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Abstract

Surrogate models of turbulent diffusive flames could play a strategic role in the design of liquid rocket engine
combustion chambers. The present article introduces a method to obtain data-driven surrogate models for coaxial
injectors, by leveraging an inductive transfer learning strategy over a U-Net with available multifidelity Large Eddy
Simulations (LES) data. The resulting models preserve reasonable accuracy while reducing the offline computational
cost of data-generation. First, a database of about 100 low-fidelity LES simulations of shear-coaxial injectors,
operating with gaseous oxygen and gaseous methane as propellants, has been created. The design of experiments
explores three variables: the chamber radius, the recess-length of the oxidizer post, and the mixture ratio. Subse-
quently, U-Nets were trained upon this dataset to provide reasonable approximations of the temporal-averaged two-
dimensional flow field. Despite the fact that neural networks are efficient non-linear data emulators, in purely data-
driven approaches their quality is directly impacted by the precision of the data they are trained upon. Thus, a high-
fidelity (HF) dataset has been created, made of about 10 simulations, to a much greater cost per sample. The
amalgamation of low and HF data during the the transfer-learning process enables the improvement of the surrogate
model’s fidelity without excessive additional cost.

Impact statement

The present study showcases the novel use of inductive transfer learning for the generation of multifidelity
surrogate models (MFSMs) of rocket engine coaxial injectors, combining large eddy simulations of different
fidelities, while resulting in a net reduction of the offline cost of data generation. TheMFSMs obtained are able to
recover qualitatively the correct topology of the injectors’ diffusion flamewhile preserving acceptable prediction
accuracies over the dedicated test datasets.

1. Introduction

The space-sector has seen a wave of renewed interest primarily driven by private endeavors under the
promise of revenue. However, a significant logistical challenge exists, mainly driven by the excessive
cost-of-access to space, that is, launchers. The adequate design-optimization of these is one of themultiple
avenues proposed to render space flight more affordable. Launch-vehicles can be interpreted as complex
systems, composed of a multitude of subsystems, which combined yield the preliminary-design of these
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multidisciplinary problems. Note that in many cases, the links among the different subjects obey a strong
non-linear coupling. In this context, the accuracy of the models of the subsystems becomes relevant, as
well as their restitution times. In the case of the chemical rocket engine, the multiscale unsteady nature of
combustion and turbulence at high strain rates makes this subsystem particularly complex to model with
satisfactory accuracy.

The accuracy–cost balance is known to industrial as well as research actors. This has motivated the
development of a community of applied science whose aim is to develop methodologies to obtain
so-called surrogate models or metamodels. Such are elaborated on the basis of data coming from
simulations or experiments and aspire to provide relatively fast approximations of target functions and
constraints at a new design-point (Bouhlel et al., 2019; Chen et al., 2021; Hwang andMartins, 2018). The
cost is typically orders of magnitude below the cost of a single high-fidelity (HF) numerical model survey.

In this study, the meta-objective has been to develop suitable data-driven surrogate models for a rocket
engine shear-coaxial injector fromdata sourced fromLES simulations. Thesemodels aremeant to provide
approximations of temporal-averaged two-dimensional (2D)-flow fields, namely: the temperature,
oxygen mass-fraction, mixture-fraction, axial velocity, and axial velocity root mean squared value
(RMS) fields. We concentrate on the analysis of a multifidelity model (MFM) strategy, achieved by
inductive transfer learning, to reduce the offline data generation cost. In essence, this is achieved by
staging the learning of the system under scrutiny over two datasets of different “quality,” and conse-
quently, cost. A brief introduction of the use of Deep Learning (DL) for surrogate modeling is given in
Section 1.1. In what follows, themultifidelity strategy adopted is explained and an introduction to transfer
learning is provided in Section 1.2.

1.1. DL for surrogate modeling

Historically, the multiple ways to build surrogate models have been split into three major groups (Eldred
and Dunlavy, 2012; Hwang and Martins, 2018; Yu and Hesthaven, 2019): MFMs, reduced order models
(ROMs) and data-fit models1. More recently, deep neural networks (DNNs) have gained popularity as a
modeling technology applicable across all of these three categories because of their intrinsic ability to
extract high-level representations from data. Moreover, it is for these reasons they have caught the
attention of the fluidmechanics community for their potential in regression tasks in the face of limited data
(Brunton et al., 2020; Mendez et al., 2023).

