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A NOVEL APPROACH TO PREDICTIVE
ACCURACY TESTING IN NESTED

ENVIRONMENTS

JEAN-YVES PITARAKIS

University of Southampton

We introduce a new approach for comparing the predictive accuracy of two nested
models that bypasses the difficulties caused by the degeneracy of the asymptotic
variance of forecast error loss differentials used in the construction of commonly
used predictive comparison statistics. Our approach continues to rely on the out of
sample mean squared error loss differentials between the two competing models,
leads to nuisance parameter-free Gaussian asymptotics, and is shown to remain
valid under flexible assumptions that can accommodate heteroskedasticity and the
presence of mixed predictors (e.g., stationary and local to unit root). A local power
analysis also establishes their ability to detect departures from the null in both
stationary and persistent settings. Simulations calibrated to common economic and
financial applications indicate that our methods have strong power with good size
control across commonly encountered sample sizes.

1. INTRODUCTION

This paper is concerned with comparing the forecasting performance of two
nested models through tests that rely on out of sample mean squared error
(MSE) loss differentials. Our proposed approach bypasses the widely documented
complications caused by the degenerate asymptotic variances of these differentials
that occur in nested environments while also leading to nuisance parameter-free
standard normal asymptotics. Our approach remains valid under both stationary
and persistent predictors thus also greatly expanding its practical relevance in
economics and finance.

Since the early work of Diebold and Mariano (1995) and West (1996), a vast
body of theoretical research has been concerned with developing new methods for
comparing the out of sample predictive ability of competing models. Such tests
typically compare the out of sample forecast errors generated from two models
under a variety of loss functions and forecasting schemes (e.g., recursive, rolling,
or fixed updating of model parameter estimates) with the aim of testing the null
hypothesis of equal predictive accuracy. Most of the test statistics introduced
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in this literature are based on estimated out of sample MSE loss differentials
associated with the two competing forecast error series and have been shown to
be asymptotically normally distributed provided that the models being compared
are non-nested and a set of standard regularity conditions hold.

The fundamental difficulties that arise as one moves from a non-nested to a
nested environment have also generated a vast and growing literature aiming
to operationalize and adapt the above approach to nested models. In a nested
modeling context, a key complication comes from the fact that under the null
of interest the population errors of the two models are identical thus leading
to sample MSE loss differentials that are identically zero in the limit with null
asymptotic variances. These in turn result in test statistics that are not well-
defined asymptotically and in the failure of normal approximations for popular test
statistics such as the Diebold–Mariano statistic (henceforth referred to as DM).

Alternative normalizations applied to the MSE loss differentials in nested
contexts have subsequently been shown to lead to test statistics with well-defined
but no longer Gaussian limiting null distributions expressed as functionals of
stochastic integrals in Brownian Motions (Clark and McCracken, 2001, 2005;
McCracken, 2007; Hansen and Timmermann, 2015). With the exception of restric-
tive frameworks that rule out heteroskedasticity or allow only a single additional
predictor in the nesting model these distributions typically depend on a vari-
ety of model specific parameters that cannot be eliminated via standard HAC-
type corrections, requiring simulation-based approaches for their implementation
(see West, 2006, pp. 126–127; Clark and McCracken, 2013, pp. 10–15). The
asymptotics of these test statistics are further influenced by how the in-sample
observations are allowed to grow relative to the out of sample observations and the
particular choice of the forecasting scheme used to generate forecasts.

Rather than relying on these nonstandard and non-Gaussian distributions this
same literature has also proposed to bypass the difficulties underlying nested model
comparisons by continuing to use normal approximations for adjusted versions of
DM-type statistics. In Clark and West (2007), for instance, the authors introduced
an adjustment to the spread of the out of sample MSEs of the two competing
models and argued that although asymptotic normality cannot be established per
se such an approach results in reasonably accurate inferences with acceptable
size distortions. The adjustment essentially corrects for the fact that under the
null hypothesis of equal predictive accuracy the MSE of the larger model is
contaminated with estimation noise. This adjusted DM-type statistic proposed in
Clark and West (2007) has become the norm in economic applications involving
out of sample forecast comparisons with recent examples found in Molodotsova
and Papell (2009), Ince, Molodotsova, and Papell (2016), Engel and Wu (2021)
amongst numerous others.

In this paper, we introduce an alternative formulation of the out of sample MSE
loss differential between two models that is not subject to the variance degeneracy
problem of existing procedures. This subsequently allows us to construct novel test
statistics for testing the null hypothesis of equal out of sample population MSEs
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which are shown to have simple nuisance parameter-free normal distributions.
The main idea underlying our proposed approach is based on the observation that
MSE comparisons across two competing models need not be performed within
the same out of sample span of available forecast error observations. These can
be performed over partially overlapping segments instead, leading to test statistics
that accumulate MSE spreads over all possible such segments. This new setting can
trivially accommodate desirable features such as conditional heteroskedasticity
and persistent predictors and is also shown to lead to both consistent and locally
powerful test statistics. As we discuss further below, our approach can also be
adapted to broader contexts where the nestedness of models is an important
consideration for inferences such as model selection testing.

Besides conventional forecasting objectives, nested models are commonly
encountered environments when it comes to testing economic hypotheses and
validating theories. Notable examples include forecast accuracy comparisons
against random walk models in the exchange rate literature spurred by the early
work of Meese and Rogoff (1983) and more recently reconsidered in Rossi (2005),
Molodotsova and Papell (2009) amongst others, equity premium predictability
issues as recently investigated in Ferson, Nallareddy, and Biqin (2013), Avdis
and Wachter (2017), and numerous others. Our key aim here is to propose a
way of addressing and resolving a long-standing issue that has generated a vast
agenda on the formal comparison of such models via their out-of-sample predictive
accuracy. The important auxiliary debate on the advantages or disadvantages of
using out-of-sample versus in-sample approaches is not part of our focus. It is
also important to emphasize that our interest here is on testing population-level
predictive ability when forecasts are generated recursively as opposed to finite
sample-based predictive ability as considered, for instance, in Giacomini and
White (2006). This latter approach is able to avoid the complications induced
by the nestedness of models being compared by proceeding via a rolling-fixed
window-based forecasting scheme so that the issue of competing models becoming
identical in the limit can be bypassed.

Throughout this paper, we also followed the common practice of referring to
statistics based on MSE differentials obtained from competing estimated models as
Diebold–Mariano-type statistics. We must acknowledge, however, that the specific
testing approach initially developed by these authors was not concerned with
model specific considerations or specification testing motives as its underlying
theory was developed for given sequences of forecast errors assumed to satisfy
certain regularity conditions (see Diebold, 2015). Nevertheless, the forecasting
literature of the past decade has generally amalgamated the notion of forecast
evaluation with the evaluation of models on the basis of their forecasting abilities.

The paper is organized as follows: Section 2 introduces the nested forecasting
environment and establishes the limiting null distributions of two novel test
statistics. Section 3 concentrates on their asymptotic power properties, establishing
their consistency and ability to detect local departures from the null. Section 4
introduces a simple adjustment to the same statistics shown to further enhance
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their power properties without affecting their null distributions. Section 5 provides
a comprehensive finite sample evaluation of our methods based on two data
generating processes (DGPs) calibrated to commonly encountered applications.
Section 6 illustrates the use of our proposed methods via an application to exchange
rate models. Section 7 overviews our key results and discusses extensions. Proofs
are given in the Appendix. Further simulation results are provided in the Supple-
mentary Material.

2. MODELS AND TEST STATISTICS: THEORY

We consider the following predictive regressions:

yt+1 = x′
1tδ1 + vt+1, (1)

yt+1 = x′
1tβ1 +x′

2tβ2 +ut+1, (2)

where the xit’s are the (pi × 1) vectors of predictors, δ1 and β i the (p1 × 1) and
(pi ×1) parameter vectors, and vt and ut the random disturbance terms. We let xt =
(x′

1t,x
′
2t)

′ and β = (β ′
1,β

′
2)

′ and set p = p1 + p2. Here, model (1) is nested within
the larger model in (2) and under β2 = 0, we have δ1 ≡ β1 and vt+1 ≡ ut+1. The
formulation of the above two nested models is standard and parallels closely the
most commonly encountered setting considered in the predictive accuracy testing
literature as, for instance, in Hansen and Timmermann (2015).

One step ahead forecasts of yt+1 from (1) and (2) are generated recursively
as ŷ1,t+1|t = x′

1tδ̂1t and ŷ2,t+1|t = x′
tβ̂ t for t = k0, . . . ,T − 1, where δ̂1t =

(
∑t

j=1 x1j−1x′
1j−1)

−1∑t
j=1 x′

1j−1yj, β̂ t = (
∑t

j=1 xj−1x′
j−1)

−1∑t
j=1 x′

j−1yj and the
resulting pseudo out of sample forecast errors are then obtained as ê1,t+1 =
yt+1 − x′

1tδ̂1t and ê2,t+1 = yt+1 − x′
tβ̂ t. Here, k0 is the sample location used to

initiate the first recursive forecasts that lead to the first out of sample forecast errors
ê1,k0+1 and ê2,k0+1 and subsequently resulting in (T − k0) out of sample forecast
error observations. Throughout this paper, we take k0 to be a given fraction of the
sample size, setting k0 = [Tπ0] for some π0 ∈ (0,1).

Following the early work of Diebold and Mariano (1995), West (1996), and
others, a common approach for comparing the predictive accuracy of the two
models under MSE loss involves testing the null hypothesis

H0 : E[yt+1 − ŷ1,t+1(δ1)]
2 = E[yt+1 − ŷ2,t+1(β)]2 (3)

using a test statistic based on suitably normalized versions of the sample average
MSE loss differentials

DT = 1

T − k0

⎛⎝T−1∑
t=k0

ê2
1,t+1 −

T−1∑
t=k0

ê2
2,t+1

⎞⎠ . (4)

Within a non-nested setting and a strictly stationary and ergodic environment,
Diebold and Mariano (1995) and West (1996) established a standard normal limit
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theory for this class of test statistics (e.g.,
√

T − k0 DT/σ̂DT
with σ̂ 2

DT
denoting some

suitable long-run variance estimator) leading to their systematic use in applied
work and a voluminous literature on their refinements. Within a nested context,
where ut+1 ≡ vt+1, however, it is straightforward to observe that

√
T − k0 DT

p→ 0

and σ̂DT

p→ 0 invalidating the limiting standard normal approximation and the
use of these test statistics for inference purposes. This degeneracy problem is not
solely confined to the Diebold—Mariano-type statistics but universally affects all
existing methods that compare forecast errors (or models) in nested settings with
recursively generated forecasts.

These observations have led to a vast body of research on out of sample
predictive accuracy testing in nested models due to their importance in empirical
applications in areas such as asset pricing and the modeling of expected returns
in particular. For their validity, inferences in nested contexts such as (1) and (2)
must rely on the observation that under H0 it is (T −k0)DT rather than

√
T − k0 DT

that turns out to have a nondegenerate limit which could be used for developing
suitable inferences (see Clark and McCracken (2001, 2005); McCracken (2007);
Hansen and Timmermann (2015)). This, however, is also problematic due to the
nonstandard and non-pivotal nature of the resulting asymptotic distributions. These
take the form of functionals of stochastic integrals in Brownian Motions and with
the exception of some special cases contain nuisance parameters that are difficult
to remove via standard HAC-type normalizations. Even under special instances
such as conditional homoskedasticity these distributions continue to depend on
the number of extra predictors included in the nesting models and the fraction of
the sample used to build the first recursive forecasts. Equally importantly these
results have been obtained under stationarity and ergodicity assumptions ruling
out the important and frequently encountered case of predictors having roots near
unity in their autoregressive representations.

Instead of evaluating the two sequences of squared forecast errors {ê2
1,t+1} and

{ê2
2,t+1} over the entire and same interval [k0 +1,T] as it is done in the formulation

of all commonly used test statistics based on DT we here propose to compare the
two out of sample MSEs over partially overlapping segments of the [k0 + 1,T]
interval instead. For this purpose, we introduce the following generalized MSE
spread

D̃T(�1,�2) =

k0+�1−1∑
t=k0

ê2
1,t+1

�1
−

k0+�2−1∑
t=k0

ê2
2,t+1

�2
, (5)

where �1 and �2 control the range over which the two squared forecast error
sequences are evaluated. Note that setting �1 = �2 = T −k0 in (5) reduces it to DT

which can be viewed as a special case of D̃T(�1,�2). In line with the analysis based
on (4), we take �1 = [(T − k0)λ1] and �2 = [(T − k0)λ2] with λ1 and λ2 referring
to the fraction of the (T − k0) squared forecast errors associated with models (1)
and (2), respectively.
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From a theoretical standpoint, proceeding with the use of D̃T(�1,�2) instead
of DT has no bearing on the null hypothesis being tested in the sense that when
ut+1 ≡ vt+1 the population counterpart of D̃T(�1,�2) also equals zero. A key
feature of (5) that distinguishes it from DT , however, is that the variance of its
suitably normalized version will no longer be degenerate provided that �1 �= �2

(equivalently λ1 �= λ2). This normalized version of (5) which forms the basis of
our proposed test statistics is given by ZT(�1,�2) = √

T − k0 D̃T(�1,�2),

ZT(�1,�2) = T − k0

�1

⎡⎢⎢⎢⎣
k0+�1−1∑

t=k0

ê2
1,t+1

√
T − k0

− �1

�2

k0+�2−1∑
t=k0

ê2
2,t+1

√
T − k0

⎤⎥⎥⎥⎦ . (6)

Note that (6) is simply the normalized difference in the means of the two sample
MSEs evaluated over the two relevant segments of the effective sample size.

Remark 1. A key point to observe here is that the variance of (6) is well-defined
and no longer collapses to zero in the limit provided that λ1 and λ2 are bounded
away from zero and bounded away from each other. To illustrate and motivate this
point heuristically, let us replace both ê2

1t+1 and ê2
2t+1 in (6) with (u2

t+1 − σ 2
u ) for

σ 2
u ≡ E[u2

t ]. Taking the u′
ts to be IID(0,1) with E[u4

t+1] < ∞ it follows that

V[ZT(�1,�2)] → V[u2
t+1]

|λ2 −λ1|
λ1λ2

(7)

suggesting that a test statistic based on D̃T(�1,�2) will not have a degenerate
distribution as it was the case with the use of DT in nested contexts. We may
also wish to point out that having λ1 and λ2 bounded away from zero is merely a
technical requirement in the asymptotics that follow as in practice these parameters
will naturally be set at or near their maximum boundary of one.

The quantity in (6) forms the building block of our proposed test statistics for
testing the null hypothesis in (3) against one-sided right tail-based alternatives
as it is the norm in this literature. We consider two types of test statistics
that operationalize (6). Our choice is guided by the simplicity of the ensuing
asymptotics and their intuitive interpretation while recognizing that alternative
constructions/normalizations of D̃T(�1,�2) may also be considered.

The first test statistic that we consider is denoted Z0
T(λ0

1,λ
0
2) and is based on

implementing inferences for given magnitudes �0
1 = [(T − k0)λ

0
1] and �0

2 = [(T −
k0)λ

0
2]. We write

Z0
T(λ0

1,λ
0
2) = 1

σ̂
ZT([(T − k0)λ

0
1],[(T − k0)λ

0
2]) (8)

with σ̂ 2 denoting a consistent estimator of V[u2
t+1].

