
1 Introduction to general relativity 1: Kinematics
and Einstein equations

In this chapter, I will give a lightning review of the basics of general relativity, from how it
is built, to its kinematics, and finally to its dynamics, given by the Einstein equation.

1.1 Intrinsically curved spacetime and the geometry of general
relativity

I will start with the need for and meaning of intrinsically curved spacetime, which will lead
us to the geometry of general relativity.

But since general relativity is a generalization of special relativity, I will review its basic
ideas in order to be able to generalize it.

1.1.1 Special relativity

Special relativity was developed as a result of the experimental observation that the speed
of light in a vacuum is equal to a constant in all inertial reference frames, where the constant
can be put to 1, so that c = 1. This then becomes a postulate of special relativity.

As a result, we find that the line element, or the infinitesimal distance between two
points, must be taken in spacetime, not just in space, in order to be invariant under trans-
formations of coordinates between any inertial reference frames. This invariant distance
is then

ds2 = −dt2 + d�x2 = ημνdxμdxν , (1.1)

where ημν = diag(−1, 1, ..., 1) is the Minkowski metric. This now takes the role of the
invariant length d�x2 in Newtonian physics, which is invariant under rotations of space at a
given time.

The symmetry group that leaves ds2 invariant is SO(1, 3), or in a general dimension
SO(1, d − 1), called the Lorentz group. It is a generalization of the group SO(d − 1) of
spatial rotations that leaves d�x2 invariant. The corresponding Lorentz transformations are
linear transformations of the coordinates that generalize rotations, x′i = �i

jxj, where � ∈
SO(d − 1), which leaves invariant d�x2. Now, instead, we have

x′μ = �μ
νxν ; �μ

ν ∈ SO(1, 3), (1.2)

which leaves invariant ds2.
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In conclusion, special relativity is defined by the following statement: Physics is Lorentz
invariant or covariant (under SO(1, d − 1) transformations). It replaces the statement of
Newtonian or Galilean physics that physics is invariant under the Galilean group, of spatial
rotations, with no action on time.

1.1.2 General relativity

Now to define general relativity, we need to consider the most general line element

ds2 = gμν(x)dxμdxν, (1.3)

where gμν(x) is a symmetric matrix of functions called “the metric.” By extension, some-
times one calls the corresponding ds2 the metric. Moreover, consider here that xμ make up
an arbitrary parametrization of spacetime, that is, are arbitrary coordinates on a manifold.

Example 1 S2 in angular coordinates. To understand the notation, consider the usual case
of a two-dimensional sphere, described in terms of angles. Then the line element is

ds2 = dθ2 + sin2 θdφ2, (1.4)

so xμ = (θ ,φ). Then it follows that gθθ = 1, gφφ = sin θ , and gθφ = 0.

Example 2 S2 as an embedding in three-dimensional Euclidean space. We can describe
the sphere also by embedding it in three Euclidean dimensions, meaning as we usually
understand it, as an object in three-dimensional space, with the metric

ds2 = dx2
1 + dx2

2 + dx2
3 (1.5)

defined by the constraint

x2
1 + x2

2 + x2
3 = R2. (1.6)

Differentiating the constraint, we obtain

2(x1dx1 + x2dx2 + x3dx3) = 0

⇒ dx3 = −x1dx1 + x2dx2

x3
= − x1√

R2 − x2
1 − x2

2

dx1 − x2√
R2 − x2

1 − x2
2

dx2, (1.7)

and by substituting it back into the Euclidean metric, we obtain the induced metric on
the S2,

ds2
induced = dx2

1

(
1+ x2

1

R2 − x2
1 − x2

2

)
+ dx2

2

(
1+ x2

2

R2 − x2
1 − x2

2

)
+ 2dx1dx2

x1x2

R2 − x2
1 − x2

2

= gμν(x
ρ)dxμdxν. (1.8)

This was an example of a curved d-dimensional space obtained by embedding it into a flat
(Euclidean or Minkowski) (d+ 1)-dimensional space. We can ask: Is this always possible?
The answer is no. To see this, first note that gμν is a symmetric matrix, with d(d+1)/2 arbi-
trary components. Then, the general coordinate transformations x′μ = x′μ(xρ) correspond
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to d arbitrary functions, which can be used to put d components to zero, thus remaining
d(d − 1)/2 independent components of gμν . On the other hand, if we were to embed the
manifold Md into (d + 1)-dimensional Euclidean space Ed+1, there would be a unique
coordinate xd+1 written as a function of the others, xd+1 = xd+1(xρ), as in the example of
the sphere. We see that d(d − 1)/2 = 1 is true only in the particular case of d = 2.

