Bull. Aust. Math. Soc. 96 (2017), 24–29 doi:10.1017/S0004972716001118

THE QUOTIENT SET OF *k*-GENERALISED FIBONACCI NUMBERS IS DENSE IN \mathbb{Q}_p

CARLO SANNA

(Received 21 October 2016; accepted 23 October 2016; first published online 9 January 2017)

Abstract

The quotient set of $A \subseteq \mathbb{N}$ is defined as $R(A) := \{a/b : a, b \in A, b \neq 0\}$. Using algebraic number theory in $\mathbb{Q}(\sqrt{5})$, Garcia and Luca ['Quotients of Fibonacci numbers', *Amer. Math. Monthly*, to appear] proved that the quotient set of Fibonacci numbers is dense in the *p*-adic numbers \mathbb{Q}_p for all prime numbers *p*. For any integer $k \ge 2$, let $(F_n^{(k)})_{n \ge -(k-2)}$ be the sequence of *k*-generalised Fibonacci numbers, defined by the initial values $0, 0, \ldots, 0, 1$ (*k* terms) and such that each successive term is the sum of the *k* preceding terms. We use *p*-adic analysis to generalise the result of Garcia and Luca, by proving that the quotient set of *k*-generalised Fibonacci numbers is dense in \mathbb{Q}_p for any integer $k \ge 2$ and any prime number *p*.

2010 *Mathematics subject classification*: primary 11B39; secondary 11B37, 11B05. *Keywords and phrases*: Fibonacci numbers, *k*-generalised Fibonacci numbers, *p*-adic numbers, density.

1. Introduction

Given a set of nonnegative integers A, the quotient set of A is defined as

$$R(A) := \{ a/b : a, b \in A, b \neq 0 \}.$$

The question of when R(A) is dense in \mathbb{R}^+ is a classical topic. Strauch and Tóth [15] proved that if *A* has lower asymptotic density at least equal to 1/2, then R(A) is dense in \mathbb{R}^+ (see also [1]). Bukor *et al.* [3] showed that if $A \cup B$ is a partition of \mathbb{N} , then at least one of R(A) or R(B) is dense in \mathbb{R}^+ . Moreover, the density of $R(\mathbb{P})$ in \mathbb{R}^+ , where \mathbb{P} is the set of prime numbers, is a well-known consequence of the prime number theorem [10].

On the other hand, the analogous question of when R(A) is dense in the *p*-adic numbers \mathbb{Q}_p , for some prime number *p*, has been studied only recently [7, 8]. Let $(F_n)_{n\geq 0}$ be the sequence of Fibonacci numbers, defined by $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all integers n > 1. Using algebraic number theory in the field $\mathbb{Q}(\sqrt{5})$, Garcia and Luca [8] proved the following result.

THEOREM 1.1. For any prime p, the quotient set of Fibonacci numbers is dense in \mathbb{Q}_p .

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

One of the many generalisations of the Fibonacci numbers is the sequence of *k*-generalised Fibonacci numbers $(F_n^{(k)})_{n\geq -(k-2)}$, also called the Fibonacci *k*-step sequence, Fibonacci *k*-sequence or *k*-bonacci sequence. For any integer $k \geq 2$, the sequence $(F_n^{(k)})_{n\geq -(k-2)}$ is defined by

$$F_{-(k-2)}^{(k)} = \dots = F_0^{(k)} = 0, \quad F_1^{(k)} = 1$$

and

$$F_n^{(k)} = F_{n-1}^{(k)} + F_{n-2}^{(k)} + \dots + F_{n-k}^{(k)}$$

for all integers n > 1.

Usually, the study of the arithmetic properties of the k-generalised Fibonacci numbers is more difficult than that of Fibonacci numbers. Indeed, for $k \ge 3$, the sequence of k-generalised Fibonacci numbers lacks several nice properties of the sequence of Fibonacci numbers, which is a strong divisibility sequence [13, page 9], has a primitive divisor theorem [17] and has a simple formula for its p-adic valuation [11, 14].

We prove the following generalisation of Theorem 1.1.

THEOREM 1.2. For any integer $k \ge 2$ and any prime number p, the quotient set of the k-generalised Fibonacci numbers is dense in \mathbb{Q}_p .

