at the expense of high complexity.

The contour-based and region-based methods both have their advantages and
disadvantages. Thus, an intuitive way is to combine them together. The central
projection transform (CPT), which was first proposed by Tang [12], can be used to
convert any object into a closed curve. As a result, contour-based method can be
applied to the closed curve obtained by the CPT for the extraction of affine invariants.
Lan and Yang [8] have employed the CPT, the whitening transform and the Fourier
transform to extract affine invariants. But objects of completely different appearances
may have the same closed curves as the ones obtained by the CPT. In Figure 1, we show
examples of different images with the same CPT, because the CPT is, in fact, equal to
the accumulation of the pixels along different angles. Consequently, information along
radial directions has been lost. To solve this problem, a radial factor is introduced by
employing the Mellin transform in this paper.

There have been many attempts to apply the Mellin transform for the extraction of
invariant features (see, for example, [2, 4, 6, 11]). However, up to now, this transform
has only been used to extract invariants of a similarity transform. In this paper, we
apply the Mellin transform to extract affine invariant features.

We propose the Mellin central projection transform (MCPT) to extract affine
invariant features. By the MCPT, any object can be converted into a closed curve.
The CPT is only a special case of the proposed MCPT. We prove that a closed curve
extracted from the affine transformed image is the same affine transformed version
of that extracted from the original image by the MCPT. The area of a closed curve
obtained by the MCPT is used to construct affine invariants. The results of our
experiment demonstrate that the obtained affine invariants have stronger robustness
than traditional moments.

The paper is organized as follows. In Section 2, we introduce the MCPT and
analyse some properties of MCPT. A method is also presented for the extraction of
affine invariant features. In Section 3, the experimental results are described. The
paper concludes with a brief summary in Section 4.
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Figure 1. Two images ((a) and (b)), their central projection transforms (c) and their Mellin central
projection transforms (d).

2. The MCPT method and its properties

2.1. The definition of the MCPT We set the origin at the centroid of the image
and transform to polar coordinates (r, θ) with

x = r cos θ, y = r sin θ.

Hence, the image can be represented by a function f of r and θ, namely, f (r, θ). The
CPT of f (r, θ) is given by

g(θ) =

∫ ∞

0
f (r, θ) dr, (2.1)

where θ ∈ [0, 2π). By equation (2.1), a single value corresponds to an angle θ ∈ [0, 2π).
Consequently, a closed curve can be derived from any object by employing the CPT,
which was used to extract invariant features by Lan and Yang [8] and Tang et al. [12].

As previously mentioned, objects with different appearances may have the same
CPT. In Figure 1, two different images (Figures 1(a) and 1(b)) derive the same closed
curve by the CPT (Figure 1(c)). This is because the function g(θ) in equation (2.1)
is the integral along the radial direction without the radial factor r. Consequently,
information along radial directions has been lost. In this paper, we introduce a radial
factor by employing the Mellin transform.
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Let h(x) ∈ R be a real-valued function; the Mellin transform of h is defined as [5]

Mh(s) =

∫ ∞

0
h(x)xs−1 dx (2.2)

with s = σ + τi, where σ is a constant that makes the integral in equation (2.2)
convergent and τ is a variable.

Definition 2.1. The MCPT of image f (r, θ) is defined as

Mgs
f (θ) =

∣∣∣∣∣∫ ∞

0
rs−1 f (r, θ) dr

∣∣∣∣∣1/σ,
where s = σ + τi with σ > 0.

For a fixed complex number s, the set {(θ, Mgs
f (θ) | θ ∈ [0, 2π)} constitutes a closed

curve, as θ changes from zero to 2π. Consequently, any object can be converted into a
closed curve by the MCPT. If we set s = 1, then

Mgs
f (θ) =

∣∣∣∣∣∫ ∞

0
r1−1 f (r, θ) dr

∣∣∣∣∣ =

∫ ∞

0
f (r, θ) dr = g(θ).

In other words, the CPT is only a special case of the MCPT.
A radial factor rs−1 has been introduced in the definition of the MCPT. Some

information along the radial direction can be kept in part. As shown in Figure 1(d)
(s is set to 1 + 5i), the MCPT converts the two different images in Figures 1(a) and
1(b) into two different closed curves.

2.2. Affine invariance of the MCPT The translation invariance is obtained by
setting the origin at the centroid. As a result, equation (1.1) can be translated into(

x̃
ỹ

)
= A

(
x
y

)
. (2.3)

Let (r̃, θ̃) be the corresponding polar coordinates with

x̃ = r̃ cos θ̃, ỹ = r̃ sin θ̃, (2.4)

where θ̃ ∈ [0, 2π).

Theorem 2.1. For a complex number s, let f̃ (̃r, θ̃) be the affine transformed image of
f (r, θ). Let Mgs

f (θ) be the MCPT of f (r, θ) and let M̃gs
f (θ̃) be the MCPT of f̃ (̃r, θ̃).