We note here that general coordinate transformations x′μ = x′μ(xρ) act on the fields
gμν(x), that is, the functions of spacetime, allowing us to fix their d components, so we
have a redundancy similar to the one in gauge transformations in field theory; thus, we can
say that general coordinate invariance is a kind of gauge invariance. We will see that we
can turn this observation into a useful tool later on.

If we cannot always embed the manifold Md into (d + 1)-dimensional space, can we do
it by adding more extra dimensions? At first sight, we would say yes, perhaps by adding
not 1, but d(d − 1)/2 dimensions in general. But actually, the situation is worse than that:
We also need to make, case by case, a discrete choice of the signature of the space into
which we are embedding a manifold.

Even in the simplest case of two-dimensional surfaces, we need to make this choice: Do
we embed two-dimensional surfaces into a 3-dimensional Euclidean space like in the case
of the sphere, with signature (+,+,+), or into a three-dimensional Minkowski space, with
signature (−,+,+)? Note that, since the multiplication of the metric by a sign changes
only the convention, these are the only possibilities in three dimensions (the (−,−,−) and
(−,−,+) ones are related by multiplication by a sign).

The example of embedding Lobachevsky space into Minkowski space is a famous one,
defined by the constraint

x2 + y2 − z2 = −R2. (1.9)

Lobachevsky space cannot be embedded into Euclidean space but only into Minkowski
space with the metric

ds2 = dx2 + dy2 − dz2, (1.10)

with the minus sign in the same place as in the constraint. We might think that this is
because the signature on the two-dimensional Lobachevsky space is Minkowski, (−,+)
(equivalent to (+,−)), but that is wrong also: The signature on the space is two-
dimensional Euclidean, so (+,+) or equivalently, (−,−). That is, det gμν > 0 and not
< 0. Indeed, by differentiating the constraint, like for the sphere, we obtain

dz = xdx+ ydy

z
= xdx+ ydy√

R2 + x2 + y2
, (1.11)

and by replacing in the Minkowski metric, we obtain the induced metric on the
Lobachevsky space,

ds2
induced = dx2 + dy2 + (xdx+ ydx)2

R2 + x2 + y2
≡ gμνdxμdxν, (1.12)

which is positive definite, so det gμν > 0.
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Finally, this means that even two-dimensional surfaces of Euclidean signature can be
embedded in three dimensions, but either in Euclidean or in Minkowski ones, depending
on the surface. In higher dimensions, the number of choices for the signature becomes
even larger, so defining spaces by embedding is possible, but very complicated and not
very useful.

Instead, we must consider spaces as intrinsically curved, without embedding, and that
in turn leads to non-Euclidean, Riemannian, geometry. This observation was believed to
be first made by Gauss, who tried to measure if our space is actually curved (but failed, of
course; on scales of even kilometers, space is flat to a very high accuracy).

In curved spaces, to define geometry, we must first define the analog of “straight lines” of
Euclidean geometry, which are the geodesics, also defined as lines of the shortest distance∫ b

a ds between two points a and b. In non-Euclidean geometry, a triangle made by two
geodesics has the sum of its inner angles, α + β + γ 
= π . In Euclidean geometry, of
course, the sum is equal to π by a theorem.

On spaces like S2 of “positive curvature,” R > 0, we have α + β + γ > π , as we
can easily see in the following example: Consider a triangle made by two meridian lines
starting from the North Pole and ending on an Equator line. The meridian lines with the
Equator line make π/2 each, so α + β + γ > π .