Our second test statistic is based on averaging (6) across the �j’s. The averaging
can be implemented over �1 ∈ [1,T − k0] for a given �0

2 (e.g., �0
2 = T − k0) so that

https://doi.org/10.1017/S0266466623000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000154


PREDICTIVE ACCURACY IN NESTED ENVIRONMENTS 41

the MSE of the smaller model accumulates progressively as �1 increases. More
generally, this averaging can be performed over any desired and feasible range of
�1. To allow such level of generality, we introduce the fractional parameter τ0 and
write

ZT(τ0;λ0
2) = 1

σ̂

1

[(T − k0)(1− τ0)]

T−k0∑
�1=[(T−k0)τ0]+1

ZT(�1,[(T − k0)λ
0
2]), (9)

where the choice of τ0 determines the user-chosen range of �1 over which the
average of ZT(�1,�

0
2) is taken (given �0

2 = [(T − k0)λ
0
2]). Rather than imposing a

fixed and given λ0
1 as in (8), this average-based statistic essentially considers a

range of such magnitudes and subsequently aggregates outcomes via averaging.
Given the role played by �1 and �2 in our inferences, we can expect that choosing
the averaging range in a way that excludes low magnitudes of �1 (so that the
estimated MSEs associated with model 1 remain sufficiently accurate) will result
in more reliable inferences. The issue of how best to select these user inputs
is postponed until Section 3 where we provide precise guidelines informed by
a theoretical local power analysis. One motivation behind this average-based
statistic when compared with (8) is that one can remain partly more agnostic
about the specific magnitude to use for one of the two required user inputs in
ZT([(T − k0)λ

0
1],[(T − k0)λ

0
2]) while setting the other one (e.g., λ0

2) at or near
its maximum boundary of one. Although our context is different, this is also
reminiscent of the various approaches used in the structural break testing literature
when one does not wish to take a stance on the location of a potential change-
point. More importantly, and borrowing from the same literature, we may also
conjecture that the averaging process may result in tests with more favorable size–
power tradeoffs.

At this stage, it is also important to point out that there are numerous alternative
possibilities for designing test statistics in the spirit of (8) and (9) (e.g., double
averaging across �1 and �2, alternative functional forms, etc.). An interesting
avenue for future research could be the design of a class of test statistics based
on ZT(�1,�2) and having desirable optimality properties as it has been attempted
in the structural break literature.

Although both (8) and (9) allow for a broad range of theoretically feasible
magnitudes for (λ0

1,λ
0
2) in Z0

T(λ0
1,λ

0
2) and (τ0,λ

0
2) in ZT(τ0;λ0

2) one naturally
expects that choosing (λ0

1,λ
0
2) and (τ0,λ

0
2) to lie in the vicinity of unity would

capture the greatest amount of information from the two competing models. As
we show further below such a choice does indeed lead to remarkably powerful
tests with excellent size control. Given a sequence of forecast errors available
to the investigator, the practical implementation of either (8) or (9) is also as
straightforward as calculating standard DM-type test statistics.

To establish the limiting properties of our test statistics under the null hypothesis
in (3), we introduce a set of high-level assumptions ensuring a flexible environment
that encompasses the vast majority of settings considered in the literature while
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also allowing for a richer temporal structure. As we wish to highlight the generality
and usefulness of our methods based on the use of (5) and (6), we abstain from
primitive conditions that may unnecessarily suggest a restrictive scope for their
use. More importantly, our use of high-level assumptions is motivated by the
fact that our proposed methods can be immediately seen to be robust to a very
rich dynamic structure of predictors including highly persistent processes, strictly
stationary and ergodic processes, long memory processes, etc.

Assumption A.

(i) sup
λ∈(0,1]

∣∣∣∣∣∣∣∣∣
k0−1+[(T−k0)λ]∑

t=k0

ê2
j,t+1

√
T − k0

−

k0−1+[(T−k0)λ]∑
t=k0

u2
t+1

√
T − k0

∣∣∣∣∣∣∣∣∣
H0= op(1) for j = 1,2.

(ii) The sequence of demeaned squared errors ηt = u2
t+1 −σ 2

u has autocovariances
γ

η

j that satisfy
∑∞

j=0 |γ η

j | < ∞ and fulfills a functional central limit theorem,

that is, T− 1
2
∑[Ts]

t=1(u
2
t+1 − σ 2

u )
D→ σWη(s) on DR([0,1]) the space of cadlag

functions on [0,1] with Wη(.) denoting a standard Brownian Motion and σ 2 =
γ

η

0 +2
∑∞

j=1 γ
η

j > 0.

(iii) A consistent estimator σ̂ 2 of σ 2 exists, that is, σ̂ 2 p→ σ 2 ∈ (0,∞).

We note that condition A(i) holds for both j = 1 and j = 2 highlighting the fact
that we operate within a nested environment with (1) being the true model. A(i)
is trivially satisfied under a very broad range of settings used to obtain the large
sample properties of DM-type statistics in nested models. An important feature to
also highlight here is the fact that A(i) does not restrict the persistence properties
of the predictors which could be highly persistent in the sense of following local
to unit-root processes for instance. This greatly expands and enriches the environ-
ment in which predictive accuracy inferences have commonly been introduced.
The robustness of A(i) to the persistence properties of the predictors is an important
and useful feature of the squared forecast errors as opposed to their level for which
a result such as A(i) would not hold. For more primitive conditions illustrating
specialized environments under which A(i) holds, see Deng and Perron (2008a)
and Hansen and Timmermann (2015) for strictly stationary and ergodic/mixing
settings and Berenguer-Rico and Nielsen (2020) for environments where A(i) is
shown to hold under both stationary and unit-root or near unit-root regressors.

Assumption A(ii) requires the centered squared errors driving (1) and (2) to
satisfy a functional central limit theorem with σ 2 referring to their long-run
variance. The absolute summability of the autocovariances of ηt ensures that
σ 2 the limit of V[

∑T−1
t=k0

ηt+1/
√

T − k0] exists. Examples of processes which
satisfy Assumption A(ii) include a broad range of conditionally heteroskedastic
ARCH/GARCH processes under suitable existence of moments restrictions. For
a detailed set of primitive assumptions ensuring that the stated FCLT holds, see
Giraitis, Kokoszka, and Leipus (2000, Thm. 5.1), Giraitis et al. (2001, Ex. 2.2
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and Thm. 2.1), Berkes, Hörmann, and Horvath (2008), Linder (2009), and the
references therein.

Assumption A(iii) requires that the long-run variance of ηt be estimated consis-
tently. Such an estimator could be trivially constructed using least squares residuals
from either the null or alternative models. Under conditional homoskedasticity, an
obvious candidate would be σ̂ 2

hom =∑T−1
t=k0

η̂2
t+1/(T − k0) while under dependent

errors (e.g., if the u′
ts follow a GARCH-type process) a Newey–West-type for-

mulation as in Deng and Perron (2008b) would be suitable and ensure that A(iii)
holds.

Remark 2. As pointed out in Remark 1, our asymptotic theory for Z0
T(λ0

1,λ
0
2)

in (8) imposes λ0
1 and λ0

2 to be bounded away from zero and to be bounded away
from each other, say 0 < λ ≤ λ0

i ≤ 1 for i = 1,2 and |λ0
1 −λ0

2| ≥ ε for some positive
fraction ε. In what follows, we refer to such a set from which these two user inputs
can be selected as 
0. The implementation of the average-based statistic ZT(τ0;λ0

2)

in (9) requires setting λ0
2 as above and averaging ZT(�1,[(T − k0)λ

0
2]) across �1 =

[(T − k0)τ0] + 1, . . . ,(T − k0) for some τ0 bounded away from zero and one. We

refer to this set as 

0
.

The following two propositions summarize the large sample behavior of our two
test statistics under the null hypothesis stated in (3).

Proposition 1. Under Assumption A(i)–(iii), the null hypothesis in (3), and for
given (λ0

1,λ
0
2) ∈ 
0, we have as T → ∞

Z0
T(λ0

1,λ
0
2)

D→ N (0,v0(λ0
1,λ

0
2)), (10)

where

v0(λ0
1,λ

0
2) = |λ0

1 −λ0
2|

λ0
1λ

0
2

. (11)

Proposition 2. Under Assumption A(i)–(iii), the null hypothesis in (3), and for

given (τ0,λ
0
2) ∈ 


0
, we have as T → ∞

ZT(τ0;λ0
2)

D→ N (0,v̄(τ0;λ0
2)), (12)

where

v̄(τ0;λ2
0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− τ0)

2 +2λ0
2(1− τ0 + lnτ0)

λ0
2(1− τ0)2

, λ0
2 ≤ τ0, (13)

1− τ 2
0 +2λ0

2((1− τ0) lnλ0
2 + τ0 lnτ0)

λ0
2(1− τ0)2

, λ0
2 > τ0. (14)

https://doi.org/10.1017/S0266466623000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000154


44 JEAN-YVES PITARAKIS

The variance components of the distributional outcomes in (10) and (12) are
of course known to the investigator so that both Z0

T(λ0
1,λ

0
2) and ZT(τ0;λ0

2) can be
trivially standardized as

S0
T(λ0

1,λ
0
2) ≡ Z0

T(λ0
1,λ

0
2)√

v0(λ0
1,λ

0
2)

(15)

and

ST(τ0;λ0
2) ≡ ZT(τ0;λ0

2)√
v̄(τ0;λ0

2)

(16)

to proceed with standard normal inferences for testing H0.
The results in (10)–(14) highlight the simplicity and practicality of our proposed

inferences while at the same time offering a solution to an important problem that
has not been satisfactorily resolved in this literature. The test statistics in (15) and
(16) allow us to generalize the widely used DM style forecast accuracy testing
approach to a broad class of empirically relevant models including specifications
with highly persistent predictors with or without conditional heteroskedasticity.

We naturally expect the quality of inferences (e.g., power, size vs. power
tradeoffs) to be influenced by the specific choices of (λ0

1,λ
0
2) in (15) and (τ0,λ

0
2)

in (16). Although the above null asymptotics hold under a very broad range of
parameterizations for those user inputs, a formal analysis of their local asymptotic
power allows us to provide precise and tight guidelines ensuring excellent power
properties with good size control.

3. ASYMPTOTIC POWER AND TEST PARAMETERIZATIONS

We here deviate from Assumption A(i) in order to evaluate the large sample
behavior of S0

T(λ0
1,λ

0
2) and ST(τ0;λ0

2) when the DGP is given by (2). Assumption
A(i) continues to hold for j = 2 but no longer for j = 1 since model (1) is
misspecified due to the omitted x2,t predictors. As ê2

1,t+1 will now be contaminated
by those omitted predictors we expect the stochastic properties of the latter (e.g.,
the variance of the x2,t’s and their correlation with the x1,t’s) to influence the power
properties of both test statistics. Unlike their null distributions, we thus also expect
the test statistics to diverge at different rates depending on whether the predictors
are stationary or highly persistent. Our analysis of the consistency and local power
properties of S0

T(λ0
1,λ

0
2) and ST(τ0;λ0

2) is guided by these two distinct scenarios
which we consider separately.

3.1. Consistency and Local Power under Stationarity

We initially concentrate on the case where the predictors driving both (1) and
(2) are stationary and ergodic. Specifically, we operate under the following set
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of high-level assumptions that mirror closely the most common environments
considered in the predictive accuracy testing literature.

Assumption B1.

(i) sup
λ∈[0,1]

∥∥∥∥∥
∑[Tλ]

t=1 xtx′
t

T
−λ Q

∥∥∥∥∥= op(1) with Q a p×p nonrandom positive definite

matrix,

(ii)

∑[Tλ]
t=1 xtut+1√

T

D→ �1/2 W(λ) with W(.) denoting a p-dimensional standard

Brownian Motion and � = E[xtx′
tu

2
t+1] > 0,

(iii) Assumption A(ii) and (iii) holds.
(iv) The user inputs in ST(λ0

1,λ
0
2) and ST(τ0;λ0

2) are such that (λ0
1,λ

0
2) ∈ 
0 and

(τ0,λ
0
2) ∈ 


0
, respectively.

Assumption B1(i)–(iii) mirrors closely the environment of Hansen and Tim-
mermann (2015) and can be viewed as more primitive conditions ensuring that
Assumption A(i) holds. 3.1(i) requires that the predictors satisfy a uniform law of
large numbers and rules out trending or local to unit-root predictors while B1(ii)
ensures that {xtut+1} satisfies a multivariate functional central limit theorem. Our
main result regarding the asymptotic power properties of the two tests within such
a stationary environment is now summarized in Proposition 3.

Proposition 3. (i) Suppose model (2) holds with β2 �= 0 and fixed, then under

Assumption B1 and as T → ∞, we have S0
T(λ0

1,λ
0
2)

p→ ∞ and ST(τ0;λ0
2)

p→ ∞.
(ii) Suppose model (2) holds with β2 = γ /T1/4 for γ �= 0. Under Assumption
B1, lim||γ ||→∞ limT→∞S0

T(λ0
1,λ

0
2) = ∞ and lim||γ ||→∞ limT→∞ST(τ0;λ0

2) = ∞ in
probability.

The above results highlight the consistency of both test statistics as well as their
ability to detect local departures from the null hypothesis under stationary settings.
It is here also important to point out that the local to the null parameterization of β2
based on T1/4 rather than the usual T1/2 rate commonly encountered in stationary
settings is not in any way due to our specific test statistics or assumptions. The same
scenario would also occur in a conventional regression-based testing environment
and is due to the fact that we are dealing with inferences about the behavior of
squared errors rather than their level.

To gain further insights into the specific role played by key factors influencing
power it is useful to also present the explicit asymptotic local power functions
of the two tests for a given size α ∈ (0,1). These will in turn be used to provide
explicit guidance on selecting suitable parameterizations of our two test statistics
(i.e., (λ0

1,λ
0
2) in (15) and (τ0;λ0

2) in (16)). In what follows, it is useful to also recall
that π0 refers to the given fraction of the sample size used to initiate the recursive
computation of forecasts.
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Corollary 1. Suppose model (2) holds with β2 = γ /T1/4 for γ �= 0. Under
Assumption B1 and letting qα denote the upper α-quantile of the standard normal
distribution with cdf �(.), the asymptotic local power functions of the tests based
on S0

T(λ0
1,λ

0
2) and ST(τ0;λ0

2) are given by 1 − �(qα − ψ0) and 1 − �(qα − ψ),
respectively, where

ψ0 =
⎡⎣ √

1−π0

σ

√
v0(λ0

1,λ
0
2)

γ ′(Q22 −Q21Q−1
11 Q12)γ

⎤⎦, (17)

ψ =
⎡⎣ √

1−π0

σ

√
v̄(τ0;λ0

2)

γ ′(Q22 −Q21Q−1
11 Q12)γ

⎤⎦, (18)

with v0(λ0
1,λ

0
2) and v̄(τ0;λ0

2) as in (11) and (13), (14), and the Qij’s referring to the
components of the population moment matrix Q in Assumption B1(i).

We note that power is monotonic in the sense that both ψ0 and ψ are nonde-
creasing as ||γ || gets large. For a given significance level, the larger the two non-
centrality parameters are the greater the associated probabilities of rejecting the
null hypothesis.

The expressions in (17) and (18) are particularly useful for highlighting the
factors that influence power by shifting the center of the null asymptotic standard
normal distributions away from zero. Viewing the asymptotic local power func-
tions �(ψ0 − qα) and �(ψ − qα) in Corollary 1 as providing approximations to
the correct decision frequencies of the two test statistics under a sufficiently large
T and specific alternatives, we note that for a given size α both test statistics are
expected to exhibit a stronger ability to detect departures from the null when the
variances of the omitted predictors are large and their correlation with the included
predictors small. This feature is particularly important since it hints at the fact that
the presence of nearly integrated predictors may help enhance power, a scenario
we formally consider further below.

To highlight these points with greater clarity, it is useful to focus on the
simplified case of two centered predictors xt = (x1,t,x2.t) so that (17) and (18)
simplify as

ψ0 =
⎡⎣ √

1−π0√
v0(λ0

1,λ
0
2)

γ 2

σ
(1−ρ2

12)E[x2
2,t]

⎤⎦, (19)

ψ =
⎡⎣ √

1−π0√
v̄(τ0;λ0

2)

γ 2

σ
(1−ρ2

12)E[x2
2,t]

⎤⎦, (20)

with ρ12 = Corr[x1,t,x2,t]. All other things being equal, power is expected to
deteriorate under a noisy omitted predictor that has low variance (low E[x2

2,t])
and/or that is highly correlated with the included predictor (e.g., |ρ12| ≈ 1).
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Interestingly, this also suggests that an ideal setting in terms of power implications
is one where omitted predictors are highly persistent while included predictors are
stationary so that ρ12 ≈ 0 with E[x2

2,t] large. Another important factor affecting
power is the variance of the u2

t ’s which impacts the magnitudes of ψ0 and ψ via

σ ≡
√

V[u2
t+1]. Within an NID errors setting, for instance, we have V[u2

t+1] =
E[u4

t+1] − σ 4
u = 2σ 4

u so that all other things being equal, an environment with
high kurtosis will have a detrimental impact on the power properties of both test
statistics.