It seems likely that Theorem 1.2 could be extended to other linear recurrences over the integers. However, in our proof we use some specific features of the k-generalised Fibonacci numbers. Therefore, we state the following open question.

QUESTION 1.3. Let $(S_n)_{n\geq 0}$ be a linear recurrence of order $k \geq 2$ satisfying

 $S_n = a_1 S_{n-1} + a_2 S_{n-2} + \dots + a_k S_{n-k}$

for all integers $n \ge k$, where $a_1, \ldots, a_k, S_0, \ldots, S_{k-1} \in \mathbb{Z}$, with $a_k \ne 0$. For which prime numbers p is the quotient set of $(S_n)_{n\ge 0}$ dense in \mathbb{Q}_p ?

Clearly, without loss of generality, one can suppose that $gcd(S_0, \ldots, S_{k-1}) = 1$. Also, it seems reasonable to assume that $(S_n)_{n\geq 0}$ is nondegenerate, which in turn implies that $(S_n)_{n\geq 0}$ is definitely nonzero [5, Section 2.1]. Finally, a necessary condition for $(S_n)_{n\geq 0}$ to be dense in \mathbb{Q}_p is that $(v_p(S_n))_{n\geq 0,S_n\neq 0}$ is unbounded. This is certainly the case if $S_0 = 0$ and $p \nmid a_k$ (since $p \nmid a_k$ implies that $(S_n)_{n\geq 0}$ is periodic modulo p^h for any positive integer h [5, Section 3.1]), so this could be a useful additional hypothesis.

2. Proof of Theorem 1.2

From now on, fix an integer $k \ge 2$ and a prime number *p*. In light of Theorem 1.1, we can suppose that $k \ge 3$. Let

$$f_k(X) = X^k - X^{k-1} - \dots - X - 1$$

be the characteristic polynomial of the *k*-generalised Fibonacci numbers.

C. Sanna

It is known [16, Corollary 3.4] that f_k is separable. Let *K* be the splitting field of f_k over \mathbb{Q}_p and let $\alpha_1, \ldots, \alpha_k \in K$ be the *k* distinct roots of f_k . By [4, Theorem 1],

$$F_{n}^{(k)} = \sum_{i=1}^{k} c_{i} \alpha_{i}^{n}$$
(2.1)

for all integers $n \ge 0$, where

$$c_i := \frac{\alpha_i - 1}{(k+1)\alpha_i^2 - 2k\alpha_i} \tag{2.2}$$

for i = 1, ..., k.

Now we shall interpolate a subsequence of $(F_n^{(k)})_{n\geq 0}$ by an analytic function over \mathbb{Z}_p . This is a classical method in the study of linear recurrences, which goes back at least to the proof of the Skolem–Mahler–Lech theorem [5, Theorem 2.1].

We refer the reader to [9, Chs. 4–6] for the *p*-adic analysis used hereafter. Let O_K be the valuation ring of *K*, *e* and *f* the ramification index and the inertial degree of *K* over \mathbb{Q}_p , respectively, and π a uniformiser of *K*.

Since $f_k(0) = -1$, each α_i (i = 1, ..., k) is a unit of O_K , so that $|\alpha_i|_p = 1$. In particular, $\alpha_i \neq 0 \pmod{\pi}$. Since $O_K/\pi O_K$ is a finite field of p^f elements, it follows that $\alpha_i^{p^f-1} \equiv 1 \pmod{\pi}$. Now pick any positive integer *s* such that $p^s \geq e + 1$. Since $|\pi|_p = p^{-1/e}$, we have $\pi^{p^s} \equiv 0 \pmod{p\pi}$ and, in turn, it follows that $\alpha_i^t \equiv 1 \pmod{p\pi}$, where $t := p^s(p^f - 1)$. At this point,

$$|\alpha_i^t - 1|_p \le |p\pi|_p = p^{-1 - 1/e} < p^{-1/(p-1)}$$
(2.3)

for i = 1, ..., k.

Now let \log_p and \exp_p denote the *p*-adic logarithm and the *p*-adic exponential functions, respectively. From (2.3),

$$\alpha_i^t = \exp_p(\log_p(\alpha_i^t))$$

for i = 1, ..., k, which together with (2.1) implies that $F_{nt}^{(k)} = G(n)$ for all integers $n \ge 0$, where

$$G(z) := \sum_{i=1}^{k} c_i \exp_p(z \log_p(\alpha_i^t))$$

is an analytic function over \mathbb{Z}_p .