In the realm of DL, surrogate models may be present as physics-informed, purely data-driven, or a
combination of both. The first and third categories involve those models in which inductive biases have
been put in place to channel the learning within a constrained manifold, which typically alleviates data
requirements (Vinuesa and Brunton, 2021). However, these models are not addressed in the reminder of
this work, although the reader may find a comprehensive review of these methods in (Cai et al., 2021;
Karniadakis et al., 2021). The second category ofmodels is the reference avenue taken in the present work
because of its inherent non-intrusiveness and the recent developments within the fluid mechanics field.
Examples in the literature of recent years of DL-based surrogate models are abundant and constantly
evolving at a fast pace. Some examples are to be found in: (Bermejo-Barbanoj et al., 2024; Farimani et al.,
2017; Guo et al., 2016; Hasegawa et al., 2020; Thuerey et al., 2020;White et al., 2019; Zhang et al., 2018).
Moreover, recent innovations in the realm of DL have seen successful applications in the surrogate
modeling of fluid flows. Such is the case of neural operators such as Fourier Neural Operators (FNOs)
(Z. Li et al., 2021), DeepONet (Goswami et al., 2022; Goswami et al., 2023; Lu et al., 2021), Latent
Dynamic Networks (LDNets) (Regazzoni et al., 2024), Transformers (Hemmasian and Barati Farimani,
2023; Solera-Rico et al., 2024; Y. Wang et al., 2024; Zhao et al., 2024), and Mamba (Hu et al., 2024)
(although only developed very recently for modeling of dynamical systems).

The field of turbulent combustion, for industrial applications has not been exempt from the advent of
ML techniques (Le Clainche et al., 2023; Parente, 2024; Swaminathan and Parente, 2023). In this context,

1 The exhaustive introduction of this taxonomy remains out of the scope of this text. However, shall the reader be interested, a
more complete introduction is presented by Zapata Usandivaras et al [Zdybal et al., 2022]
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ML methods have been used for a palette of problems (Parente, 2024). For instance, data analysis and
feature extraction (Malik et al., 2021; Zdybał et al., 2022), where DL-based ROM methods are used
primarily to reconstruct and explore a low-dimensional combustion manifold; adaptive simulation
frameworks and subgrid models, where ML methods are used to resolve adequately the turbulent
combustion model (Chung et al., 2021), replace combustion-tabulated approaches (Bhalla et al.,
2019), or even model subgrid turbulent–chemistry interaction (Lapeyre et al., 2019; Xing et al., 2021).
Furthermore, the direct use of ROMs of complex combustion systems has been leveraged for prediction
for digital twins applications (Aversano et al., 2021; Aversano et al., 2021).

More concretely in the context of rocket engine coaxial injectors, Krügener et al. (Krügener et al.,
2022) used a combination of Fully Connected Neural Networks (FCNN) and a variation of the
aforementioned U-Net from Thuerey et al. (Thuerey et al., 2020) as surrogate models to predict sets of
key-performance-indicators (KPIs), wall heat-flux and the temperature 2D-field on a single-element
shear-coaxial injector rocket combustor. Themodelswere trained onRANSdata generated offline. Zapata
Usandivaras et al. (Zdybal et al., 2022) followed through by developing similar data-driven models from
an LES dataset of shear-coaxial injectors. Bear in mind that in the absence of any physics-informed
inductive biases, the neural networks are bound to learn the structural relations of the data they are trained
upon. Consequently, the surrogate models obtained from low-fidelity (LF) data will reproduce the
inherent errors of low-resolution samples.

In this work, we intend to address this conundrum by adopting amultifidelity (MF) strategy, realized by
adopting an inductive transfer learning technique. The idea of multifidelity surrogate models (MFSMs) is
not new and abundant examples of these methods are found in the literature. The core concept behind
thesemodels is to leverage the data from LF samples, of easier access, and a limited pool of HF samples to
estimate the HF function/task. Fernández-Godino et al. (Fernandez-Godino, 2023) conducted a compre-
hensive review on the state-of-the-art ofMFMs. Some relevant works involving artificial neural networks
(ANNs) include that of Liu and Wang (Liu and Wang, 2019), who proposed the use of a physics-
constrained neural network (PCNN) trained on LF data, and later corrected by a second neural network.
This framework was demonstrated in a 2D heat transfer and phase transition problem. Minisci and Vasile
(Minisci and Vasile, 2013) made use of ANNs to correct aerodynamic forces obtained from an LFMusing
HFmodel CFD data. Their model is used within the framework of an optimization problem for the design
of a reentry space vehicle.