Then

˜Mgs
f (̃θ) cos θ̃ = aMgs

f (θ) cos θ + bMgs
f (θ) sin θ,

˜Mgs
f (̃θ) sin θ̃ = cMgs

f (θ) cos θ + dMgs
f (θ) sin θ.
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Proof. From equation (2.3),

r̃ cos θ̃ = ar cos θ + br sin θ r̃ sin θ̃ = cr cos θ + dr sin θ, (2.5)

which yields

r̃ = r
√

(a cos θ + b sin θ)2 + (c cos θ + d sin θ), tan θ̃ =
c cos θ + d sin θ
a cos θ + b sin θ

.

Let α(θ) =
√

(a cos θ + b sin θ)2 + (c cos θ + d sin θ). Consequently, r̃ = α(θ)r. Using
equations (2.4)–(2.5),

cos θ̃ =
a cos θ + b sin θ

α(θ)
, sin θ̃ =

c cos θ + d sin θ
α(θ)

,

and, since r̃ = α(θ)r,

˜Mgs
f (̃θ) cos θ̃ = α(θ)Mgs

f (θ)
a cos θ + b sin θ

α(θ)
= aMgs

f (θ) cos θ + bMgs
f (θ) sin θ.

Similarly, we deduce that

˜Mgs
f (̃θ) sin θ̃ = cMgs

f (θ) cos θ + dMgs
f (θ) sin θ.

This completes the proof. �

We note that (Mgs
f (θ) cos θ, Mgs

f (θ) sin θ) and ( ˜Mgs
f (̃θ) cos θ̃, ˜Mgs

f (̃θ) sin θ̃) are the
horizontal and vertical coordinates of the MCPT before and after the affine transform,
respectively. So the above theorem shows that the MCPT can keep the affine transform
relationship. For instance, Figures 2(a) and 2(b) illustrate the images of the Chinese
character “Mu” and its affine transform. Figures 2(c) and 2(d) show the closed
curves obtained by the MCPT of Figures 2(a), and 2(b), respectively, with different
s. We observe that the closed curves extracted from the original image and the affine
transformed image also satisfy the same affine transform relationship.

Lan and Yang [8] extracted affine invariant features by the CPT, the whitening
transform and the Fourier transform. Affine invariants can be constructed using similar
methods, but we propose a new method in this paper. The areas of closed curves
derived by the MCPT are employed to construct affine invariants.

2.3. The construction of affine invariants by the MCPT By the MCPT, Mgs
f (θ)

is a closed curve in a polar coordinate system. For a complex number s, we denote

d(s) =
1
2

∫ 2π

0
[Mgs

f (θ)]
2 dθ,

which is the area of the closed curve Mgs
f (θ). Let s = 2. Then

d(2) =
1
2

∫ 2π

0
[Mgs

f (θ)]
2 dθ =

1
2

∫ 2π

0

∫ ∞

0
r f (r, θ) dr.
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Figure 2. Images of a Chinese character and its affine transformation are shown in (a) and (b). The
Mellin central projection transforms of the images in (a) and (b) with different values of s are shown in
(c) and (d).

Note that
∫ 2π

0

∫ ∞
0 r f (r, θ) dr is the expression of the zero-order moment in the polar

coordinate system.
Suppose that f (r, θ) and f̃ (r̃, θ̃) are the original image and its affine transform,

respectively. Let Mgs
f (θ) and ˜Mg f̃

s(θ̃) be the MCPTs of f (r, θ) and f̃ (r̃, θ̃), respectively.
Then ∫ 2π

0
[M̃gs

f (θ)]
2dθ̃ = det(A)

∫ 2π

0
[Mgs

f (θ)]
2 dθ,

where det(A) is the determinant of the matrix A. Note that d(s)/d(2) is the ratio of the
area of two closed curves obtained by MCPT with different parameters. Consequently,
it is affine invariant.

Let s1, s2, s3, . . . , sn be different numbers other than two. We define the vector

F =

[d(s1)

d(2) ,
d(s2)

d(2) , . . . ,
d(sn)

d(2)

]T
, (2.6)

where T denotes the transpose of a matrix. It is also affine invariant. In the experiments,
we use the vector F to extract invariant features of an object.

3. Experiments
In this section, we illustrate the performance of the proposed method. The first

experiment is devoted to studying the invariance of the constructed affine invariants.
In the second experiment, the robustness of the proposed method is tested.
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Figure 3. The test Chinese characters.

Table 1. Invariant vectors of the original images and their transformed images.