But that is not the only possibility. On a space like Lobachevsky space, we can check
that α + β + γ < π , and we call this a space of “negative curvature,” R < 0. We will see
in Section 1.3 what R < 0 and R > 0 means.

In conclusion, we see that for general relativity, we will need intrinsically curved space-
times, with non-Euclidean geometry, with a general metric gμν(x), and acted upon by
general coordinate transformations that act as gauge transformations.

1.2 Einstein’s theory of general relativity

Einstein thought of defining general relativity in order to modify Newton’s gravity at high
gravitational acceleration �g and high velocity �v in order to make it compatible with special
relativity. The need for that arose also because of experimental results: The deflection of
light by the Sun using only special relativity is a factor of 1/2 off the actual result.

The construction of general relativity was based on two physical assumptions:

(1) Gravity is geometry
That is, matter follows geodesics (paths of shortest distance) in curved spacetimes, and
to us, it appears as the effect of gravity.

Pictorially, consider a planar rubber sheet and put a heavy ball at a point on it: It
will curve the sheet locally. Then, when throwing a light ball on the sheet, the local
disturbance deflects it (think of a golfer doing a putt and the golf ball just missing the
hole). Of course, this is just a pictorial way of describing the phenomenon; otherwise, it
is a cheat: The sheet curves because of the terrestrial gravity it feels, and the curvature
is only of space, not of spacetime. But this is a nice way of viewing what happens.
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(2) Matter sources gravity
This means matter generates the gravitational field that is equated with the curvature
of the geometry of spacetime from the first assumption.

These two physical assumptions were then translated into two physical principles
with a mathematical formulation, defining the kinematics of general relativity, plus
one equation for the dynamics, that is, Einstein’s equation.

(A) Physics is invariant (or, more generally, covariant) under general coordinate trans-
formations, which generalizes the Lorentz invariance or covariance in the case of special
relativity.

For a general coordinate transformation x′μ = x′μ(xν), we obtain

ds2 = gρσ (x)dxρdxσ = g′μνdx′μdx′ν, (1.13)

giving the transformation rules for the field gμν (thought of as a field in spacetime),

g′μν(x
′) = gρσ (x)

∂xρ

∂x′μ
∂xσ

∂x′ν
. (1.14)

This transformation is like a gauge invariance, and physics must be invariant or covariant
with respect to it.

(B) The equivalence principle.
In Newtonian theory, there are a priori two masses: one is the inertial mass mi, appearing

in Newton’s law of force, that is, �F = mi�a, and the other is the gravitational mass mg,
appearing in Newton’s gravitational law, that is, �FG = mg�g.

The equality of the two masses is the mathematical form of the equivalence principle,
that is,

mi = mg. (1.15)

In more physical terms, we say that “there is no difference between gravity and local
acceleration.” We can also explain this using Einstein’s gedanken (thought) experiment.
Consider a person inside a freely falling elevator with no windows. Then, by performing
local experiments inside the elevator, the person cannot distinguish between being weight-
less and being inside a freely falling elevator. Of course, the locality condition is important,
because if one is allowed to probe large regions of space, then he or she will note that
there are tidal forces – gravity acting at different points in different directions (all pointing
toward the center of the Earth). Also, locality in time is important; otherwise, eventually
the elevator will hit the hard surface of the Earth, ending the experiment.

On the basis of the above principles, we now turn to constructing the kinematics of
general relativity.

First, consider an infinitesimal general coordinate transformation, x′μ = xμ − ξμ, with
ξμ small, and we want to describe it as a gauge transformation. Then,

g′μν(x
λ − ξλ) = (δρμ + ∂μξ

ρ)(δσν + ∂νξ
σ )gρσ (x)

= g′μν(x
λ)− (∂λg′μν(x))ξ

λ, (1.16)

where in the first equality, we used the transformation law of gμν , and in the second
equality, we used the Taylor expansion.
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Equating the two, we obtain

δgμν(x) ≡ g′μν(x)− gμν(x) � ξλ∂λg′μν(x)+ (∂μξ
ρ)gρν(x)+ (∂νξ

σ )gμσ (x)

� ξλ∂λgμν(x)+ (∂μξ
ρ)gρν(x)+ (∂νξ

ρ)gμρ(x). (1.17)

In formula (1.17), the first term was from the Taylor expansion, so it is just a translation,
while the last two terms correspond to a generalized gauge transformation with parameter
ξρ instead of the usual α of gauge theory (with δAμ = ∂μα). Since there are two indices
on gμν , unlike the case of Aμ, there are two terms, one with ∂μ and the other with ∂ν , and
the extra metric is needed in order to lower the index on ξρ .