Let r > 0 be the radius of convergence of the Taylor series of G(z) at z = 0 and let $\ell \ge 0$ be an integer. On the one hand, the radius of convergence of the Taylor series of $G(p^{\ell}z)$ at z = 0 is $p^{\ell}r$. On the other hand,

$$G(p^{\ell}z) = \sum_{i=1}^{k} c_i \exp_p(p^{\ell}z \log_p(\alpha_i^{t})) = \sum_{i=1}^{k} c_i \exp_p(z \log_p(\alpha_i^{p^{\ell}t})).$$

Therefore, taking *s* sufficiently large, we can assume that r > 1. In particular,

$$G(z) = \sum_{j=0}^{\infty} \frac{G^{(j)}(0)}{j!} z^j$$
(2.4)

for all $z \in \mathbb{Z}_p$.

Now we shall prove that $G'(0) \neq 0$. For the sake of contradiction, assume that

$$G'(0) = \sum_{i=1}^{k} c_i \log_p(\alpha_i^t) = 0$$

Since $f_k(0) = -1$ and t is even, we have $\alpha_1^t \cdots \alpha_k^t = 1$, so that

$$\log_p(\alpha_k^t) = -\log_p(\alpha_1^t) - \dots - \log_p(\alpha_{k-1}^t)$$

and consequently

$$\sum_{i=1}^{k-1} (c_i - c_k) \log_p(\alpha_i^t) = 0.$$
(2.5)

We need the following lemma, which is a special case of a general result of Mignotte [12] on Pisot numbers.

LEMMA 2.1 [6, Lemma 1]. The roots $\alpha_1, \ldots, \alpha_{k-1}$ are multiplicatively independent, that is, $\alpha_1^{e_1} \cdots \alpha_{k-1}^{e_{k-1}} = 1$ for some integers e_1, \ldots, e_{k-1} if and only if $e_1 = \cdots = e_{k-1} = 0$.

Thanks to Lemma 2.1, $\alpha_1^t, \ldots, \alpha_{k-1}^t$ are multiplicatively independent. Hence, $\log_p(\alpha_1^t), \ldots, \log_p(\alpha_{k-1}^t)$ are linearly independent over \mathbb{Z} . Then, by [2, Theorem 1], $\log_p(\alpha_1^t), \ldots, \log_p(\alpha_{k-1}^t)$ are linearly independent over the algebraic numbers; hence, (2.5) implies that

$$c_1 = c_2 = \dots = c_k. \tag{2.6}$$

At this point, from (2.2) and (2.6), it follows that $\alpha_1, \ldots, \alpha_k$ are all roots of the polynomial

$$c_1(k+1)X^2 - (2c_1k+1)X + 1,$$

but that is clearly impossible, since $k \ge 3$. Hence, we have proved that $G'(0) \ne 0$.

Taking z = 1 in (2.4), we find that $v_p(G^{(j)}(0)/j!) \to +\infty$ as $j \to +\infty$. In particular, there exists an integer $\ell \ge 0$ such that $v_p(G^{(j)}(0)/j!) \ge -\ell$ for all integers $j \ge 0$. As a consequence of this, and since $G(0) = F_0^{(k)} = 0$, taking $z = mp^h$ in (2.4) gives

$$G(mp^h) = G'(0)mp^h + O(p^{2h-\ell})$$

for all integers $m, h \ge 0$. Therefore, for $h > h_0 := \ell + \nu_p(G'(0))$,

$$\frac{G(mp^h)}{G(p^h)} - m = \frac{G'(0)mp^h + O(p^{2h-\ell})}{G'(0)p^h + O(p^{2h-\ell})} - m = \frac{O(p^{h-\ell})}{G'(0) + O(p^{h-\ell})} = O(p^{h-h_0}),$$

C. Sanna

that is,

$$\lim_{h \to +\infty} \left| \frac{G(mp^h)}{G(p^h)} - m \right|_p = 0.$$

In conclusion, we have proved that

$$\lim_{v \to +\infty} \left| \frac{F_{mp^{v}(p^{f}-1)}^{(k)}}{F_{p^{v}(p^{f}-1)}^{(k)}} - m \right|_{p} = 0$$

for all integers $m \ge 0$. In other words, the closure (with respect to the *p*-adic topology) of the quotient set of *k*-generalised Fibonacci numbers contains the nonnegative integers \mathbb{N} .