(2+3i)MCPT(2+2i)
(2+i)

0.8921
0.7371
0.6646

0.8918
0.7372
0.6657

0.8771
0.7306
0.6750

0.8778
0.7324
0.6769

0.9223
0.7541
0.6558

0.9214
0.7514
0.6526

0.8919
0.7675
0.7427

0.8921
0.7698
0.7451

(1.1+3i)MCPT(2.5+i)
(2+2i)

0.3096
0.7371
0.9763

0.3154
0.7372
0.9753

0.3419
0.7306
0.9568

0.3464
0.7324
0.9578

0.2728
0.7541
1.0241

0.2687
0.7514
1.0227

0.3846
0.7675
1.0250

0.3930
0.7698
1.0252

(3.6+5i)MCPT(2.8+2i)
(1.2+4i)

1.0182
0.3384
0.9541

1.0150
0.3429
0.9529

0.9840
0.3482
0.9365

0.9853
0.3499
0.9381

1.1131
0.3974
1.0035

1.1057
0.3917
1.0011

1.1465
0.3949
1.0384

1.1444
0.3951
1.0387

(2.3+4i)MCPT(3.7+3i)
(1.5+i)

0.7393
0.8124
1.0873

0.7391
0.8130
1.0846

0.7320
0.8002
1.0554

0.7335
0.8000
1.0570

0.7854
0.8243
1.1675

0.7802
0.8244
1.1638

0.8265
0.7408
1.2156

0.8271
0.7380
1.2138

In the following experiments, we set n = 3 in equation (2.6). The feature that is
obtained by taking the different values s1, s2, s3 is denoted by s3 MCPT

s2
s1 .

In this paper, binary images of the ten Chinese characters shown in Figure 3 are
used as the test set. These images have a size of 128 × 128 pixels. Some of these
Chinese characters have the same structure, but the shape of specific strokes of these
characters may be a little different.

3.1. Affine invariance To test the affine invariance of the proposed method, vectors
(2+3i)MCPT

(2+2i)
(2+i) , (1.1+3i)MCPT

(2.5+i)
(2+2i) , (3.6+5i)MCPT

(2.8+2i)
(1.2+4i) and (2.3+4i)MCPT

(3.7+3i)
(1.5+i) are calculated

by equation (2.6) for the first four Chinese characters in Figure 3 and their affine
transform images. Results are listed in Table 1. The difference of two vectors
associated with two different Chinese characters is obvious, even though the characters
are very similar. On the contrary, vectors associated with the original image and its
affine transform image are very similar. Therefore, the vector defined in equation (2.6)
is affine invariant.
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Table 2. The recognition accuracy for Chinese characters under different intensities of salt-and-pepper
noise.

0 0.001 0.002 0.003 0.004 0.005
(2+3i)MCPT(2+2i)

(2+i) 0.9595 0.9208 0.8583 0.7976 0.7262 0.6625
(1.1+3i)MCPT(2.5+i)

(2+2i) 0.9238 0.8970 0.8637 0.8405 0.8113 0.7679
(3.6+5i)MCPT(2.8+2i)

(1.2+4i) 0.9690 0.9530 0.9226 0.8958 0.8518 0.8143
(2.3+4i)MCPT(3.7+3i)

(1.5+i) 0.9881 0.9679 0.9399 0.8976 0.8530 0.8161

AMIs 0.9101 0.7161 0.6357 0.5673 0.5536 0.5232

3.2. Comparison with AMIs In this experiment, affine transformations are
generated [7] by the matrix

A = k
(
cos θ − sin θ
sin θ cos θ

) (
a b
0 1

a

)
,

where k ∈ {0.8, 1.2}, θ ∈ {30◦, 90◦, . . . , 330◦}, b ∈ {−3/2,−1,−1/2, 0, 1/2, 1, 3/2} and
a ∈ {1, 2}. As a result, every image is transformed into 168 testing images. Let η
denote the classification accuracy and let η = (γ/τ) × 100%, where γ is the number of
correctly classified images and τ is the total number of images used in the test.

To reveal the robustness of affine invariants constructed by the MCPT, we compare
the experimental results with the AMIs used by Flusser et al. [3]. The following three
AMIs are used as affine invariant features. We denote the experiment using these
quantities as AMIs.

AMI1 = (µ20µ02 − µ
2
11)/µ4

00,

AMI2 =
{
µ20(µ21µ03 − µ

2
12) − µ11(µ30µ03 − µ21µ12) + µ02(µ30µ12 − µ

2
21)

}
/µ7

00,

AMI3 = (µ2
30µ

2
03 − 6µ30µ12µ21µ03 + 4µ30µ

3
12 + 4µ3

21µ03 − 3µ2
21µ

2
12)/µ10

00,

where µi, j is the central geometric moment.
Every test image had salt-and-pepper noise added with different intensities: 0,

0.001, 0.002, 0.003, 0.004, 0.005. The noise was added to the affine transformed
images before recognition. The recognition accuracy for the affine invariants
constructed by the proposed method and that for the AMIs are shown in Table 2. We
observe that the affine invariants constructed by the proposed method have stronger
robustness than the AMIs to salt-and-pepper noise.

4. Conclusion

We generalize the CPT to the MCPT in this paper. The CPT is only the
accumulation of pixels along a radial direction and, inevitably, there is a loss of
information. In the MCPT, a radial factor is introduced to reduce the loss of this
information. Next, the Mellin transform is successfully applied to the extraction of
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affine invariant features. So far, the Mellin transform has been used only for the
extraction of similar invariant features. In addition, a method is provided for the
extraction of affine invariants by employing the area of the closed curves obtained by
the MCPT. Experimental results demonstrate the performance of the proposed method.
The MCPT can also be extended so that it can be applied to colour images [9, 10].
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