Power enhancing choices for (λ0
1,λ

0
2) and(τ0;λ0

2)

The non-centrality parameters in (17) and (18) are also useful for assessing the
impact of (λ0

1,λ
0
2) and (τ0,λ

0
2) on both the absolute and relative local powers of

the two tests and for providing useful guidance on suitable choices for those user
inputs. From Corollary 1, since the mapping m �→ P[Z > qα −m] is increasing in
m on [0,∞), a test of size α based on S0

T(λ0
1,λ

0
2) will be preferable, in terms of its

local power, to a test of the same size based on S0
T(λ0

1
′
,λ0

2
′
) whenever ψ0(λ0

1,λ
0
2) >

ψ0(λ0
1
′
,λ0

2
′
), holding all other parameters entering ψ0 constant. Given ψ0 in (17)

with v0(λ0
1,λ

0
2) defined as in (11) it follows that those two parameters should be set

near their boundary of 1 and in close vicinity of one another (e.g., S0
T(λ0

1 = 1,λ0
2)

for λ0
2 ≈ 0.9 as a possibility).

Regarding the average-based statisticST(τ0;λ0
2), we note from (13) and (14) that

ψ in (18) viewed as a function of λ0
2 and τ0 (holding all other parameters constant)

reaches its unique maximum for

λ0
2 = 0.5 τ0 +0.5 (21)

supporting the use of ST(τ0;λ0
2 = 0.5τ0 + 0.5) in its practical implementation. If

τ0 = 0.5, for instance, which corresponds to a test statistic that averages across
the largest half of the �1 magnitudes, this approximate asymptotic power-based
metric points to an implementation-based on ST(τ0 = 0.5;λ0

2 = 0.75). Since ψ is
also a monotonically increasing function of τ0, however, it also follows that the
same average-based statistic should be operationalized with a choice of τ0 that is
in the vicinity of 1 (e.g., ST(τ0 = 0.8;λ0

2 = 0.5(0.8)+ 0.5) or ST(τ0 = 0.9;λ0
2 =

0.5(0.9)+0.5) as possibilities). A practical side to this power enhancing choice of
λ0

2 is that the implementation of ST(τ0;λ0
2) essentially requires only a single user

input.
Given these preferred parameterizations of the two test statistics it is also useful

to evaluate whether either of the two statistics is expected to dominate the other in
the sense of ψ0 being greater or smaller than ψ over particular regions of the pairs
(λ0

1,λ
0
2) and (τ0,λ

0
2 = 0.5τ0 +0.5), holding all other parameters constant. Given the

standard normal asymptotics of both test statistics a useful metric for comparing
their local powers is Pitman’s Asymptotic Relative Efficiency (ARE) which here
takes particularly simple forms, following directly from Corollary 1. To avoid
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confusion between the λ0
2 parameter used in S0

T(λ0
1,λ

0
2) and λ0

2 used in ST(τ0,λ
0
2),

we write the two statistics as S0
T(λ0

1,λ
0
2) and ST(τ0;λ0

2) with λ
0
2 = 0.5τ0 +0.5 as in

(21). Their ARE is now given by

ARE(S0,S) =
[

v(τ0;0.5τ0 +0.5)

v0(λ0
1;λ0

2)

]
(22)

and more specifically

ARE(S0,S) = λ0
1λ

0
2

|λ0
1 −λ0

2|
2(1− τ0)(1+ ln((1+ τ0)/2))+2τ0 lnτ0

(1− τ0)2
. (23)

From (23), we can observe a clear trade-off between τ0 and the magnitudes of λ0
1

and λ0
2 used in S0

T(λ0
1,λ

0
2). If we focus on λ0

1 = 1 it follows from (23) that ARE ≥ 1
for

λ0
2 ≥ (1− τ0)

2

(1− τ0)(3− τ0)+2[ln0.5(1+ τ0)− τ0 ln((1+ τ0)/2τ0)]
, (24)

which is a monotonically increasing function of τ0 and highlights the fact that
the average based statistic will dominate S0

T(λ0
1 = 1,λ0

2) in terms of its local
power (i.e., ARE < 1) unless impractically large magnitudes of λ0

2 are used in
its implementation. If the average based statistic is implemented with τ0 = 0.8, for
instance, its power properties will dominate S0

T(λ0
1 = 1,λ0

2) unless λ0
2 > 0.9798. If

it is implemented with τ0 = 0.9, the average-based statistic will again dominate
S0

T(λ0
1 = 1,λ0

2) unless λ0
2 > 0.9908. These values suggest that the average-based

statistic with τ0 set in the vicinity of unity (e.g., S(τ0 = 0.8;λ0
2 = 0.9)) will

dominate S0
T(λ0

1 = 1,λ0
2) in terms of its local power unless impractically large

magnitudes of λ0
2 are used in S0

T(λ0
1 = 1,λ0

2).

3.2. Consistency and Local Power under Persistence

We now consider an environment where the p predictors xt entering (1) and (2) are
modeled as local to unit-root processes specified as

xt =
(

Ip − C
T

)
xt−1 + εt, (25)

where C = diag(c1, . . . ,cp) for ci > 0, i = 1, . . . ,p and εt some stationary and
ergodic random disturbance process. The new set of assumptions under which
we establish our results are now summarized in Assumption B2, where JC(s) =
(J1C(s),J2C(s))′ denotes a p-dimensional Ornstein–Uhlenbeck process whose two
components J1C(s) and J2C(s) are associated with the dynamics of x1,t and x2,t,
respectively.
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Assumption B2.

(i)

(
x[Ts]√

T
,

∑[Ts]
t=1 ut√

T
,

∑[Ts]
t=1(u

2
t −σ 2

u )√
T

)
D→ (JC(s),σuWu(s),σW(s)), s ∈ [0,1].

(ii) Assumption A(iii) holds.
(iii) The user inputs in ST(λ0

1,λ
0
2) and ST(τ0;λ0

2) are such that (λ0
1,λ

0
2) ∈ 
0 and

(τ0,λ
0
2) ∈ 


0
, respectively.

The asymptotic power properties of S0
T(λ0

1,λ
0
2) and ST(τ0;λ2) are now summa-

rized in Proposition 4.

Proposition 4. (i) Suppose model (2) holds with β2 �= 0 and fixed, then under

Assumption B2 and as T → ∞, we have S0
T(λ0

1,λ
0
2)

p→ ∞ and ST(τ0;λ2)
p→ ∞.

(ii) Suppose model (2) holds with β2 = γ /T3/4 for γ �= 0. Under Assumption
B2, lim||γ ||→∞ limT→∞S0

T(λ0
1,λ

0
2) = ∞ and lim||γ ||→∞ limT→∞ST(τ0;λ2) = ∞ in

probability.

A key message that is conveyed by Proposition 4 when contrasted with Propo-
sition 3 is the important impact of persistence on the power properties the test
statistics. The presence of persistent predictors leads to a faster divergence rate for
both statistics as reflected in the faster convergence rate towards zero of β2 that can
be accommodated. With highly persistent predictors, both test statistics diverge at
the same T3/2 rate compared with a rate of T1/2 when predictors were stationary.

A more explicit formulation of the departure from the null distribution in
this local to unit-root context can also be highlighted through the following
formulations of the limiting distributions of the two test statistics under the local
alternative of interest.

Corollary 2. Suppose model (2) holds with β2 = γ /T3/4 for γ �= 0. Under
assumption B2 and as T → ∞, we have

S0
T(λ0

1,λ
0
2)

D→ N (0,1)+ ξ 0, (26)

ST(τ0;λ2)
D→ N (0,1)+ ξ, (27)

with

ξ 0 =
√

1−π0

σ

√
v0(λ0

1,λ
0
2)

γ ′
(

1

(1−π0)λ
0
1

∫ π0+(1−π0)λ0
1

π0

J∗
C(s)J∗

C(s)′
)

γ , (28)

ξ =
√

1−π0

σ

√
v(τ0;λ0

2)

γ ′
(

1

(1− τ0)

∫ 1

τ0

1

(1−π0)λ1

(∫ π0+(1−π0)λ1

π0

J∗
C(s)J∗

C(s)′
)

dλ1

)
γ ,

(29)

where J∗
C(s) = J2C(s)−M(s)J1C(s) and M(s) = (

∫ s
0 J1CJ′

1C)−1(
∫ s

0 J1CJ′
2C).
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It is here interesting to compare (28) and (29) with the non-centrality parameters
(17) and (18) obtained in the stationary context. The two pairs are essentially
analogous in the sense that the constant population moments of predictors (i.e., the
Qi,j’s) are now replaced by stochastic integrals in Ornstein–Uhlenbeck processes
(i.e., Ji,C). The homogeneity throughout the sample of the limit moment matrix
in Assumption B1(i) is of course no longer valid in the context of the stochastic
integrals in (28) and (29). The above results also imply that the role played
by the pairs (λ0

1,λ
0
2) and (τ0,λ

0
2) in this local to unit-root context will mirror

our earlier analysis based on a stationary setting, supporting the same practical
implementation of both test statistics in terms of their parameterizations, i.e., the
power enhancing choices for (λ0

1,λ
0
2) and (τ0,λ

0
2) discussed above continue to hold

in the current context.

4. POWER ENHANCEMENTS

Here, we explore a particular adjustment that can be applied to our two test
statistics ST(λ0

1,λ
0
2) and ST(τ0;λ0

2) with the purpose of boosting their asymptotic
local power properties without affecting their limiting null distributions. The
theoretical principle underlying our proposed approach mirrors the idea in Fan,
Liao, and Yao (2015) where the authors proposed to augment Wald-type statistics
with a component that vanishes asymptotically under the null while diverging
under alternatives of interest. More formally, we seek to augment our proposed
two test statistics as

S0
T,adj(λ

0
1,λ

0
2) ≡ S0

T(λ0
1,λ

0
2)+h0

T(λ0
1,λ

0
2), (30)

ST,adj(τ0;λ0
2) ≡ ST(τ0;λ0

2)+hT(τ0;λ0
2), (31)

for some suitably chosen h0
T(λ0

1,λ
0
2) and hT(τ0;λ0

2) terms which are such that
these adjusted versions of our two test statistics maintain the same limiting null
distributions as in Proposition 1 while at the same time displaying more favorable
power properties.

In what follows, we show that a particular transformation of the forecast errors
ê2,t+1 associated with the larger forecasting model can be used to design such
augmentation terms in a way that fulfills the requirement that h0

T(λ0
1,λ

0
2) and

hT(τ0;λ0
2) vanish asymptotically under the null while diverging at a desirable rate

under the alternative. The augmentation we propose to consider is motivated by the
well-known Clark and West adjustment to DM-type statistics introduced in Clark
and West (2007). The original motivation behind Clark and West’s adjustment
relied on the intuition that under the null hypothesis estimation noise contaminates
the ê2,t+1’s due to the estimation of parameters that are zero in the population. This
in turn translates into an inflated MSE2 resulting in test statistics that are severely
undersized. Clark and West proposed to correct for such distortions by suitably
adjusting the magnitudes of the forecast errors estimated from the larger model.
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To lay down the context and with no loss of generality, it is useful to operate
within a simplified version of (1) and (2), setting δ1 = 0 and β1 = 0 so that ê1,t+1 =
ut+1 and ê2,t+1 = ut+1 −x′

2,t(β̂2 −β2). We can now write ZT(�1,�2) in (6) as

k0+�1−1∑
t=k0

ê2
1,t+1

√
T − k0

− �1

�2

k0+�2−1∑
t=k0

ê2
2,t+1

√
T − k0

=

k0+�1−1∑
t=k0

u2
t+1

√
T − k0

− �1

�2

k0+�2−1∑
t=k0

u2
t+1

√
T − k0

+2
�1

�2

k0+�2−1∑
t=k0

(β̂2,t −β2)
′x2,tut+1

√
T − k0

− �1

�2

k0+�2−1∑
t=k0

(β̂2,t −β2)
′x2,tx′

2,t(β̂2,t −β2)

√
T − k0

.

(32)

Although it is implicit in our Assumption A(i) that the last two terms in the right-
hand side of (32) vanish asymptotically under the null hypothesis, in finite samples,
the rightmost quadratic form is likely to pull down the spread in MSEs causing their
null distribution to be mis-centered. Noting that (β̂2,t −β2)

′x2,tx′
2,t(β̂2,t −β2) ≡

(ê1,t+1 − ê2,t+1)
2, Clark and West’s (2007) proposal was to reformulate the sample

MSE spreads between Models 1 and 2 with an adjusted version of ê2
2,t+1, say ẽ2

2,t+1,
given by

ẽ2
2,t+1 = ê2

2,t+1 − (ê1,t+1 − ê2,t+1)
2. (33)

It turns out that implementing the adjustment in (33) within our two test statistics
(i.e., using ẽ2

2,t+1 instead of ê2
2,t+1 in S0

T(λ0
1,λ

0
2) and ST(τ0;λ0

2)) allows us to
reformulate them as in (30) and (31) with h0

T(λ0
1,λ

0
2) and hT(τ0;λ2

0) fulfilling the
desirable requirements in Fan et al. (2015) in the sense that the adjustments do not
alter the asymptotic null distributions of the test statistics while at the same time
leading to an increase in the associated non-centrality parameters under the local
alternatives of interest.

The expression in (32) is also useful for highlighting what distinguishes our
framework that operates under �1 �= �2 with a standard approach that sets �1 =
�2 = T −k0 as, for instance, in all Diebold–Mariano-type statistics. Under �1 = �2,
we note that the first two terms in the right-hand side of (32) cancel out so that
the asymptotic behavior of the expression is determined by the two rightmost
quadratic forms whose non-normalized versions have been shown to be Op(1)

with nonstandard limits (see Clark and McCracken, 2001, 2005). Allowing �1 �= �2

essentially forces the asymptotics of the MSE spreads to be driven solely by the
first two components in the right-hand side of (32).

Letting S0
T,adj(λ

0
1,λ

0
2) and ST,adj(τ0;λ0

2) denote the adjusted versions of our two
test statistics, it immediately follows from (33) and standard algebra that
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S0
T,adj(λ

0
1,λ

0
2) = S0

T(λ0
1,λ

0
2)+ 1

σ̂

1

λ0
2

√
v0(λ0

1,λ
0
2)

∑k0+[(T−k0)λ0
2]

t=k0
(ê1,t+1 − ê2,t+1)

2

√
T − k0

≡ S0
T(λ0

1,λ
0
2)+h0

T(λ0
1,λ

0
2) (34)

and

ST,adj(τ0;λ0
2) = ST(τ0;λ0

2)+ 1

σ̂

1

λ0
2

√
v(τ0;λ0

2)

∑k0+[(T−k0)λ0
2]

t=k0
(ê1,t+1 − ê2,t+1)

2

√
T − k0

≡ ST(τ0;λ0
2)+hT(τ0;λ0

2). (35)

The expressions in (34) and (35) highlight the fact that the adjustment to the
MSE of the larger model results in test statistics that are augmented versions
of ST(λ0

1,λ
0
2) and ST(τ0;λ0

2). As we establish formally below, the presence of
the additional terms h0

T(λ0
1,λ

0
2) and hT(τ0;λ0

2) leaves the limiting null distribu-
tions unchanged as both quantities vanish asymptotically. Under the alternative,
both h0

T(λ0
1,λ

0
2) and hT(τ0;λ0

2) diverge to infinity at the same rate as ST(λ0
1,λ

0
2)

and ST(τ0;λ0
2) implying that ST,adj(λ

0
1,λ

0
2) and ST,adj(τ0;λ0

2) will also share the
consistency and local power characteristics of their unadjusted counterparts in
the sense of diverging to infinity as ||γ || → ∞. More importantly, however, the
presence of h0

T(λ0
1,λ

0
2) and hT(τ0;λ0

2) does result in different (strictly larger) non-
centrality parameters that make these adjusted statistics have more favorable power
properties. These features are formalized in Proposition 5 and Corollary 3.