Note that in the global case (with ξρ independent of position), there is only the
translation term. Therefore, we can say that general coordinate transformations are a
local version of translations, and moreover, General relativity is a “gauge theory of
translations.”

1.3 Kinematics

We now move on to defining kinematics per se. We first ask: What is a good variable
that corresponds to Aμ in our gauge theory analogy? And correspondingly, what is the
respective field strength Fμν?

Our first guess would be the metric gμν itself. We saw that it has (d(d − 1)/2)-
independent components (or degrees of freedom, off-shell). However, we know that locally
(in a small enough neighborhood), every space looks flat (which in our case means locally
Minkowski). In mathematical terms, locally we can always find coordinates such that

gμν(x) = ημν +O(x2). (1.18)

This means also that locally we can define Lorentz transformations, and so there is an
SO(1, 3) (or SO(1, d − 1) in general dimension) invariance, called the local (x-dependent)
Lorentz invariance.

In any case, this means that gμν is not a good measure of the curvature of space, but also
not quite like the gauge field Aμ either, since Aμ can locally be put to 0, whereas gμν can
only be put to ημν .

To understand better what happens, defining general relativity tensors through a simple
generalization of special relativity tensors, we have:

– Contravariant tensors Aμ, that are the objects that transform as dxμ,

dx′μ = ∂x′μ

∂xν
dxν ⇒ A′μ = ∂x′μ

∂xν
Aν. (1.19)

– Covariant tensors Bμ that are the objects that transform as ∂μ,

∂ ′μ =
∂xν

∂x′μ
∂ν ⇒ B′μ =

∂xν

∂x′μ
Bν . (1.20)
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– Mixed tensors that transform as products, for example,

T ′μν(x
′) = ∂x′μ

∂xρ
∂xσ

∂x′ν
Tρ

σ (x), (1.21)

and with an obvious generalization to Tμ1,...,μn
ν1,...,νm .

Given these definitions, we turn back to the question of what is a good analog of the
gauge field Aμ? We can now rephrase this question. Since in gauge theory the covariant
derivative Dμ = ∂μ− iAμ transforms covariantly, that is, like a covariant vector, we can ask
the same question in general relativity as follows: How do we construct a gravitationally
covariant derivative?

Since, as we saw, the local Lorentz group is SO(1, d − 1), and this is in some sense
the gauge group we are looking for, we note that for an SO(p, q) group, the adjoint rep-
resentation, for the gauge field, is written in terms of the fundamental indices a, b as (ab)
(antisymmetric in them), so the gauge covariant derivative on a generic field in the funda-
mental representation, φa, is (lowering one index b on the gauge field to have a match with
the general relativity construction)

Dμφ
a = ∂μφ

a + (Aa
b)μφ

b. (1.22)

In our case, we define something similar to that, with the only difference being that
we identify fundamental gauge and spacetime indices, and write for the gravitationally
covariant derivative of a contravariant tensor (so that the index is up, just like a on φa)

DμTν = ∂μTν + (�ν
σ )μTσ, (1.23)

where the object �ν
σμ is called the “Christoffel symbol,” and in Equation (1.23), we put

brackets around �, just like for the gauge field, but we did not need to, since the gauge
and spacetime indices are the same. This object is then the “gauge field of gravity” that we
were looking for.