To materialize the MFSMs in this work, two additional LES datasets are created. Contrary to the
LF-LES mentioned in the previous paragraphs, these simulations constitute HF-LES of shear-coaxial
injectors, operating on a gaseous oxygen (GOx) and gaseous methane (GCH4) propellant couple. The
number of HF samples is limited because of their high computational cost. The design space corresponds
to the same one specified for the under-resolved LES (LF) dataset from Zapata Usandivaras et al (Zdybal
et al., 2022). Finally, the application of transfer learning techniques, whilemaking use of both the high and
LF datasets, enables the elaboration ofMF data-driven emulators with satisfactory performance on the HF
test dataset.

1.2. Transfer learning

The notion of transfer learning spawned from the natural ability of humans to learn a new, unknown task
leaning on the basis of knowledge acquired from learning a similar or related task (Ribani andMarengoni,
2019). The idea has been around since the 1990s, although it gained significant momentum in the 2010s
with the appearance of publicly available datasets of labeled images such as ImageNet (Deng et al., 2009).
Even pre-trained CNNs such as ResNet (He et al., 2016) are public and widely used because of their
feature extraction capabilities, which makes them useful in image recognition and classification tasks.
These have found multiple uses in the diagnosis of medical/biological images (Cheng, 2017; X. Li et al.,
2017).

The transfer learning definition presented in (Pan and Yang, 2010) introduces two main concepts:
domain and task. On the one hand, a domain D is related to the distribution of the training dataset. This
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training data represented byD resides in a feature spaceX ; however, it does sowith amarginal probability
distribution P Xð Þ, where X¼ x1,…,xn½ � is a particular learning sample expressed in features terms, such
that xi is the value of the ith feature. To consider two domains, DA andDB, as different (DA ≠DB), either
they both do not belong to the same feature space X , or they have distinct probability distributions
P XjDAð Þ ≠P XjDBð Þ.

On the other hand, a task T ¼ D, f �ð Þf g is defined by a set of all possible labels Y and a predictor f �ð Þ
which estimates the label over a given domain D. Note that a task can be learned, within a supervised
learning case, from a collection of x,yf g of pairs regarded as training data. Now, considering a source
domain and taskDS, T S and a target domain and taskDT , T T , transfer learning is defined as a process that
will help improve f T �ð Þ, given the knowledge obtained from DS and T S, with DS ≠DT , or T S ≠ T T . An
example of transfer-learningwould be to improve the diagnosis of medical images (T T ), where there are
limited samples, by reusing features learned by a network pre-trained for another image classification task
(T S). Note that even though the features are reused, the respective domains of the tasks are different
(DS ¼DT ), that is, P XjDSð Þ¼P XjDTð Þ.

The approaches for transfer learning on DL have been identified by Tan et al. (Tan et al., 2018) as four:
instance-based transfer, mapping-based transfer learning, network-based transfer (a.k.a. feature repre-
sentation transfer), and finally adversarial based transfer. In this study, we have decided to follow an
inductive transfer learning strategy implemented via a network-based transfer. The idea is to reuse a pre-
trained U-Net variation (Krügener et al., 2022; Zdybal et al., 2022) on LF-LES data (DS,T S) to obtain a
data-driven emulator fine-tuned on the HF-LES samples (DT ,T T ). The main hypothesis is, that the
relationships between inputs and outputs in the HF and LF datasets do not differ significantly, thus,
enabling the reuse of layers of the pretrained U-Net. In particular, the reused layers are those in which
progressive featuremaps are extracted from the inputs (the encoder block of theU-Net) andwill be frozen.
Finally, in those layers where the feature maps are used to construct the output (decoding block), such as
an average temperature field (T xð Þ), layers are fine-tuned, to embed the HF additional information linked
to these features.

In the following, Sections 2.2 through 2.4 detail the LES datasets of shear-coaxial injectors at hand, and
Section 2.5 explains in detail themethodology used for implementing the transfer learning. Finally, results
are presented in Section 3 followed by concluding remarks in Section 5.

2. Methodology

The elaboration of the data-driven surrogate models detailed in this work begins with the data. Two sets of
samples, one composed of 92 under-resolved large eddy simulations (LES), and the second of 19 highly
refined LES simulations, were obtained via theAVBP solver (Schonfeld andRudgyard, 1999). In both, the
simulated case corresponds to a single-element shear-coaxial injector, burning, gaseous oxygen, GOx,
and gaseous methane GCH4, in a non-premixed configuration. The simulated design-points, each related
to a different injector configuration, form a discrete set of samples from a three-dimensional (3D) design-
space. The three design parameters selected for the design of experiments (DOE) are: the recess length of
the oxidizer post (lr), the chamber radius (dc), which represent geometrical quantities of the injector; and
the mixture-ratio (O=F), which is linked to its combustion-regime.