Proposition 5. The results in Propositions 1–4 continue to hold when
S0

T(λ0
1,λ

0
2) and ST(τ0;λ0

2) are replaced with S0
T,adj(λ

0
1,λ

0
2) and ST,adj(τ0;λ0

2),
respectively.

Corollary 3. (i) Under the assumptions of Corollary 1 (stationary predictors),
the asymptotic local power functions of the tests based on S0

T,adj(λ
0
1,λ

0
2) and

ST,adj(τ0;λ0
2) are given by 1−�(qα −2ψ0) and 1−�(qα −2ψ) with ψ0 and ψ as

in (17) and (18). (ii) Under the assumptions of Corollary 2 (persistent predictors),

we haveS0
T,adj(λ

0
1,λ

0
2)

D→N (0,1)+ξ 0
adj andST,adj(τ0;λ0

2)
D→N (0,1)+ξ adj, where

ξ 0
adj = ξ 0 +

√
1−π0

σ

√
v0(λ0

1,λ
0
2)

γ ′
(

1

(1−π0)λ
0
2

∫ π0+(1−π0)λ0
2

π0

J∗
C(s)J∗

C(s)′
)

γ , (36)

ξ adj = ξ +
√

1−π0

σ

√
v(τ0;λ0

2)

γ ′
(

1

(1−π0)λ
0
2

∫ π0+(1−π0)λ0
2

π0

J∗
C(s)J∗

C(s)′
)

γ, (37)

with ξ 0 and ξ as in (28) and (29).
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Proposition 5 essentially implies that all our results regarding the null limiting
distributions of ST(λ0

1,λ
0
2) and ST(τ0;λ0

2) and their general power properties
(consistency and detectability of local departure from the null) continue to hold
for their adjusted counterparts while Corollary 3 documents important differences
in their specific non-centrality terms.

Indeed, the results in Corollary 3 are particularly interesting and useful for the
practical assessment of the power properties of the adjusted versus unadjusted
statistics. We have an environment whereby the limiting distributions of the two
types of test statistics are the same under the null hypothesis while their non-
centrality parameters differ under the alternative, pointing to a more favorable
behavior for the adjusted statistics when it comes to detecting local departures
from the null.

Letting ψ0
adj and ψadj denote the non-centrality parameters associated with the

adjusted statistics, Corollary 3(i) establishes that in a stationary context, we have
ψ0

adj = 2ψ0 and ψadj = 2ψ so that ψ0
adj/ψ0 = 2 and ψadj/ψ = 2. In the case of

persistent predictors, the comparison between ξ 0 and ξ 0
adj and between ξ and ξ adj

also indicates that the adjusted quantities will stochastically dominate their non-
adjusted counterparts in the sense that P[ξ 0

adj > q] ≥ P[ξ 0 > q] and P[ξ adj > q] ≥
P[ξ > q] for some given critical value q and this is again expected to translate
into more favorable power outcomes for the adjusted statistics under persistent
predictors as well.

5. EMPIRICAL SIZE AND POWER

In this section, we investigate the size and power properties of S0
T(λ0

1 = 1,λ0
2)

and ST(τ0;λ0
2) together with their adjusted versions across two DGPs calibrated

to commonly encountered applications and sample sizes in macroeconomics and
finance. The experiments are designed to emphasize the role of the pairs (λ0

1,λ
0
2)

and (τ0;λ0
2) on inferences with the choice of their magnitudes guided by the

analysis surrounding our results in Corollaries 1 and 2.
More specifically, the implementation of S0

T(λ0
1,λ

0
2) is restricted to λ0

1 = 1 across
λ0

2 ∈ {0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9,0.95} and similarly for S0
T,adj(λ

0
1 =

1,λ0
2), thus providing a very broad coverage across a range of user inputs. The

average-based statistic ST(τ0;λ0
2) and its adjusted version ST,adj(τ0;λ0

2) are imple-
mented for τ0 ∈ {0.5,0.8} across λ0

2 ∈ {0.50,0.60,0.70,0.75,0.80,0.85,0.90,0.95,
1.00}.

All our size and power simulations below set π0 = 0.25 (i.e., k0 = [T 0.25]) to
initiate the recursively generated forecasts.

5.1. DGP1

A specification that mimics a frequently encountered setting in the asset pricing
literature is one where the null model is the martingale difference sequence,
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yt+1 = ut+1, and the larger model the single predictor-based predictive regression,
yt+1 = βxt +ut+1 with xt = φ1xt−1 +vt. Letting � = {{σ 2

u ,ρuvσuσv},{ρuvσuσv,σ
2
v }}

denote the covariance of (ut,vt), in line with commonly encountered magnitudes
from the equity premium predictability literature we set σ 2

u = 3, σ 2
v = 0.01, ρuv =

−0.8 and experiment with φ1 ∈ {0.75,0.95,0.98}. The conditionally homoskedas-
tic setting takes (ut,vt) ∼ NID(0,�) while conditional heteroskedasticity is mod-
eled via an ARCH(1) specification, writing ut = εt

√
ht with ht = α0 +α1u2

t−1 and
εt ∼ NID(0,1). This latter choice naturally influences the magnitudes of σ 2

u and
ρuv chosen above and we parameterize {α0,α1} in a way that maintains the same
magnitude for σ 2

u as in the conditionally homoskedastic case, i.e., α0/(1 −α1) =
σ 2

u . For this purpose, we set (α0,α1) = (1.8,0.4) throughout.
Size experiments set β = 0 while for the power properties of the tests we fix

the sample size at T = 500 and evaluate correct decision frequencies as β moves
away from the null with β ∈ {0,−1.5,−1.75,−2.0,−2.25,−2.5,−3,−3.5}. For
β = γ /T1/4, this is equivalent to |γ | increasing with γ ∈ {0, −7.1, −8.3, −9.5, −
10.6, − 11.8, − 14.2, − 16.6}. Lastly, all of the above experiments are conducted
using two alternative estimators for σ . The first one denoted σ̂ 2

hom is suitable under
conditional homoskedasticity while the second one denoted σ̂ 2

nw is its robustified
version à la Newey–West. Both estimators are based on the residuals from the
model estimated under the alternative.

As our Monte-Carlo simulations encompass a very broad range of scenarios
and test statistic parameterizations, we provide an extensive selection of outcomes
in the Supplementary Material accompanying this paper. Our focus below is on
a selection of key size/power results under conditional homoskedasticity and test
statistic parameterizations that mainly rely on our recommendations based on our
theoretical local power analysis above.

Empirical Size
Table 1 presents size estimates for S0

T(λ0
1 = 1,λ0

2) and S0
T,adj(λ

0
1 = 1,λ0

2) across
a broad range of parameterizations in a conditionally homoskedastic setting. For
both test statistics, we note good to excellent matches of the nominal size of 10%
across almost all choices of λ0

2 for T ≥ 500. The adjusted statistic S0
T,adj(λ

0
1 = 1,λ0

2)

in particular has empirical sizes that almost perfectly match 10% for virtually
all magnitudes of λ0

2. Under φ1 = 0.75, for instance, S0
T,adj(λ

0
1 = 1,λ0

2 = 0.8) has
resulted in an empirical size of 10.4% for T = 1,000 and 11.0% for T = 500. The
corresponding figures for φ1 = 0.95 were 10.6% and 11.2%, respectively, thus
also highlighting the robustness of the test statistics to the degree of persistence
of the predictors as expected from our results in Propositions 1 and 2. Similar
outcomes also characterize S0

T,adj(λ
0
1 = 1,λ0

2 = 0.9) suggesting that these test
statistics maintain good size control for T ≥ 500 even when λ0

2 is as large as 0.90
or 0.95 and λ0

1 is set equal to one.
Regarding the size properties of the unadjusted S0

T(λ0
1,λ

0
2) statistic, we note a

mild undersizeness for magnitudes of λ0
2 that are in the vicinity of 1, with its

empirical sizes clustered around 7–8%. Overall the outcomes in Table 1 have
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Table 1. DGP1 empirical size of S0
T(λ0

1 = 1,λ0
2) and S0

T,adj(λ
0
1 = 1,λ0

2) under
conditional homoskedasticity and 10% nominal size

λ0
2 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950

φ = 0.75 DM

S0
T (λ0

1 = 1,λ0
2) T=250 0.080 0.086 0.086 0.084 0.086 0.084 0.077 0.080 0.080 0.072 0.006

T=500 0.088 0.086 0.089 0.087 0.092 0.090 0.093 0.093 0.088 0.083 0.006

T=1,000 0.098 0.098 0.099 0.089 0.088 0.089 0.090 0.093 0.096 0.086 0.007

CW

S0
T,adj(λ

0
1 = 1,λ0

2) T=250 0.099 0.106 0.106 0.107 0.110 0.110 0.109 0.116 0.120 0.126 0.055

T=500 0.102 0.100 0.104 0.104 0.108 0.108 0.110 0.114 0.117 0.124 0.055

T=1,000 0.106 0.107 0.108 0.102 0.101 0.103 0.104 0.109 0.117 0.111 0.055

φ = 0.95 DM

S0
T (λ0

1 = 1,λ0
2) T=250 0.076 0.077 0.077 0.074 0.074 0.072 0.069 0.069 0.069 0.062 0.006

T=500 0.083 0.084 0.084 0.083 0.086 0.085 0.081 0.078 0.075 0.075 0.008

T=1,000 0.088 0.089 0.085 0.088 0.089 0.086 0.090 0.087 0.089 0.084 0.007

CW

S0
T,adj(λ

0
1 = 1,λ0

2) T=250 0.102 0.107 0.107 0.109 0.108 0.115 0.112 0.118 0.124 0.140 0.064

T=500 0.098 0.102 0.103 0.104 0.108 0.108 0.108 0.108 0.110 0.124 0.059

T=1,000 0.098 0.099 0.096 0.098 0.101 0.101 0.106 0.105 0.112 0.114 0.056

φ = 0.98 DM

S0
T (λ0

1 = 1,λ0
2) T=250 0.078 0.079 0.078 0.077 0.075 0.073 0.073 0.071 0.074 0.068 0.011

T=500 0.082 0.081 0.081 0.081 0.080 0.078 0.080 0.075 0.072 0.062 0.010

T=1,000 0.085 0.086 0.090 0.088 0.087 0.090 0.088 0.086 0.084 0.073 0.007

CW

S0
T,adj(λ

0
1 = 1,λ0

2) T=250 0.115 0.117 0.119 0.122 0.121 0.128 0.128 0.133 0.150 0.170 0.084

T=500 0.104 0.103 0.106 0.106 0.107 0.105 0.113 0.119 0.122 0.129 0.072

T=1,000 0.098 0.100 0.104 0.103 0.102 0.104 0.108 0.110 0.113 0.109 0.060

highlighted remarkably stable size properties for both the unadjusted and adjusted
statistics across the different magnitudes of λ0

2 including when it is set at 0.90 or
0.95. This is particularly reassuring given our earlier theoretical power analysis
which pointed at desirable parameterizations that satisfy λ0

1 ≈ λ0
2 with both λ0

1
and λ0

2 set in the vicinity of 1 in the practical implementation of S0
T(λ0

1,λ
0
2) and

S0
T,adj(λ

0
1,λ

0
2).

Before proceeding further it is also useful to briefly rationalize the size behavior
of these two statistics when λ0

2 is chosen to lie almost at its boundary as when
we set λ0

2 = 0.95. In such instances we noted the mild undersizeness of S0
T(λ0

1 =
1,λ0

2) and mild oversizeness of S0
T,adj(λ

0
1 = 1,λ0

2) when operating with small to
moderately sized samples. A magnitude of λ0

2 that is close to 1 essentially translates
into more “MSE content” from the larger model and hence a greater exposure to

https://doi.org/10.1017/S0266466623000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000154


56 JEAN-YVES PITARAKIS

estimation noise when the null model holds true. This results in the unadjusted
S0

T(λ0
1 = 1,λ0

2) test statistic’s distribution being pushed leftward with fewer than
expected rejections of the null. On the other hand, the adjusted statistic which
aims to correct for estimation error via (32) sees its correction factor’s contribution
increase as λ0

2 → 1, a correction factor that is overly inflated in small samples. At
this stage, it is also useful to point out that the effective sample size is given by T −
k0 so that under π0 = 0.25 and T = 250, we have only about 188 data points when
implementing the tests. A highly persistent predictor combined with such a small
sample size can be seen to result in some degree of oversizeness for ST,adj(λ

0
1,λ

0
2)

based inferences when |λ0
1 −λ0

2| is particularly small (e.g., for (λ0
1,λ

0
2) = (1,0.95)).

Nevertheless, these finite sample distortions quickly fade away as we increase the
sample size to T = 500.

For comparison purposes, the last column of Table 1 also includes the corre-
sponding size estimates for the DM and CW statistics. These conform with the
consensus view that the DM statistic is severely undersized under such nested
settings while the CW statistics’ empirical sizes are clustered around 5% for a
nominal size of 10%, in line with the simulation results in Clark and West (2007).

We next consider the finite sample size properties of the average-based statistics
ST(τ0;λ0

2) and ST,adj(τ0;λ0
2). Recall that the averaging is performed across a

portion of the null model’s MSE as captured by τ0 and for a given fraction of
the second model’s MSE λ0

2. Here, we present outcomes obtained under τ0 = 0.8
which only sum across the larger magnitudes of λ1. Such a choice is theoretically
justified by our earlier power analysis with further scenarios presented in the
Supplementary Material. Results are presented in Table 2 from which we note that
the adjusted statistic ST,adj(τ0 = 0.8;λ0

2) displays good to excellent size control
(e.g., empirical size estimates near 10% under λ0

2 = 1) under moderate to large
sample size choices.

An exception to this is when λ0
2 ≈ 0.5 τ0 +0.5(≈ 0.9 here) under which it shows

a tendency to overreject the null hypothesis in smaller samples. This is in complete
agreement with our earlier theoretical power analysis where we showed that
holding all else constant the power of the test statistic must peak under λ0

2 = 0.5τ0 +
0.5. Thus the empirical sizes peaking for λ0

2 in the vicinity of 0.5(0.8)+0.5 = 0.90
highlight the size versus power trade-off that will characterize this average-based
test statistic.