We can easily generalize its action on tensors, by taking into account the position of the
indices (only the sign in front is not defined this way), so that

DμTρ
ν = ∂μTρ

ν + �ρ
σμTσ

ν − �σ
μνTρ

σ. (1.24)

To calculate �μ
νρ in terms of the metric gμν , we consider the following: If �μ

νρ is a
gauge field, then it should be possible to put it locally to zero by a general coordinate
transformation (a gauge transformation), when the space becomes locally flat. At the same
time, we saw that gμν is locally ημν . Then

Dμgνρ = ∂μgνρ − �σ
νρgσρ − �σ

ρμgσν = 0 (1.25)

locally, but we saw that a tensor transforms by multiplication under general coordinate
transformations, so it must be that the result is 0 globally as well (in any coordinate system).

This is an equation whose unique solution is

�μ
νρ = 1

2
gμσ

(
∂νgσρ + ∂ρgνσ − ∂σgνρ

)
. (1.26)

The proof of this is left as an exercise. Note that here we define the inverse metric gμν

as the matrix inverse of gνρ , so gμνgνρ = δμρ .
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Further, we define the Riemann tensor as the analog of the field strength of the SO(p, q)
gauge field, Fab

μν , namely, since

Fab
μν = ∂μAab

ν − ∂νAab
μ + Aac

μ Acb
ν − Aac

ν Acb
μ , (1.27)

it follows that we can define

(Rμ
ν)ρσ (�) = ∂ρ(�

μ
ν)σ − ∂σ (�

μ
ν)ρ + (�μ

λ)ρ(�
λ
ν)σ − (�μ

λ)σ (�
λ
ν)ρ . (1.28)

Here we have put brackets around the “gauge indices” to make the analogy with the
gauge case more obvious, but, as in the case of the Christoffel symbol, this is not necessary,
since gauge and spacetime indices are the same now.

Unlike the gauge case, now we can define the contractions of the Riemann tensor as the
Ricci tensor,

Rμν = Rρ
μρν , (1.29)

and as the Ricci scalar,

R = Rμνgμν . (1.30)

Finally, the Ricci scalar, by virtue of being a scalar, is invariant under general coordinate
transformations, so it is a true invariant measure of the curvature of space at a point, the
object we were looking for. In particular, when we said that the sphere was an object of
positive curvature R > 0 and the Lobachevsky space of negative curvature R < 0, we were
referring to the Ricci scalar.

The symmetry properties of the Riemann tensor are as follows. First, there are a number
of properties that are obvious from the gauge field strength analogy:

1. Since for a gauge field we have the Bianchi identity (D[μFνρ])a = 0, we now also
have the gravitational Bianchi identity

D[λ(Rμ
ν)ρσ ] = 0, (1.31)

where antisymmetry only acts on [λρσ ].
2, 3. From the antisymmetry of the spacetime indices of the field strength, and of the

fundamental indices in the adjoint of SO(p, q), we have (note that we have lowered the first
index with a metric on the Riemann tensor for simplicity)

Rμνρσ = −Rνμρσ = −Rμνσρ . (1.32)

4. Not a symmetry property but the action on a tensor is defined through two covariant
derivatives. Since for a gauge field we have [Dμ, Dν] = Fμν , which can act on tensors, we
now have

[Dμ, Dν]Tρ = −(Rσ
ρ)μνTσ = RρσμνTσ. (1.33)

5, 6. But then, we have other properties that are not obtained this way, and we must
check them from the definition of the Riemann tensor:

Rμνρσ = Rρσμν , Rμ[νρσ ] = 0. (1.34)
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1.4 Actions in general relativity

We now move on to writing actions for general relativity fields. To generalize a special
relativity action to a general relativity action, we first change special relativity tensors
into general relativity tensors, in particular derivatives ∂μ into gravitationally covariant
derivatives Dμ and the metric ημν into the general gμν . The only thing left is to generalize
the integration measure from ddx. From the transformation rule for dxμ, we find the one
for ddx,

dxμ = ∂xμ

∂x′ν
dx′ν ⇒ ddx = det

(
∂xμ

∂x′ν

)
ddx′. (1.35)

To compensate this, we note that we have the transformation of the metric

g′μν(x
′) = ∂xρ

∂x′μ
∂xσ

∂x′ν
gρσ (x)⇒ det g′μν ≡ g′ =

[
det

(
∂xμ

∂x′ν

)]2

g, (1.36)

which means that the invariant measure is (the minus is for the reality of the square root in
the Minkowski signature case)

√−g′ddx′ = √−gddx. (1.37)

1.5 The Einstein–Hilbert action

Now we are ready to write an action for the dynamics of general relativity, the Einstein–
Hilbert action, as promised. This is an a priori independent postulate, which doesn’t follow
from the previous ones. The role of the action for the dynamics is to match experiment, and
there is no fundamental principle behind it, unlike the case of the kinematics.