The next easy lemma is enough to conclude the proof.

LEMMA 2.2. Let $A \subseteq \mathbb{N}$. If the closure of R(A) contains \mathbb{N} , then R(A) is dense in \mathbb{Q}_p .

PROOF. Let *C* be the closure of R(A) as a subspace of \mathbb{Q}_p . Since \mathbb{N} is dense in \mathbb{Z}_p , we have $\mathbb{Z}_p \subseteq C$. Moreover, the inversion $\iota : \mathbb{Z}_p^{\times} \to \mathbb{Q}_p : x \to x^{-1}$ is continuous and, obviously, sends nonzero elements of R(A) to R(A) and hence $\iota(\mathbb{Z}_p) \subseteq C$. Finally, $\mathbb{Q}_p = \mathbb{Z}_p \cup \iota(\mathbb{Z}_p)$ and thus $C = \mathbb{Q}_p$ and R(A) is dense in \mathbb{Q}_p . \Box

The proof of Theorem 1.2 is complete.

Acknowledgement

The author thanks the anonymous referee for his careful reading of the paper.

References

- B. Brown, M. Dairyko, S. R. Garcia, B. Lutz and M. Someck, 'Four quotient set gems', *Amer. Math. Monthly* **121**(7) (2014), 590–599.
- [2] A. Brumer, 'On the units of algebraic number fields', Mathematika 14 (1967), 121–124.
- J. Bukor, T. Šalát and J. T. Tóth, 'Remarks on *R*-density of sets of numbers', *Tatra Mt. Math. Publ.* 11 (1997), 159–165.
- [4] G. P. B. Dresden and Z. Du, 'A simplified Binet formula for k-generalized Fibonacci numbers', J. Integer Seq. 17(4) (2014), Article 14.4.7, 9 pages.
- [5] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, *Recurrence Sequences*, Mathematical Surveys and Monographs, 104 (American Mathematical Society, Providence, RI, 2003).
- [6] C. Fuchs, C. Hutle, F. Luca and L. Szalay, 'Diophantine triples and k-generalized Fibonacci sequences', *Bull. Malays. Math. Sci. Soc.*, to appear, doi:10.1007/s40840-016-0405-4.
- [7] S. R. Garcia, Y. X. Hong, F. Luca, E. Pinsker, E. Schechter and A. Starr, 'p-adic quotient sets' (under review), arXiv:1607.07951.
- [8] S. R. Garcia and F. Luca, 'Quotients of Fibonacci numbers', Amer. Math. Monthly, to appear.
- [9] F. Q. Gouvêa, p-adic Numbers: An Introduction, 2nd edn, Universitext (Springer, Berlin, 1997).
- [10] D. Hobby and D. M. Silberger, 'Quotients of primes', Amer. Math. Monthly 100(1) (1993), 50–52.
- [11] T. Lengyel, 'The order of the Fibonacci and Lucas numbers', *Fibonacci Quart.* 33(3) (1995), 234–239.
- M. Mignotte, 'Sur les conjugués des nombres de Pisot', C. R. Acad. Sci. Paris Sér. I Math. 298(2) (1984), 21.

28

[5]

The quotient set of k-generalised Fibonacci numbers

- [13] P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (Springer, New York, 2000).
- [14] C. Sanna, 'The *p*-adic valuation of Lucas sequences', *Fibonacci Quart.* **54**(2) (2016), 118–124.
- [15] O. Strauch and J. T. Tóth, 'Asymptotic density of $A \subset \mathbf{N}$ and density of the ratio set R(A)', *Acta Arith.* **87**(1) (1998), 67–78.
- [16] D. A. Wolfram, 'Solving generalized Fibonacci recurrences', Fibonacci Quart. 36(2) (1998), 129–145.
- [17] M. Yabuta, 'A simple proof of Carmichael's theorem on primitive divisors', *Fibonacci Quart.* 39(5) (2001), 439–443.

CARLO SANNA, Department of Mathematics, Università degli Studi di Torino, Turin, Italy e-mail: carlo.sanna.dev@gmail.com

[6]