Regarding the unadjusted statistic ST(τ0 = 0.8;λ0
2), we can note a tendency to

underreject (e.g., empirical sizes in the vicinity of 7% under τ0 = 0.8) and this
undersizeness deteriorating as λ0

2 → 1 and φ1 gets closer to 1. This behavior
conforms with the intuition that estimation noise caused by the estimation of
parameters that are zero in the population pushes the test statistic too much to the
left, a feature that was the key motivation behind Clark and West’s adjustment
to the DM statistic. Note, for instance, that these distortions are substantially
dampened when the test statistic is implemented with smaller magnitudes of λ0

2
for which it shows good to excellent size control.
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Table 2. DGP1 empirical size of ST(τ0 = 0.8;λ0
2) and ST,adj(τ0 = 0.8;λ0

2) under
conditional homoskedasticity and 10% nominal size

λ0
2 0.500 0.600 0.700 0.750 0.800 0.850 0.900 0.950 1.000

φ = 0.75 DM

ST (τ0 = 0.8;λ0
2) T=250 0.085 0.088 0.086 0.082 0.075 0.076 0.061 0.042 0.047 0.006

T=500 0.090 0.092 0.088 0.084 0.085 0.080 0.066 0.056 0.065 0.006

T=1,000 0.097 0.097 0.089 0.089 0.086 0.083 0.071 0.073 0.073 0.007

CW

ST,adj(τ0 = 0.8;λ0
2) T=250 0.104 0.111 0.117 0.120 0.124 0.151 0.154 0.121 0.110 0.055

T=500 0.103 0.110 0.108 0.107 0.119 0.130 0.139 0.116 0.106 0.055

T=1,000 0.108 0.108 0.103 0.106 0.108 0.118 0.121 0.113 0.099 0.055

φ = 0.95 DM

ST (τ0 = 0.8;λ0
2) T=250 0.078 0.077 0.078 0.072 0.068 0.067 0.053 0.038 0.043 0.006

T=500 0.083 0.085 0.087 0.085 0.079 0.072 0.055 0.046 0.054 0.008

T=1,000 0.086 0.086 0.088 0.081 0.084 0.077 0.067 0.058 0.069 0.007

CW

ST,adj(τ0 = 0.8;λ0
2) T=250 0.108 0.112 0.121 0.126 0.138 0.161 0.169 0.140 0.115 0.064

T=500 0.102 0.106 0.114 0.118 0.122 0.134 0.139 0.118 0.104 0.059

T=1,000 0.097 0.097 0.104 0.102 0.108 0.116 0.126 0.104 0.098 0.056

φ = 0.98 DM

ST (τ0 = 0.8;λ0
2) T=250 0.079 0.082 0.074 0.072 0.070 0.067 0.057 0.043 0.039 0.011

T=500 0.080 0.079 0.078 0.075 0.077 0.065 0.053 0.043 0.053 0.010

T=1,000 0.083 0.088 0.088 0.082 0.084 0.074 0.061 0.059 0.067 0.007

CW

ST,adj(τ0 = 0.8;λ0
2) T=250 0.119 0.127 0.131 0.144 0.157 0.189 0.206 0.174 0.143 0.084

T=500 0.104 0.109 0.110 0.116 0.134 0.148 0.159 0.129 0.119 0.072

T=1,000 0.097 0.102 0.107 0.104 0.115 0.127 0.130 0.108 0.101 0.060

Empirical Power
Table 3 presents empirical power estimates for S0

T(λ0
1 = 1,λ0

2) and S0
T,adj(λ

0
1 =

1,λ0
2) across λ0

2 ∈ {0.80,0.85,0.90,0.95}. The sample size is fixed at T = 500 and
power is evaluated as the DGP moves further away from the null hypothesis.
The choices of λ0

2 are dictated by our theoretical results in Corollaries 1 and 2
which pointed to magnitudes satisfying λ0

1 ≈ λ0
2 ≈ 1. For both test statistics, we

note the tendency of their empirical power to converge to 1 as |γ | is allowed to
increase. We can also clearly observe the particularly favorable impact that the
degree of persistence of predictors has on power. As expected from our findings
in Propositions 3 and 4 and their corollaries, power improves as λ0

2 → 1 and as
φ1 → 1.
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Table 3. DGP1 empirical power of S0
T(λ0

1 = 1,λ0
2) and S0

T,adj(λ
0
1 = 1,λ0

2) under
conditional homoskedasticity

β −1.500 −1.750 −2.000 −2.250 −2.500 −3.000 −3.500

S0
T (λ0

1,λ
0
2) φ1 = 0.75

λ0
2 = 0.80 0.194 0.241 0.308 0.371 0.442 0.615 0.770

λ0
2 = 0.85 0.213 0.272 0.349 0.427 0.519 0.685 0.831

λ0
2 = 0.90 0.245 0.328 0.412 0.512 0.605 0.779 0.895

λ0
2 = 0.95 0.317 0.425 0.542 0.653 0.741 0.877 0.956

DM 0.312 0.440 0.566 0.666 0.752 0.877 0.946

S0
T,adj(λ

0
1,λ

0
2)

λ0
2 = 0.80 0.350 0.447 0.565 0.671 0.758 0.895 0.966

λ0
2 = 0.85 0.399 0.511 0.635 0.732 0.815 0.933 0.983

λ0
2 = 0.90 0.468 0.590 0.712 0.812 0.879 0.960 0.992

λ0
2 = 0.95 0.579 0.708 0.819 0.897 0.941 0.986 0.998

CW 0.740 0.853 0.924 0.965 0.984 0.997 1.000

S0
T (λ0

1,λ
0
2) φ1 = 0.95

λ0
2 = 0.80 0.615 0.747 0.843 0.917 0.952 0.990 0.997

λ0
2 = 0.85 0.681 0.801 0.885 0.945 0.968 0.994 0.999

λ0
2 = 0.90 0.753 0.860 0.924 0.967 0.984 0.998 0.999

λ0
2 = 0.95 0.845 0.924 0.962 0.984 0.993 0.999 1.000

DM 0.857 0.925 0.959 0.979 0.989 0.998 0.999

S0
T,adj(λ

0
1,λ

0
2)

λ0
2 = 0.80 0.850 0.925 0.965 0.988 0.995 1.000 1.000

λ0
2 = 0.85 0.885 0.949 0.980 0.992 0.997 1.000 1.000

λ0
2 = 0.90 0.919 0.966 0.986 0.996 0.999 1.000 1.000

λ0
2 = 0.95 0.955 0.986 0.993 0.999 1.000 1.000 1.000

CW 0.985 0.996 0.998 1.000 1.000 1.000 1.000

S0
T (λ0

1,λ
0
2) φ1 = 0.98

λ0
2 = 0.80 0.853 0.927 0.964 0.984 0.992 0.999 1.000

λ0
2 = 0.85 0.886 0.949 0.977 0.990 0.996 0.999 1.000

λ0
2 = 0.90 0.921 0.966 0.986 0.994 0.998 1.000 1.000

λ0
2 = 0.95 0.956 0.981 0.994 0.997 0.999 1.000 1.000

DM 0.956 0.982 0.992 0.997 0.998 1.000 1.000

S0
T,adj(λ

0
1,λ

0
2)

λ0
2 = 0.80 0.957 0.982 0.995 0.998 0.999 1.000 1.000

λ0
2 = 0.85 0.968 0.988 0.997 0.999 1.000 1.000 1.000

λ0
2 = 0.90 0.981 0.992 0.998 0.999 1.000 1.000 1.000

λ0
2 = 0.95 0.991 0.996 0.999 1.000 1.000 1.000 1.000

CW 0.997 0.999 1.000 1.000 1.000 1.000 1.000
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Given the good overall size control displayed by S0
T,adj(λ

0
1 = 1,λ0

2), Table 3
clearly highlights the benefits of basing inferences on this adjusted version of
our first test statistic calibrated to λ0

1 = 1 and λ0
2 ≈ 0.9, also noting that its

performance improves considerably as φ1 → 1. For β2 = −2, for instance, it
displays power in the vicinity of 70%–80% under φ1 = 0.75 and 100% under φ1 =
0.95 or φ1 = 0.98. It is here important to relate our simulation outcomes with the
theoretical results of Corollary 3 where we established an ARE of 2 for the adjusted
statistic S0

T,adj(λ
0
1,λ

0
2) relative to its unadjusted counterpart. This theoretical power

enhancement is clearly supported by the empirical power estimates of Table 3.
Compare for instance the empirical power of 51.2% for the unadjusted statistic
under φ1 = 0.75 and β = −2.25 with 81.2% for its adjusted version, a power gain
of 30 percentage points.

At this stage, it is also important to recall that our theoretical analysis based
on the asymptotic relative efficiency of S0

T,adj(λ
0
1,λ

0
2) versus ST,adj(τ0;λ0

2) clearly
pointed to the potentially superior power performance of the average-based statis-
tic, for larger magnitudes of τ0 in particular. This is clearly corroborated by
the comparison between the power outcomes in Tables 3 and 4 with the latter
presenting power outcomes for the ST(τ0 = 0.8;λ0

2) and ST,adj(τ0 = 0.8;λ0
2)

statistics. Focusing on the “optimal” choice of λ0
2 = 0.5τ0 + 0.5 = 0.90 when

τ0 = 0.8 we note from Table 4 that ST,adj(τ 0 = 0.8;λ0
2 = 0.9) clearly dominates all

configurations of S0
T,adj(λ

0
1,λ

0
2) in terms of its power properties, typically resulting

in relative power gains in excess of 10 percentage points.
Before proceeding further, it is also useful to comment on the power behavior of

the DM and CW statistics in comparison to ST(τ 0 = 0.8;λ0
2 = 0.90). Despite being

severely undersized and theoretically unsuitable in the present nested context, we
note that the DM statistic does show a reasonable ability to detect departures
from the null. However, we can also observe that it is uniformly dominated by
ST,adj(τ 0 = 0.8;λ0

2 = 0.90) which under φ1 = 0.75, for instance, exceeds its power
by about 10 percentage points. Comparing the power performance of ST,adj(τ 0 =
0.8;λ0

2 = 0.90) with that of the CW statistic, we note that these two test statistics
display very similar power outcomes across most scenarios. Although the CW
statistic does not have a well-defined limiting distribution due to the nestedness
of the competing models it appears to display reasonably good power properties
across the DGPs we have considered, despite being far-off the standard normal
distribution under the null (as implied by its size properties).

5.2. DGP2

The second DGP allows for multiple predictors and is calibrated to mimic US
inflation-based predictive regressions as considered in Stock and Watson (2010)
and Granziera, Hubrich, and Moon (2014). We use the same setting as in Granziera
et al. (2014) and consider a DGP given by yt+1 = μ+ρyt +β1x1,t +β2x2,t +β3x3,t +
ut+1 with μ = 1 and ρ = 0.25. The predictors xt = (x1,t,x2,t,x3,t)

′ follow the VAR(1)
process xt = � xt−1 + vt with � = {{0.6,0.1,0},{0.6,0.25,0},{0,0,0.9}} thus
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Table 4. DGP1 empirical power of ST(τ0 = 0.8;λ0
2) and ST,adj(τ0 = 0.8;λ0

2)
under conditional homoskedasticity

β −1.500 −1.750 −2.000 −2.250 −2.500 −3.000 −3.500

ST (τ0 = 0.8;λ0
2) φ1 = 0.75

λ0
2 = 0.80 0.272 0.345 0.450 0.548 0.635 0.800 0.911

λ0
2 = 0.85 0.363 0.475 0.600 0.695 0.785 0.904 0.965

λ0
2 = 0.90 0.449 0.567 0.685 0.782 0.853 0.942 0.980

λ0
2 = 0.95 0.383 0.495 0.615 0.723 0.803 0.911 0.967

λ0
2 = 1 0.305 0.397 0.498 0.602 0.695 0.840 0.926

DM 0.312 0.440 0.566 0.666 0.752 0.877 0.946

ST,adj(τ0 = 0.8;λ0
2)

λ0
2 = 0.80 0.501 0.613 0.735 0.824 0.889 0.969 0.992

λ0
2 = 0.85 0.632 0.747 0.849 0.914 0.955 0.990 0.998

λ0
2 = 0.90 0.704 0.815 0.892 0.945 0.973 0.994 0.999

λ0
2 = 0.95 0.642 0.763 0.853 0.920 0.955 0.990 0.998

λ0
2 = 1 0.541 0.659 0.768 0.853 0.915 0.974 0.993

CW 0.740 0.853 0.924 0.965 0.984 0.997 1.000

ST (τ0 = 0.8;λ0
2) φ1 = 0.95

λ0
2 = 0.80 0.771 0.870 0.925 0.967 0.982 0.997 0.999

λ0
2 = 0.85 0.865 0.934 0.969 0.987 0.994 0.999 1.000

λ0
2 = 0.90 0.904 0.956 0.976 0.992 0.996 1.000 1.000

λ0
2 = 0.95 0.876 0.936 0.966 0.986 0.993 0.999 1.000

λ0
2 = 1 0.802 0.889 0.939 0.970 0.985 0.997 0.999

DM 0.857 0.925 0.959 0.979 0.989 0.998 0.999

ST,adj(τ0 = 0.8;λ0
2)

λ0
2 = 0.80 0.922 0.970 0.989 0.996 0.999 1.000 1.000

λ0
2 = 0.85 0.960 0.987 0.995 0.999 1.000 1.000 1.000

λ0
2 = 0.90 0.974 0.990 0.997 0.999 1.000 1.000 1.000

λ0
2 = 0.95 0.964 0.989 0.994 0.999 1.000 1.000 1.000

λ0
2 = 1 0.941 0.975 0.989 0.997 0.999 1.000 1.000

CW 0.985 0.996 0.998 1.000 1.000 1.000 1.000

ST (τ0 = 0.8;λ0
2) φ1 = 0.98

λ0
2 = 0.80 0.925 0.966 0.985 0.994 0.997 1.000 1.000

λ0
2 = 0.85 0.960 0.983 0.994 0.998 0.999 1.000 1.000

λ0
2 = 0.90 0.972 0.990 0.996 0.999 0.999 1.000 1.000

λ0
2 = 0.95 0.960 0.982 0.994 0.998 0.999 1.000 1.000

λ0
2 = 1 0.933 0.970 0.986 0.995 0.998 1.000 1.000

DM 0.956 0.982 0.992 0.997 0.998 1.000 1.000
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Table 4. (Continued)

β −1.500 −1.750 −2.000 −2.250 −2.500 −3.000 −3.500

ST,adj(τ0 = 0.8;λ0
2)

λ0
2 = 0.80 0.978 0.992 0.997 1.000 1.000 1.000 1.000

λ0
2 = 0.85 0.990 0.997 0.999 1.000 1.000 1.000 1.000

λ0
2 = 0.90 0.994 0.998 1.000 1.000 1.000 1.000 1.000

λ0
2 = 0.95 0.991 0.997 0.999 1.000 1.000 1.000 1.000

λ0
2 = 1 0.984 0.995 0.998 1.000 1.000 1.000 1.000

CW 0.997 0.999 1.000 1.000 1.000 1.000 1.000

Table 5. DGP2 empirical size of S0
T(λ0

1 = 1,λ0
2) and S0

T,adj(λ
0
1 = 1,λ0

2) under
conditional homoskedasticity

λ0
2 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950

DM

S0
T (λ0

1 = 1,λ0
2) T=250 0.055 0.055 0.055 0.054 0.054 0.050 0.047 0.046 0.043 0.037 0.002

T=500 0.066 0.065 0.065 0.063 0.065 0.061 0.060 0.055 0.051 0.044 0.002

T=1,000 0.078 0.079 0.078 0.073 0.073 0.071 0.073 0.070 0.064 0.053 0.001

CW

S0
T,adj(λ

0
1 = 1,λ0

2) T=250 0.110 0.110 0.114 0.117 0.119 0.120 0.124 0.134 0.151 0.172 0.074

T=500 0.099 0.099 0.103 0.105 0.109 0.110 0.114 0.118 0.123 0.139 0.065

T=1,000 0.105 0.104 0.104 0.102 0.103 0.102 0.110 0.115 0.120 0.127 0.066

encompassing both persistent and much noisier processes while also being inter-
dependent. The conditionally homoskedastic scenario takes (ut,v1,t,v2,t,v3,t)

′ ∼
NID(0,I4) while conditional heteroskedasticity is captured via an ARCH(1) pro-
cess for ut as in DGP1 with α0 = 0.6 and α1 = 0.4 so that its unconditional variance
matches unity as in the homoskedastic scenario.

For our size experiments, we set β1 = β2 = β3 = 0 and our power analysis
focuses on alternatives to β1 = β2 = β3 = 0 by fixing (β1,β2,β3) = (0.15,0.15, −
0.15) and evaluating rejection rates of the null hypothesis for T = 250,500,1,000.