As is familiar from quantum field theory, to construct actions, we go in increasing order
of mass dimension of possible terms in the Lagrangian.

The simplest possibility is to integrate a constant (one times a dimensionful constant)
with the invariant measure, so a term of dimension 0,

S0 = �

∫
ddx
√−g. (1.38)

This doesn’t give the correct dynamics. In fact, by varying it, we obtain δgμνgμν = 0,
so the equation of motion is nonsensical, gμν = 0. We will see in Section 2.3 that such a
term can in fact be added, with a very small constant � in front (of dimension d), called
a cosmological constant term, but it is not understood as part of the gravity action, but
usually as part of the matter action.

The next term, at dimension 2, is the Ricci scalar (since R ∼ ∂� + ��, and
� ∼ g−1∂g, and gμν is dimensionless, it follows that R is dimension 2, as it has two
derivatives), integrated with the invariant measure, with a certain dimensionful constant in
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front. This is in fact the Einstein–Hilbert action, the correct action for gravity,∗

SE−H = 1

16πGN

∫
ddx
√−gR. (1.39)

Note that the factor in front had to involve GN , since we need to obtain Newtonian
gravity in the weak field, small velocities limit, and the actual factor is taken such that we
obtain exactly the Newtonian potential UN(r). This action matches experiments to a very
high accuracy: Every experiment we did until now confirms it. Note that we can write the
coefficient in terms of the d-dimensional Planck mass,

1

16πGN
= Md−2

Pl

2
. (1.40)

However, note that in principle we can have corrections to this action, coming from
terms of higher mass dimension, and such terms in fact do appear because of quantum
corrections in string theory or supergravity, for instance. The next possible terms, at mass
dimension 4, are (with coefficients that are implicitly coming from quantum corrections,
due to the power of MPl)

∼
∫

ddx
√−gMd−4

Pl R2, (1.41)

where R2 can mean the Ricci scalar squared, but also RμνRμν or RμνρσRμνρσ .
We are now ready to write Einstein’s equations in vacuum, the equations of motion of the

Einstein–Hilbert action. Writing the determinant of gμν as an exponential, we can calculate
its variation,

g = det gμν = eTr log gμν ⇒ δ
√−g√−g

= −1

2
gμνδgμν , (1.42)

where we have used gμνδgμν = −gμνδgμν . Since R = gμνRμν , we must only calculate
δRμν .

But, as left to prove in Exercise 4, we have

gμνδRμν = Dμ(g
νρδ�μ

νρ − gμνδ�ρ
νρ) ≡ DμUμ. (1.43)

Then, since

DμUμ = ∂μUμ + �μ
σμUσ, (1.44)

and

�μ
σμ = 1

2
gμλ∂σgμλ = ∂σ

√−g√−g
, (1.45)

we have
√−gDμUμ = ∂μ(

√−gUμ), (1.46)

and the term becomes a total derivative, that is, a boundary term.

∗ Note on conventions: If we use the +−−− metric, we get a − in front of the action, since R = gμνRμν and
Rμν is invariant under constant rescalings of gμν .
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Finally then, the variation of the Einstein–Hilbert action is

δSE−H = 1

16πGN

∫
ddx
√−gδgμν

(
Rμν − 1

2
gμνR

)
, (1.47)

so the Einstein equations in vacuum are

Rμν − 1

2
gμνR = 0. (1.48)

When adding matter, for the energy–momentum tensor in curved space, we have the
Belinfante formula,

Tμν ≡ − 2√−g

δSmatter

δgμν
. (1.49)

It is worth noting that, even if we are in flat space, we can formally introduce a nontrivial
metric and vary with respect to it as in (1.49), after which we put back gμν = ημν , in order
to obtain the Belinfante energy–momentum tensor, uniquely defined (even if, otherwise,
for instance for electromagnetism, there are ambiguities in the definition of Tμν).