Empirical Size
Tables 5 and 6 present empirical size estimates corresponding to the null DGP

under β1 = β2 = β3 = 0 for S0
T(λ0

1 = 1,λ0
2) and ST(τ0 = 0.80;λ0

2), respectively,
together with their adjusted versions. As DGP2 contains a larger number of
predictors than DGP1, we expect the impact of estimation error on the MSE of
the second/larger model to be more pronounced under the null. This is indeed
corroborated by the size estimates in Table 5 where we note the undersizeness
of the unadjusted S0

T(λ0
1,λ

0
2) statistic which is biased downward and thus results
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Table 6. DGP2 empirical size of ST(τ0 = 0.8;λ0
2) and ST,adj(τ0 = 0.8;λ0

2) under
conditional homoskedasticity

λ0
2 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000

DM

ST (τ0 = 0.8;λ0
2) T=250 0.054 0.054 0.054 0.052 0.049 0.046 0.039 0.034 0.028 0.022 0.019 0.002

T=500 0.066 0.066 0.066 0.061 0.064 0.058 0.052 0.039 0.028 0.023 0.027 0.002

T=1,000 0.074 0.074 0.070 0.070 0.069 0.064 0.061 0.049 0.037 0.034 0.043 0.001

CW

ST,adj(τ0 = 0.8;λ0
2) T=250 0.112 0.115 0.123 0.129 0.132 0.144 0.165 0.208 0.233 0.198 0.157 0.074

T=500 0.104 0.107 0.112 0.110 0.118 0.121 0.133 0.158 0.180 0.154 0.124 0.065

T=1,000 0.100 0.104 0.101 0.105 0.109 0.111 0.117 0.137 0.151 0.129 0.111 0.066

in too few rejections of the null (e.g., 6.4% under T = 1,000 and λ0
2 = 0.9 vs. a

nominal size of 10%). Furthermore, its undersizeness tends to deteriorate for larger
magnitudes of λ0

2 as this translates into an increased influence of the larger model’s
MSE.

The adjusted version of the test statistic S0
T,adj(λ

0
1,λ

0
2) on the other hand is

quite effective in adjusting for estimation noise (e.g., the earlier empirical size of
6.4% is now pushed up to 12%), while also showing a tendency to “over-adjust”
in small to moderately size samples, in particular, for larger magnitudes of λ0

2.
Table 6 presents the corresponding size estimates for the average-based statistic
ST,adj(τ 0 = 0.8;λ0

2). We note that this latter statistic maintains good to excellent
size control for moderate sample sizes across all magnitudes of λ0

2 but requires
larger samples when λ0

2 is set near one.

Empirical Power
For this DGP, our power experiments focus on documenting the rejection

frequencies of the null hypothesis for a fixed alternative as the sample size is
allowed to increase. Results are presented in Tables 7 and 8 for S0

T(λ0
1,λ

0
2) and

ST(τ 0 = 0.8;λ0
2) and their adjusted versions. Under either T = 500 or T = 1,000,

all test statistics have powers at or near 100%.
Tables 7 and 8 also clearly corroborate our theoretical power analysis that

highlighted peaking powers under λ0
2 = 0.5τ0 +0.5. Focusing on ST(τ 0 = 0.8;λ0

2),
we can clearly observe the empirical powers to be largest under λ0

2 = 0.9 for all
sample sizes (e.g., 98.2% vs. 95.7% when λ0

2 = 1 and for T = 250).
The main findings from our simulation experiments can be summarized as

follows: (i) The adjusted versions of the two test statistics S0
T,adj(λ

0
1,λ

0
2) and

ST,adj(τ 0;λ0
2) displayed good to excellent size control across most parameter-

izations of their respective inputs (λ0
1,λ

0
2) and (τ0,λ

0
2). (ii) Both test statistics

are consistent and have nontrivial local asymptotic power while their finite
sample power properties are strongly influenced by the respective magnitudes of
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Table 7. DGP2 empirical power of S0
T(λ0

1 = 1,λ0
2) and S0

T,adj(λ
0
1 = 1,λ0

2) under
conditional homoskedasticity

λ0
2 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950

DM

S0
T (λ0

1 = 1,λ0
2) T=250 0.520 0.572 0.620 0.668 0.724 0.778 0.835 0.885 0.929 0.971 0.884

T=500 0.784 0.836 0.877 0.914 0.945 0.967 0.986 0.994 0.998 1.000 0.998

T=1,000 0.960 0.976 0.987 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000

CW

S0
T,adj(λ

0
1 = 1,λ0

2) T=250 0.912 0.936 0.956 0.969 0.979 0.987 0.993 0.997 0.999 1.000 1.000

T=500 0.991 0.996 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T=1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 8. DGP2 empirical power of ST(τ0 = 0.8;λ0
2) and ST,adj(τ0 = 0.8;λ0

2)
under conditional homoskedasticity

λ0
2 0.500 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000

DM

ST (τ0 = 0.8;λ0
2) T=250 0.557 0.619 0.677 0.739 0.805 0.871 0.933 0.970 0.982 0.975 0.957 0.884

T=500 0.821 0.874 0.918 0.951 0.974 0.991 0.998 1.000 1.000 1.000 0.999 0.998

T=1,000 0.974 0.988 0.994 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CW

ST,adj(τ0 = 0.8;λ0
2) T=250 0.930 0.953 0.970 0.982 0.991 0.995 0.998 1.000 1.000 1.000 1.000 1.000

T=500 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T=1,000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

those same inputs. The guidelines provided by our theoretical power analysis do
however lead to highly favorable power outcomes with implementations such as
S0

T,adj(λ
0
1 = 1,λ0

2 ≈ 0.9) andST,adj(τ 0 ≈ 0.8;λ0
2 ≈ 0.9) standing out in terms of their

size/power tradeoffs, especially for moderately sized samples such as T ≥ 500. (iii)
The proposed methods are valid irrespective of the degree of persistence of the
predictors as also corroborated by our finite sample simulations. (iv) Our Monte-
Carlo analysis did show that Clark and West’s CW statistic which although not
grounded on formal standard normal asymptotics also performed particularly well
in terms of its power, despite relatively important size distortions. Strictly speaking
the CW statistic has been introduced for handling nested models estimated via a
rolling as opposed to a recursive approach since from a theoretical standpoint it
continues to suffer from the variance degeneracy problem characterizing DM-type
constructions.
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5.3. Summary and Tuning-Parameter Guidelines

The above simulation-based outcomes combined with our earlier local power
analysis point to precise guidelines for the choice of tuning parameters required in
the implementation of our test statistics. For the S0

T,adj(λ
0
1,λ

0
2) statistic, we argued

that λ0
1 and λ0

2 should be set near their boundary of one and in close vicinity of
one another. Our simulations based on S0

T,adj(λ
0
1 = 1,λ0

2) for λ0
2 set in the 0.80–

0.95 range have indeed resulted in good to excellent size–power tradeoffs and
good to excellent size control. The robustness of the empirical size outcomes to
a much broader range of the λ0

2 magnitudes is also noteworthy as illustrated by the
outcomes in Tables 1 and 5.

Regarding the ST,adj(τ0;λ0
2) statistic, our theoretical local power analysis led

us to argue for τ0 to be set in the vicinity of unity and λ0
2 as λ0

2 = 0.5 τ0 + 0.5.
Simulations based on τ0 = 0.8 did indeed result in good to excellent size and power
properties. As the above choice for λ0

2 is a maximizer of local power it is perhaps
natural to expect some size distortions in smaller samples when λ0

2 is set in this
way and, in particular, when this is combined with the presence of highly per-
sistent predictors. This is indeed confirmed by our size experiments implemented
under (τ0;λ0

2) = (0.8,0.9) and a local-to-unity-type predictor. Nevertheless, these
specific finite sample distortions can also be seen to progressively vanish as the
sample size is allowed to grow.

6. APPLICATION

We illustrate the implementation of our proposed methods by revisiting a widely
considered puzzle in the international economics literature, namely, the random
walk like behavior of exchange rates. Our goal is to use our new test statistics in
order to evaluate whether past exchange rate levels have any predictive power for
subsequent exchange rate changes. Letting st denote the log of the spot exchange
rate, we compare the out of sample predictive accuracy of the larger model �st+1 =
α +β st + ut+1 (model 2) with the random walk with drift specification �st+1 =
α +ut+1 (model 1).

We consider six major currencies (EUR, YEN, GBP, CHF, AUD, and CAD)
and implement our tests on daily spot rates spanning the period between 4 January
1999 and 16 July 2021, sourced from the Saint-Louis Fred database. An important
advantage of the methods developed in this paper is their robustness to the
persistence properties of predictors which is particularly relevant when considering
exchange rate series. Indeed, for all three daily series, we have considered the first-
order autocorrelation coefficient from an AR(1) fit is 0.99.

Predictive accuracy testing outcomes (p-values) based on S0
T,adj(λ

0
1,λ

0
2) and

ST,adj(τ0;λ0
2) are presented in Table 9 where we used π0 = 0.5 to initiate the

expanding window estimation (i.e., starting from the middle of the sample). For
robustness considerations, inferences based on ST,adj(λ

0
1 = 1,λ0

2) are implemented
across λ0

2 = {0.80,0.85,0.90,0.95} while for ST,adj(τ0;λ0
2 = 1) we consider τ0 =
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Table 9. Exchange rate predictability

EURUSD YENUSD GBPUSD CHFUSD AUDUSD CADUSD

S0
T,adj(λ

0
1 = 1,λ0

2)nw

λ0
2 = 0.80 1.000 1.000 0.360 0.924 0.764 0.997

λ0
2 = 0.85 1.000 0.998 0.219 0.874 0.130 0.862

λ0
2 = 0.90 1.000 1.000 0.731 0.838 0.846 0.989

λ0
2 = 0.95 0.997 0.997 0.814 0.755 0.711 0.945

ST,adj(τ0;λ0
2)nw

τ0 = 0.80 0.640 0.928 0.957 0.508 0.993 0.954

τ0 = 0.90 0.471 0.607 0.695 0.500 0.216 0.374

DMnw 0.091 0.438 0.530 0.643 0.276 0.096

CWnw 0.048 0.248 0.299 0.532 0.155 0.044

0.80 and τ0 = 0.90. Looking at the top and middle panels of Table 9, we note
that results unanimously corroborate the fact that the level of exchange rates does
not have any meaningful forecasting power for future currency returns over the
period considered and across all major currencies. This result based on the use of
daily data also corroborates the recent findings in Engel and Wu (2021) based on
monthly frequencies. The bottom panel of Table 9 displays the p-values associated
with the standard DM and the CW statistics. It is here interesting to point out that
inferences based on the standard CW statistic lead to a rejection of the random walk
specification for the EURUSD and CADUSD series when implementing the test
at a 5% level or above which is in sharp contrast with the large p-values obtained
using our two test statistics.

7. CONCLUDING REMARKS

The main motivation of this paper was to provide a way of bypassing the variance
degeneracy problem that arises in the context of out-of-sample nested model
comparisons. We did so by developing two new test statistics shown to have
nuisance parameter-free standard normal asymptotics and good power properties
including in the close vicinity of the null hypothesis. Our proposed inferences
can trivially accommodate conditional heteroskedasticity and are also shown to be
robust to the presence of highly persistent predictors. Although our power analysis
has ruled out the case of deterministic trends via Assumption B1, for instance, these
can also be easily accommodated within our framework without any changes to the
implementation of the tests provided that the trends are formulated in a scaled form
as (t/T) and its powers. Nested comparisons in purely deterministic environments
would be particularly relevant in areas such as temperature modeling (e.g., Wu and
Zhao, 2007; Gades-Riva and Gonzalo, 2020) or the recent literature on modeling
pandemic dynamics (e.g., Jiang, Zhao, and Shao, 2020; Li and Linton, 2021).
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Although our proposed test statistics require two user inputs each, both have
been shown to display good to excellent size control across a very broad range of
such parameterizations in a multitude of empirically relevant settings. Although
these user inputs do have considerable influence on the finite sample power prop-
erties of both test statistics their choices can be accurately guided by examining
the power functions associated with each test statistic, as demonstrated by our
simulations and their theoretical backing.

It is important to recognize that our proposed test statistics do involve the
discarding of some information albeit very limited and with its amount under the
control of the user. As a result, some power loss is of course unavoidable but the
absence of any alternative approach that uses more information while achieving
the same purpose in an environment that can accommodate both stationary and
persistent predictors as well as conditional heteroskedasticity makes such power
losses only notional. Our simulation results have indeed shown that very little
needs to be discarded for our methods to work well and to provide reliable
inferences. In this sense, they are not subject to the disadvantages of sample
splitting-based techniques used for instance in the goodness of fit literature (e.g.,
half-sample methods).

The principles underlying our proposed inferences based on (6) should also be
portable beyond out of sample forecasting considerations to areas involving model
selection testing à la Vuong (1989) where nestedness versus non-nestedness or
the overlapping nature of models being compared influences test procedures due
to variance degeneracy problems (see also Shi, 2015). In Schennah and Wilhelm
(2017), for instance, the authors developed a model selection test for choosing
between two parametric likelihoods based on sample splitting principles which
although different from our approach based on MSE comparisons on overlapping
intervals was driven by similar concerns. Adapting the analysis of this paper to such
model selection testing contexts is a promising avenue currently being explored.

Appendix: Proofs

Proof of Proposition 1. We consider the asymptotic behavior of ZT (�1,�2) in (6).
Rescaling the time axis, we write ZT (λ1,λ2) ≡ ZT ([(T − k0)λ1],[(T − k0)λ2]) and focus
on ZT (λ1,λ2). Using ê2

j,t+1 = u2
t+1 + (ê2

j,t+1 −u2
t+1) (j = 1,2) in (6) yields

ZT (λ1,λ2)

= T − k0

[(T − k0)λ1]

⎛⎝∑k0−1+[(T−k0)λ1]
t=k0

u2
t+1√

T − k0
− [(T − k0)λ1]

[(T − k0)λ2]

∑k0−1+[(T−k0)λ2]
t=k0

u2
t+1√

T − k0

⎞⎠
+ T − k0

[(T − k0)λ1]

∑k0−1+[(T−k0)λ1]
t=k0

(ê2
1,t+1 −u2

t+1)
√

T − k0

− T − k0

[(T − k0)λ2]

∑k0−1+[(T−k0)λ2]
t=k0

(ê2
2,t+1 −u2

t+1)
√

T − k0
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≡ T − k0

[(T − k0)λ1]
N1T (λ1,λ2)+ T − k0

[(T − k0)λ1]
N2T (λ1)− T − k0

[(T − k0)λ2]
N3T (λ2).

(A.1)

From Assumption A(i), we have supλ1
|N2T (λ1)| = op(1) and supλ2

|N3T (λ2)| = op(1).
Combining with

sup
λ1,λ2

∣∣∣∣ [(T − k0)λ1]

[(T − k0)λ2]
− λ1

λ2

∣∣∣∣= O(1/(T − k0)) (A.2)

and

sup
λj

∣∣∣∣ (T − k0)

[(T − k0)λj]
− 1

λj

∣∣∣∣= O(1/(T − k0)) j = 1,2 (A.3)

gives

ZT (λ1,λ2) = 1

λ1

⎛⎝∑k0−1+[(T−k0)λ1]
t=k0

u2
t+1√

T − k0
− λ1

λ2

∑k0−1+[(T−k0)λ2]
t=k0

u2
t+1√

T − k0

⎞⎠+op(1).

(A.4)

It is now convenient to reformulate (A.4) as

ZT (λ1,λ2) = 1

λ1

⎛⎝∑k0−1+[(T−k0)λ1]
t=k0

(u2
t+1 −σ 2

u )
√

T − k0
− λ1

λ2

∑k0−1+[(T−k0)λ2]
t=k0

(u2
t+1 −σ 2

u )
√

T − k0

⎞⎠
+σ 2

u
√

T − k0

(
[(T − k0)λ1]

(T − k0)λ1
− [(T − k0)λ2]

(T − k0)λ2

)
+op(1), (A.5)

and note that the second component in the right-hand side of (A.5) is O(1/
√

T − k0). We
now recall that our setting operates under fixed and given magnitudes of (λ1,λ2), say
(λ0

1,λ
0
2) chosen such that (λ0

1,λ
0
2) ∈ 
0. We have

ZT (λ0
1,λ

0
2)

= 1

λ0
1

⎛⎜⎝∑k0−1+[(T−k0)λ
0
1]

t=k0
(u2

t+1 −σ 2
u )

√
T − k0

− λ0
1

λ0
2

∑k0−1+[(T−k0)λ
0
2]

t=k0
(u2

t+1 −σ 2
u )

√
T − k0

⎞⎟⎠+op(1).

(A.6)

It follows from Assumption A(ii) and (iii), the continuous mapping theorem and Slutsky’s
theorem that

Z0
T (λ0

1,λ
0
2) ≡ ZT (λ0

1,λ
0
2)

σ̂

D→ 1

λ0
1

(
Wη(λ0

1)− λ0
1

λ0
2

Wη(λ0
2)

)
. (A.7)

The right-hand side of (A.7) is a centered Gaussian random variable with variance
v0(λ0

1,λ
0
2) = |λ0

1 − λ0
2|/λ0

1λ0
2 as stated in (11). Specifically, the statement in (A.7) is

equivalent to Z0
T (λ0

1,λ
0
2)

D→ N(0,|λ0
1 −λ0

2|/λ0
1λ0

2). This also establishes that S0
T (λ0

1,λ
0
2) ≡

Z0
T (λ0

1,λ
0
2)/

√
v0(λ0

1,λ
0
2)

D→ N(0,1). �
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Proof of Proposition 2. We view ZT (λ1,λ2) in (A.5) as a functional of λ1 whose range

is determined by the choice of τ0, and for a given λ2 = λ0
2, satisfying (τ0,λ

0
2) ∈ 


0
.

Assumption A(ii) combined with standard continuous mapping arguments applied to (A.5)
yields

ZT (λ1;λ0
2)

D→ σ
1

λ1

(
Wη(λ1)− λ1

λ0
2

Wη(λ0
2)

)
. (A.8)

The asymptotic behavior of ZT (τ0;λ0
2) in (9) now follows by appealing to Assumption

A(i)–(iii), the continuity of the average operation and (A.8). Specifically,

ZT (τ0;λ0
2)

D→ 1

1− τ0

∫ 1

τ0

[
Wη(λ1)

λ1
− Wη(λ0

2)

λ0
2

]
dλ1. (A.9)

Note that

E

∣∣∣∣∣
∫ 1

τ0

Wη(λ1)

λ1
dλ1

∣∣∣∣∣≤
∫ 1

τ0

E

∣∣∣∣Wη(λ1)

λ1

∣∣∣∣dλ1 =
∫ 1

τ0

E|Wη(1)|√
λ1

dλ1 < ∞, (A.10)

so that (A.9) is well-defined almost surely and by construction centered Gaussian. It now
suffices to obtain its variance. We have

1

(1− τ0)2
Cov

[∫ 1

τ0

(
Wη(s1)

s1
− Wη(λ0

2)

λ0
2

)
ds1,

∫ 1

τ0

(
Wη(s2)

s2
− Wη(λ0

2)

λ0
2

)
ds2

]

= 1

(1− τ0)2

∫ 1

τ0

[∫ 1

τ0

Cov

[(
Wη(s1)

s1
− Wη(λ0

2)

λ0
2

)
,

(
Wη(s2)

s2
− Wη(λ0

2)

λ0
2

)]
ds2

]
ds1

= 1

(1− τ0)2

∫ 1

τ0

∫ 1

τ0

[
s1 ∧ s2

s1s2
− s1 ∧λ0

2

s1λ0
2

− λ0
2 ∧ s2

s2λ0
2

+ 1

λ0
2

]
ds1 ds2, (A.11)

where we appealed to Fubini’s theorem for interchanging expectations with integration in
the second row of (A.11). Standard integral calculus now leads to (13) and (14). �

The following lemma collects some key results used in the proofs of Proposition 3 and
Corollary 1 on the power properties of the proposed tests under stationarity.

Lemma A1. Suppose model (2) holds with β2 = γ /T1/4. Under Assumption B1 and as
T → ∞, we have

(i)

sup
λ

∣∣∣∣∣
∑k0−1+[(T−k0)λ]

t=k0
(ê2

1,t+1 −u2
t+1)√

T − k0
−λ
√

1−π0 γ ′(Q22 −Q21Q−1
11 Q12)γ

∣∣∣∣∣= op(1),

(A.12)

(ii)

sup
λ

∣∣∣∣∣
∑k0−1+[(T−k0)λ]

t=k0
(ê2

2,t+1 −u2
t+1)√

T − k0

∣∣∣∣∣= op(1). (A.13)
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Proof of Lemma A1. (i) As we operate under model (2) with β2 = γ /T1/4, we have
ê1,t+1 −ut+1 = x′

2,tβ2 −x′
1,t(δ̂1,t −β1) so that the following identity holds:∑k0−1+[(T−k0)λ]

t=k0
(ê2

1,t+1 −u2
t+1)

√
T − k0

= A1T (λ)+A2T (λ)−2A3T (λ)+2A4T (λ)−2A5T (λ),

(A.14)

where

A1T (λ) = T− 1
2 (T − k0)

− 1
2 γ ′∑

t

x2,tx′
2,tγ ,

A2T (λ) = (T − k0)
− 1

2
∑

t

(δ̂1,t −β1)
′x1,tx′

1,t(δ̂1,t −β1),

A3T (λ) = T− 1
4 (T − k0)

− 1
2
∑

t

(δ̂1,t −β1)
′x1,tx′

2,tγ ,

A4T (λ) = T− 1
4 (T − k0)

− 1
2 γ ′∑

t

x2,tut+1,

A5T (λ) = (T − k0)
− 1

2
∑

t

(δ̂1,t −β1)
′x1,tut+1,

with t = k0, . . . ,k0 − 1 + [(T − k0)λ] in all of the above summations and below, unless
otherwise indicated. �

For A1T (λ), we write

A1T (λ) =
√

T − k0

T
γ ′
(∑

t x2,tx′
2,t

T − k0
−λQ22

)
γ +

√
T − k0

T
λγ ′Q22γ (A.15)

and, as |√(T − [Tπ0])/T −√
1−π0| = o(1), we have

∣∣∣A1T (λ)−λ
√

1−π0 γ ′Q22γ

∣∣∣≤√1−π0 ‖γ ‖2

∥∥∥∥∥
∑

t x2,tx
′
2,t

T − k0
−λ Q22

∥∥∥∥∥, (A.16)

so that Assumption B1(i) directly implies

sup
λ

∣∣∣A1T (λ)−λ
√

1−π0 γ ′Q22γ

∣∣∣= op(1). (A.17)

Before focusing on the remainder quantities, we consider the limiting behavior of (δ̂1,t −
β1). Setting t = [Ts], we write

T1/4(δ̂1,[Ts] −β1) =
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1x′

2,j−1

T

⎞⎠γ

+T−1/4

⎛⎝∑[Ts]
j=1 x1,j−1x′

1,j−1

T

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1uj√

T

⎞⎠ . (A.18)
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For the second term in the right-hand side of (A.18), we have

sup
s

1

T1/4

∥∥∥∥∥∥∥
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1uj√

T

⎞⎠
∥∥∥∥∥∥∥= op(1) (A.19)

due to Assumption B1(i) and (ii). For the first term in the right-hand side of (A.18), we can
write ∥∥∥∥∥∥∥

⎛⎝∑[Ts]
j=1 x1,j−1x′

1,j−1

T

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1x′

2,j−1

T

⎞⎠γ −Q−1
11 Q12γ

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T

⎞⎠−1

−Q−1
11

∥∥∥∥∥∥∥
⎛⎝∥∥∥∥∥∥
∑[Ts]

j=1 x1,j−1x′
2,j−1

T
γ −Q12γ

∥∥∥∥∥∥+∥∥Q12γ
∥∥⎞⎠

+

∥∥∥∥∥∥∥
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T

⎞⎠−1
∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑[Ts]

j=1 x1,j−1x′
2,j−1

T
γ −Q12γ

∥∥∥∥∥∥,
(A.20)

so that Assumption B1(i) and (ii) also ensure that

sup
s

∥∥∥∥∥∥∥
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1x′

2,j−1

T

⎞⎠γ −Q−1
11 Q12γ

∥∥∥∥∥∥∥= op(1).

(A.21)

Combining (A.19) and (A.21) and using the triangle inequality in (A.18) yields

sup
s

∥∥∥T1/4(δ̂1,[Ts] −β1)−Q−1
11 Q12γ

∥∥∥= op(1). (A.22)

We now focus on A2T (λ). Using suitable normalizations and appealing to (A.22), we can
express A2T (λ) as

A2T (λ) =
√

T − k0

T
(T − k0)−1

∑
t

T1/4(δ̂1,t −β1)′x1,tx
′
1,tT

1/4(δ̂1,t −β1)

=
√

T − k0

T
(T − k0)−1

∑
t

(T1/4(δ̂1,t −β1)−Q−1
11 Q12γ )′x1,tx

′
1,tT

1/4(δ̂1,t −β1)

+
√

T − k0

T
(T − k0)−1γ ′Q21Q−1

11

∑
t

x1,tx
′
1,t(T

1/4(δ̂1,t −β1)−Q−1
11 Q12γ )

+
√

T − k0

T
γ ′Q21Q−1

11

(∑
t x1,tx

′
1,t

T − k0
−λQ11

)
Q−1

11 Q12γ

+λ

√
T − k0

T
γ ′Q21Q−1

11 Q12γ . (A.23)
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Assumption B1(i) combined with the result in (A.22) give

sup
λ

∣∣∣A2T (λ)−λ
√

1−π0γ ′Q21Q−1
11 Q12γ

∣∣∣= op(1). (A.24)

For A3T (λ), we write

A3T (λ) =
√

T − k0

T
(T − k0)−1

∑
(T1/4(δ̂1,t −β1)−Q−1

11 Q12γ )′x1,tx
′
2,tγ

+
√

T − k0

T
γ ′Q21Q−1

11

(∑
x1,tx

′
2,t

T − k0
−λQ12

)
γ +

√
T − k0

T
λγ ′Q21Q−1

11 Q12γ ,

(A.25)

so that using (A.22), Assumption B1(i) and the triangle inequality yields

sup
λ

∣∣∣A3T (λ)−λ
√

1−π0γ ′Q21Q−1
11 Q12γ

∣∣∣= op(1). (A.26)

Next, as an immediate consequence of Assumption B1(ii), we have

sup
λ

|A4T (λ)| = op(1). (A.27)

Finally, using (A.22) together with Assumption B1(ii) yields

sup
λ

|A5T (λ)| = op(1). (A.28)

Combining (A.17), (A.24), and (A.26)–(A.28) with successive uses of the triangle inequality
yields the stated result in Lemma A1(i). The statement in (A.13) follows an identical line
of argument as above and details are therefore omitted from the exposition here.

Proof of Proposition 3. (i) We initially consider the case of a fixed and nonzero β2 and

establish that S0
T (λ0

1,λ
0
2)

p→ ∞. Using (A.1) and appealing to Lemma A1(ii), we have

ZT (λ0
1,λ

0
2)√

T − k0
= 1

λ0
1

N1T (λ0
1,λ

0
2)√

T − k0
+ 1

λ0
1

N2T (λ0
1)√

T − k0
+op(1). (A.29)

We can now note from (A.7) and (A.8) that the first term in the right-hand side of (A.29) is
Op(T−1/2) so that

ZT (λ0
1,λ

0
2)√

T − k0
= 1

λ0
1

⎡⎢⎣∑k0−1+[(T−k0)λ
0
1]

t=k0
(ê2

1,t+1 −u2
t+1)

T − k0

⎤⎥⎦+op(1). (A.30)

It is now straightforward to adapt the result in Lemma A1(i) to a fixed β2 setting and infer
that∑k0−1+[(T−k0)λ

0
1]

t=k0
(ê2

1,t+1 −u2
t+1)

T − k0

p→ λ0
1 β ′

2(Q22 −Q12Q−1
11 Q12)β2, (A.31)

yielding (for fixed β2)

Z0
T (λ0

1,λ
0
2)√

T − k0

p→ 1

σ
β ′

2(Q22 −Q12Q−1
11 Q12)β2, (A.32)
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where we also made use of Assumption B1(iii) ensuring that σ̂
p→ σ ∈ (0,∞). It now follows

that

S0
T (λ0

1,λ
0
2)√

T − k0
≡ 1√

T − k0

Z0
T (λ0

1,λ
0
2)√

v0(λ0
1,λ

0
2)

p→ 1√
v0(λ0

1,λ
0
2)

1

σ
β2

′(Q22 −Q12Q−1
11 Q12)β2

(A.33)

with v0(λ0
1,λ

0
2) given by (11), thus leading to S0

T (λ0
1,λ

0
2)

p→ ∞ as stated. Proceeding

similarly for ZT (τ0;λ0
2), we have

ST (τ0;λ0
2)√

T − k0

p→ 1√
v(τ0;λ0

2)

1

σ
β ′

2(Q22 −Q12Q−1
11 Q12)β2 (A.34)

with v(τ0;λ0
2) as in (13) and (14), thus also establishing that ST (τ0;λ0

2)
p→ ∞.

(ii) We next focus on the local asymptotic behavior of the two test statistics with β2
parameterized as β2 = γ /T1/4. Using (A.1) in conjunction with Lemma A1(i) and (ii), we
have

Z0
T (λ0

1,λ
0
2)√

v0(λ0
1,λ

0
2)

= 1

σ̂

1

λ0
1

√
v0(λ0

1,λ
0
2)

⎡⎣∑k0−1+[(T−k0)λ0
1]

t=k0
(ê2

1,t+1 −u2
t+1)√

T − k0

⎤⎦
+ 1

σ̂

1

λ0
1

√
v0(λ0

1,λ
0
2)

⎡⎣∑k0−1+[(T−k0)λ0
1]

t=k0
u2

t+1√
T − k0

− λ0
1

λ0
2

∑k0−1+[(T−k0)λ0
2]

t=k0
u2

t+1√
T − k0

⎤⎦
+op(1). (A.35)

It now follows directly from (A.12) in Lemma A1, Assumption B1(iii), and Slutsky’s
theorem that

S0
T (λ0

1,λ
0
2) ≡ Z0

T (λ0
1,λ

0
2)√

v0(λ0
1,λ

0
2)

D→
√

1−π0

σ

√
v0(λ0

1,λ
0
2)

γ ′(Q22 −Q12Q−1
11 Q12)γ +N(0,1) (A.36)

as required. The result for ZT (τ0;λ0
2) follows identical arguments and is therefore omitted.

�

Proof of Corollary 1. Follows directly from (A.34) to (A.36) in the proof of Proposi-
tion 3. �

Lemma A2.

(i) Under Assumption B2 and as T → ∞, we have for λ ∈ [0,1]

1

(T − k0)2

k0+[(T−k0)λ]∑
t=k0

xtx′
t
D→ 1

(1−π0)2

∫ π0+(1−π0)λ

π0

JCJ′
Cdr. (A.37)
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(ii) Under Assumption B2 and as T → ∞, we have for λ ∈ [0,1]

sup
λ

∥∥∥∥∥∥ 1

T − k0

k0+[(T−k0)λ]∑
t=k0

xtut+1

∥∥∥∥∥∥= Op(1). (A.38)

(iii) Suppose model (2) holds with β2 = γ /T3/4. Under Assumption B2 and as T → ∞,
we have

T3/4(δ1,[Ts] −β1)
D→
(∫ s

0
J1CJ′

1Cdr

)−1(∫ s

0
J1CJ′

2Cdr

)
γ ≡ M(s) γ . (A.39)

Proof of Lemma A2. For (A.37), we have

1

(T − k0)2

k0+[(T−k0)λ]∑
t=k0

xtx′
t =
(

T

T − k0

)2 1

T2

k0+[(T−k0)λ]∑
t=k0

xtx′
t

=
(

T

T − k0

)2 k0+[(T−k0)λ]∑
t=k0

∫ t
T

t−1
T

(
x[Tr]√

T

)(
x[Tr]√

T

)′
dr

D→ 1

(1−π0)2

∫ π0+(1−π0)λ

π0

JCJ′
Cdr (A.40)

due to Assumption B2(i). For (A.38), we have

sup
λ

∥∥∥∥∥∥ 1

T − k0

k0+[(T−k0)λ]∑
t=k0

xtut+1

∥∥∥∥∥∥≤ sup
λ

∣∣∣∣ ∑ut+1√
T − k0

∣∣∣∣sup
λ

∥∥∥∥x[(T−k0)λ]√
T − k0

∥∥∥∥
= Op(1), (A.41)

which also follows from Assumption B2(i). For (A.39), we write

T3/4(δ1,[Ts] −β1) =
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T2

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1x′

2,j−1

T2

⎞⎠γ

+ 1

T1/4

⎛⎝∑[Ts]
j=1 x1,j−1x′

1,j−1

T2

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1uj

T

⎞⎠ . (A.42)

From (A.38), it also follows that

T3/4(δ1,[Ts] −β1) =
⎛⎝∑[Ts]

j=1 x1,j−1x′
1,j−1

T2

⎞⎠−1⎛⎝∑[Ts]
j=1 x1,j−1x′

2,j−1

T2

⎞⎠γ +op(1)

(A.43)

and the statement in (A.39) follows directly using (A.37) in (A.43) and appealing to the
continuous mapping theorem. �
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Lemma A3.