Now reading this formula in reverse, we can find the variation of the matter action as

δSmatter = −1

2

∫
ddx
√−gδgμνTμν , (1.50)

so that the total variation of the action is

δ(Sgravity + Smatter) = 1

16πGN

∫
ddx
√−gδgμν

(
Rμν − 1

2
gμνR− 8πGNTμν

)
= 0,

(1.51)

giving the Einstein equations with matter,

Rμν − 1

2
gμνR = 8πGNTμν . (1.52)

To understand better Tμν , we give a couple of examples. The kinetic action for a scalar
in Minkowski space is

SM,φ = −1

2

∫
ddx(∂μφ)(∂νφ)η

μν . (1.53)

In curved space, ∂μ becomes Dμ; however, on a scalar, they are the same, ∂μφ = Dμφ,
so the scalar kinetic action in curved space is

Sφ = −1

2

∫
ddx
√−g(∂μφ)(∂νφ)g

μν . (1.54)

Then the resulting energy momentum tensor for the scalar kinetic term is

Tφ
μν = ∂μφ∂νφ − 1

2
gμν(∂ρφ)

2. (1.55)

For electromagnetism, the action in flat space is

SM,e−m = −1

4

∫
ddxFμνFρσ η

μρηνσ, (1.56)

which easily translates into curved space as

Se−m = −1

4

∫
ddx
√−gFμνFρσ gμρgνσ, (1.57)

https://doi.org/10.1017/9781009445573.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009445573.003


16 Introduction to general relativity 1
�

leading to the (Belinfante) energy–momentum tensor

Te−m
μν = FμρFν

ρ − 1

4
gμνFρσ Fρσ. (1.58)

Important concepts to remember

• In general relativity, space is intrinsically curved.
• In general relativity, physics is invariant under general coordinate transformations.
• Gravity is the same as curvature of space, or gravity = local acceleration, or mi = mg.
• General relativity can be thought of as a gauge theory of local translations.
• General relativity tensors are a generalization of special relativity tensors.
• The Christoffel symbol acts like a gauge field of gravity, giving the covariant derivative.
• Its field strength is the Riemann tensor, whose scalar contraction, the Ricci scalar, is an

invariant measure of curvature.
• One postulates the action for gravity as (1/(16πGN))

∫
ddx
√−gR, giving Einstein’s

equations.
• Adding a matter action, obtained from the flat space action by generalization, we obtain

the Einstein’s equations with matter.

References and further reading

For a very basic (but not too explicit) introduction to general relativity, you can try the
general relativity chapter in Peebles [1]. A good and comprehensive treatment is done in
[2], which has a very good index, and detailed information, but one needs to be selective in
reading only the parts you are interested in. An advanced treatment, with an elegance and
concision that a theoretical physicist should appreciate, is found in the general relativity
section of Landau and Lifshitz [3], though it might not be the best introductory book. A
more advanced and thorough book for the theoretical physicist is Wald [4].

Exercises

(1) Parallel the derivation in the text to find the metric on the two-dimensional sphere in
its usual form,

ds2 = R2(dθ2 + sin2 θdφ2), (1.59)

from the three-dimensional Euclidean metric, using the embedding in terms of θ ,φ of
the three-dimensional Euclidean coordinates.

(2) Show that the metric gμν is covariantly constant (Dμgνρ = 0) by substituting the
Christoffel symbols.

(3) Prove that we have the relation

(DμDν − DνDμ)Aρ = Rσ
ρμνAσ, (1.60)

if Aσ is a covariant vector.
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(4) The Christoffel symbol �μ
νρ is not a tensor, and can be put to zero at any point by a

choice of coordinates (Riemann normal coordinates, for instance), but δ�μ
νρ is a tensor.

Show that the variation of the Ricci scalar can be written as

δR = δρμgνσ (Dρδ�
μ
νσ − Dσ δ�

μ
νρ)+ Rνσ δgνσ. (1.61)
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