(i) Suppose model (2) holds with β2 = γ /T3/4. Under Assumption B2 and as T → ∞,
we have

∑k0−1+[(T−k0)λ]
t=k0

(ê2
1,t+1 −u2

t+1)√
T − k0

D→ 1√
1−π0

γ ′
(∫ π0+(1−π0)λ

π0

JC
∗(s)JC

∗(s)′ds

)
γ,

(A.44)

where J∗
C(s) = J2C(s)−M(s)J1C(s) for M(s) = (

∫ s
0 J1CJ′

1Cdr)−1(
∫ s

0 J1CJ′
2Cdr).

(ii) Suppose model (2) holds with β2 = γ /T3/4. Under Assumption B2 and as T → ∞,
we have

sup
λ∈(0,1]

∣∣∣∣∣
∑k0−1+[(T−k0)λ]

t=k0
(ê2

2,t+1 −u2
t+1)√

T − k0

∣∣∣∣∣ p→ 0. (A.45)

Proof of Lemma A3. We consider (A.44) first. We operate under β2 = γ /T3/4.
Recalling that ê1,t+1 −ut+1 = x′

2,tβ2 −x′
1,t(δ̂1,t −β1) and using limT→∞((T −k0)/T)j →

(1−π0)j, we write

∑k0−1+[(T−k0)λ]
t=k0

(ê2
1,t+1 −u2

t+1)
√

T − k0

= (1−π0)3/2

(T − k0)2
γ ′
⎛⎝k0−1+[(T−k0)λ]∑

t=k0

x2,tx
′
2,t

⎞⎠γ

+ (1−π0)3/2

(T − k0)2

k0−1+[(T−k0)λ]∑
t=k0

(T3/4(δ̂1,t −β1))′x1,tx
′
1,t(T

3/4(δ̂1,t −β1))

−2
(1−π0)3/2

(T − k0)2

⎛⎝k0−1+[(T−k0)λ]∑
t=k0

(T3/4(δ̂1,t −β1))′x1,tx
′
2,t

⎞⎠γ

+2
(1−π0)1/2

T1/4

⎛⎝ 1

T − k0
γ ′

k0−1+[(T−k0)λ]∑
t=k0

x2,tut+1

⎞⎠
−2

(1−π0)1/2

T1/4

⎛⎝ 1

T − k0

k0−1+[(T−k0)λ]∑
t=k0

(T3/4(δ̂1,t −β1))′x1,tut+1

⎞⎠+o(1). (A.46)

It next follows from (A.38) and (A.39) that the last two terms in the right-hand side of (A.46)
are Op(T−1/4) so that we also have
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∑k0−1+[(T−k0)λ]
t=k0

(ê2
1,t+1 −u2

t+1)
√

T − k0

= (1−π0)3/2

(T − k0)2
γ ′
⎛⎝k0−1+[(T−k0)λ]∑

t=k0

x2,tx
′
2,t

⎞⎠γ

+ (1−π0)3/2

(T − k0)2

k0−1+[(T−k0)λ]∑
t=k0

(T3/4(δ̂1,t −β1))′x1,tx
′
1,t(T

3/4(δ̂1,t −β1))

−2
(1−π0)3/2

(T − k0)2

⎛⎝k0−1+[(T−k0)λ]∑
t=k0

(T3/4(δ̂1,t −β1))′x1,tx
′
2,t

⎞⎠γ +op(1). (A.47)

Using (A.37) and (A.39) from Lemma A2 together with the continuous mapping theorem,
(A.47) leads to the required result in (A.44). The result in (A.45) is established following
similar arguments and details are omitted. �

Proof of Proposition 4 and Corollary 2. We focus on part (ii) of the Proposition as the
test consistency property stated in part (i) follows as its direct consequence. From (A.1) and
Lemma A2, under the local alternative β2 = γ /T3/4, we have

Z0
T (λ0

1,λ
0
2)√

v0(λ0
1,λ

0
2)

= 1

σ̂

1

λ0
1

√
v0(λ0

1,λ
0
2)

⎡⎢⎣∑k0−1+[(T−k0)λ
0
1]

t=k0
u2

t+1√
T − k0

− λ1

λ0
2

∑k0−1+[(T−k0)λ
0
2]

t=k0
u2

t+1√
T − k0

⎤⎥⎦
+ 1

σ̂

1

λ0
1

√
v0(λ0

1,λ
0
2)

⎡⎢⎣∑k0−1+[(T−k0)λ
0
1]

t=k0
(ê2

1,t+1 −u2
t+1)

√
T − k0

⎤⎥⎦+op(1)

D→ N(0,1)+ 1

σ

1

λ0
1

√
v0(λ0

1,λ
0
2)

1√
1−π0

γ ′
(∫ π0+(1−π0)λ

0
1

π0

JC
∗(s)JC

∗(s)′ds

)
γ (A.48)

using (A.44), Slutsky and the continuous mapping theorems (note that the standard
normality of the first component in the right-hand side of (A.48) has been established in
Proposition 1). It now follows directly from (A.48) that lim||γ ||→∞ limT→∞ST (λ0

1,λ
0
2) as

required. The result for ST (τ0;λ0
2) follows identical lines and its details are omitted. �

Proof of Proposition 5 and Corollary 3. We have ê2
1,t+1 − ẽ2

2,t+1 = (ê2
1,t+1 − ê2

2,t+1)+
(ê1,t+1 − ê2,t+1)2 which leads to the formulations of S0

T,adj(λ
0
1,λ

0
2) and ST,adj(τ0;λ0

2) in
(34) and (35), respectively. Under the null hypothesis and for both test statistics, the result
follows by verifying that

sup
λ

∣∣∣∣∣∣
∑k0−1+[(T−k0)λ]

t=k0
(ê1,t+1 − ê2,t+1)2

√
T − k0

∣∣∣∣∣∣ p→ 0. (A.49)
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Noting that∑k0−1+[(T−k0)λ]
t=k0

(ê1,t+1 − ê2,t+1)2

√
T − k0

=
∑k0−1+[(T−k0)λ]

t=k0
(ê2

1,t+1 −u2
t+1)

√
T − k0

+
∑k0−1+[(T−k0)λ]

t=k0
(ê2

2,t+1 −u2
t+1)

√
T − k0

−2

∑k0−1+[(T−k0)λ]
t=k0

(ê1,t+1ê2,t+1 −u2
t+1)

√
T − k0

,

(A.50)

the statement in (A.49) follows directly from Assumption A(i) since we operate under
the null hypothesis noting also that (ê1,t+1ê2,t+1 − u2

t+1) = (ê1,t+1 − ê2,t+1)ê2,t+1 +
(ê2

2,t+1 − u2
t+1) from which we infer the op(1)’ness of the third component in the right-

hand side of (A.50). It now follows that Propositions 1 and 2 continue to hold for the two
adjusted statistics.

For the behavior of the adjusted statistics under the alternative, we initially consider the
case of stationary predictors and operate under β2 = γ /T1/4 as in the setting of Corollary
1. Using (A.50) with Lemma A1, we can write

h0
T (λ0

1,λ
0
2) = 1

σ̂

1√
v0(λ0

1,λ
0
2)λ0

2

∑k0−1+[(T−k0)λ
0
2]

t=k0
(ê2

1,t+1 −u2
t+1)

√
T − k0

+op(1)

p→ 1

σ

1√
v0(λ0

1,λ
0
2)

√
1−π0γ ′(Q22 −Q12Q−1

11 Q12)γ ≡ ψ0 (A.51)

and

hT (τ0;λ0
2) = 1

σ̂

1√
v(τ0;λ0

2)λ0
2

∑k0−1+[(T−k0)λ
0
2]

t=k0
(ê2

1,t+1 −u2
t+1)

√
T − k0

+op(1)

p→ 1

σ

1√
v(τ0;λ0

2)

√
1−π0γ ′(Q22 −Q12Q−1

11 Q12)γ ≡ ψ . (A.52)

Using (A.51) and (A.52), it follows that S0
T,adj(λ

0
1,λ

0
2)

D→ N(2ψ0,1) and similarly for

S0
T,adj(λ

0
1,λ

0
2)

D→ N(2ψ,1) which establishes the fact that Proposition 3 continues to hold
for the two adjusted statistics in addition to part (i) of Corollary 3. The result for the case
of persistent predictors follows identical lines, making use of Lemma A3 and Proposition
3 which in turn establishes part (ii) of Corollary 3 and that Proposition 4 also holds for the
two adjusted statistics. �

DATA AVAILABILITY STATEMENT

MATLAB codes and replication files are available for download from the author’s
webpage at https://sites.google.com/view/jpitarakis.

https://doi.org/10.1017/S0266466623000154 Published online by Cambridge University Press

https://sites.google.com/view/jpitarakis
https://doi.org/10.1017/S0266466623000154


PREDICTIVE ACCURACY IN NESTED ENVIRONMENTS 77

SUPPLEMENTARY MATERIAL

Pitarakis, Jean-Yves (2023): Supplement to “A novel approach to predictive
accuracy testing in nested environments,” Econometric Theory Supplementary
Material. To view, please visit https://doi.org/10.1017/S0266466623000154.

REFERENCES

Avdis, E. & J.A. Wachter (2017) Maximum likelihood estimation of the equity premium. Journal of
Financial Economics 125, 589–609.

Berenguer-Rico, V. & B. Nielsen (2020) Cumulated sum of squares statistics for nonlinear and
nonstationary regressions. Econometric Theory 36, 1–47.

Berkes, I., S. Hörmann, & L. Horvath (2008) The functional central limit theorem for a family of
GARCH observations with applications. Statistics and Probability Letters 78, 2725–2730.

Clark, T.E. & M.W. McCracken (2001) Tests of equal forecast accuracy and encompassing for nested
models. Journal of Econometrics 105, 85–110.

Clark, T.E. & M.W. McCracken (2005) Evaluating direct multistep forecasts. Econometric Reviews
24, 369–404.

Clark, T.E. & M.W. McCracken (2013) Advances in forecast evaluation. In G. Elliott & A. Timmer-
mann (eds.), Handbook of Economic Forecasting, vol. 2, Part B, pp. 1107–1201. Elsevier.

Clark, T.E. & K.D. West (2007) Approximately normal tests for equal predictive accuracy in nested
models. Journal of Econometrics 138, 291–311.

Deng, A. & P. Perron (2008a) The limit distribution of the Cusum of squares test under general mixing
conditions. Econometric Theory 24, 809–822.

Deng, A. & P. Perron (2008b) A non-local perspective on the power properties of the CUSUM and
CUSUM of squares tests for structural change. Journal of Econometrics 142, 212–240.

Diebold, F.X. (2015) Comparing predictive accuracy, twenty years later: A personal perspective on the
use and abuse of Diebold–Mariano tests. Journal of Business and Economic Statistics 33, 1–24.

Diebold, F.X. & R. Mariano (1995) Comparing predictive accuracy. Journal of Business and Economic
Statistics 13, 253–265.

Engel, C. & S. Wu (2021) Forecasting the U.S. Dollar in the 21st Century. NBER Working Paper no.
28447.

Fan, J., Y. Liao, & J. Yao (2015) Power enhancement in high dimensional cross-sectional tests.
Econometrica 83, 1497–1541.

Ferson, W., S. Nallareddy, & X. Biqin (2013) The out-of-sample performance of long run risk models.
Journal of Financial Economics 107, 537–556.

Gades-Riva, M.D. & J. Gonzalo (2020) Trends in distributional characteristics: Existence of global
warming. Journal of Econometrics 214, 153–174.

Giacomini, R. & H. White (2006) Tests of conditional predictive ability. Econometrica 74, 1545–1578.
Giraitis, L., P. Kokoszka, & R. Leipus (2000) Stationary ARCH models: Dependence structure and

central limit theorems. Econometric Theory 16, 3–22.
Giraitis, L., P. Kokoszka, & R. Leipus (2001) Testing for long memory in the presence of a general

trend. Journal of Applied Probability 38, 1033–1054.
Granziera, E., K. Hubrich, & H. Moon (2014) Predictability tests for a small number of nested models.

Journal of Econometrics 182, 174–185.
Hansen, P.R. & A. Timmermann (2015) Equivalence between out-of-sample forecast comparisons and

Wald statistics. Econometrica 83, 2485–2505.
Ince, O., T. Molodotsova, & D.H. Papell (2016) Taylor rule deviations and out-of-sample exchange

rate predictability. Journal of International Money and Finance 69, 22–44.
Jiang, F., Z. Zhao, & X. Shao (2020) Modelling the COVID-19 infection trajectory: A piecewise linear

quantile trend model. Journal of the Royal Statistical Society: Series B 84, 1589–1607.

https://doi.org/10.1017/S0266466623000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000154
https://doi.org/10.1017/S0266466623000154


78 JEAN-YVES PITARAKIS

Li, S. & O. Linton (2021) When will the COVID-19 pandemic peak? Journal of Econometrics 220,
130–157.

Linder, A.M. (2009) Stationarity, mixing, distributional properties and moments of GARCH(p,q)-
processes. In T. Mikosch, J. Kreiss, A.D. Richard, & T.G. Andersen (eds.), Handbook of Financial
Time Series, pp. 43–69. Springer.

McCracken, M. (2007) Asymptotics for out of sample tests of Granger causality. Journal of Econo-
metrics 140, 719–752.

Meese, R.A. & K. Rogoff (1983) Empirical exchange rate models of the seventies. Journal of
International Economics 14, 3–24.

Molodotsova, T. & D.H. Papell (2009) Out-of-sample exchange rate predictability with Taylor rule
fundamentals. Journal of International Economics 77, 167–180.

Rossi, B. (2005) Testing long-horizon predictive ability with high persistence, and the Meese–Rogoff
puzzle. International Economic Review 46, 61–92.

Schennah, S.M. & D. Wilhelm (2017) A simple parametric model selection test. Journal of the
American Statistical Association 112, 1663–1674.

Shi, X. (2015) A nondegenerate Vuong test. Quantitative Economics 6, 85–121.
Stock, J. & M. Watson (2010) Modeling Inflation after the Crisis. Macroeconomic Policy: Post-Crisis

and Risks Ahead, Proceedings of the Federal Reserve Bank of Kansas City 2010 Jackson Hole
Symposium.

Vuong, Q.H. (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Economet-
rica 57, 307–333.

West, K. (1996) Asymptotic inference about predictive ability. Econometrica 64, 1067–1084.
West, K. (2006) Forecast evaluation. In G. Elliott, C.W.J. Granger, & A. Timmermann (eds.),

Handbook of Economic Forecasting, vol. 1, pp. 99–134. Elsevier.
Wu, W. & Z. Zhao (2007) Inference of trends in time series. Journal of the Royal Statistical Society:

Series B 69, 391–410.

https://doi.org/10.1017/S0266466623000154 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000154

	1 INTRODUCTION
	2 MODELS AND TEST STATISTICS: THEORY
	3 ASYMPTOTIC POWER AND TEST PARAMETERIZATIONS
	3.1 Consistency and Local Power under Stationarity
	3.2 Consistency and Local Power under Persistence

	4 POWER ENHANCEMENTS
	5 EMPIRICAL SIZE AND POWER
	5.1 DGP1
	5.2 DGP2
	5.3 Summary and Tuning-Parameter Guidelines

	6 APPLICATION
	7 CONCLUDING REMARKS