2.1. Shear-coaxial Injector LES setup

The injector used as template for the configuration of the different design-points was inspired on an
experimentally tested single-element combustion chamber from the Technische Universität Munchen
(TUM). The reader may findmore details about this injector in (Celano et al., 2014; Chemnitz et al., 2018;
Maestro et al., 2019; Perakis et al., 2017). The combustion-chamber geometry was modified to a circular
cross-section chamber, to simplify the modeling. Only a third of the chamber is modeled because of
computational constraints, yielding a chamber length of lc ¼ 96:67 mm. Considering the domain is
axisymmetric along the injectors’ axis, only a 30° slice is simulated. The resulting patches are conditioned
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to a periodic boundary condition, while the axis is cut at a gap-height of gα ¼ 0:25 mm to prevent a
numerical singularity at this point. A slip surface is imposed over the resulting boundary. The remaining
geometrical dimensions are based on the TUM injector: lip thickness dt ¼ 0:5 mm, oxidizer post radius
dox ¼ 2:0mm, and methane annulus thickness df ¼ 0:5mm. Figure 1 depicts a drawing of a longitudinal
cut of the adopted geometry.

Homogeneous mass flows of gaseous oxygen ( _mox) and methane ( _mf ) are imposed at the inlets. The
injection temperatures are 278 and 269 K, respectively. The total mass flow _mtot ¼ _moxþ _mf is kept
constant to a value of 0.062 kg s�1 following the reference TUM experiment detailed in (Maestro et al.,
2019). The outlet pressure is set to a constant magnitude of Pout ¼ 20 bar. All inlets and outlets have
Navier–Stokes characteristic boundary conditions (NSCBC) (Poinsot and Lelef, 1992) to handle the
exiting acoustic waves from the modeled domain. In this first approach, no turbulence injection was
considered.

The walls of the domain are modeled differently depending on the dataset. With regard to the under-
resolved, LF-LES dataset, all walls are considered slip adiabatic except the chamber wall, denoted as
“WALLTOP” in Figure 1. As for theHF-LES dataset, a no-slip wall law boundary condition was applied.
Further details on these datasets’ particularities are given in Sections 2.2 and 2.4. The “WALLTOP” is
modeled as a conducting 1-mm thick copper surface, with conductivity κCu ¼ 401:0 W

m2K. A homogeneous
and constant external temperature Ts ¼ 350 K was applied on the dry-surface side. A thermally coupled
wall-law, as implemented in AVBP, was chosen as the wall model. In this model velocity and temperature
are coupled, which enables it to take into account significant density and temperature variations, as well as
molecular Prandtl number effects. For the velocity profile, it is based on the Van Driest transformation
(Van Driest, 1951), of the form:

uþVD ¼ 1
κ
ln yþð Þþ5:5 (1)

where the uþVD corresponds to the Van Driest scaled velocity. Note that uþVD ≠ uþ, as long as density
variations occur inside the turbulent boundary layer.Meanwhile, κ¼ 0:41. The temperature profile in this
“coupled” model, is thus recovered from the expression,

Tþ ¼ Pryþð Þ exp Γð Þþ Prt u
þþKð Þ exp 1

Γ

� �
(2)

where K is a constant that depends on the molecular Prandtl number (Pr) and Γ is a function that smooths
the Tþ profile between the laminar and the turbulent part, namely

Γ¼�0:01
Pryþð Þ4

1þ5Pr3yþ
: (3)

The coupling between velocity and temperature is hence explicit from Eqn. (3). With respect to
thermodynamic properties, these are taken from the node on the wall, at temperature Twall. Finally, the
wall heat flux _Qwall is expressed as,

Figure 1.Drawing of the geometry of the shear-coaxial injector used, with key dimensions identified. The
fuel and oxidizer inlet channels and the outlet are signalized too.
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_Qwall ¼
Text�Twall

Rwall
(4)

where Text is the dry-surface temperature and Rwall the corresponding thermal resistance from the 1 mm
copper wall.

The oxy-methane combusting mixture is modeled as a perfect gas with a global chemistry scheme
(GLOMEC), developed by Blanchard and Strauss (Blanchard, 2021). The scheme is composed of six
species: O2, CH4, CO, H2O, CO2 and H2; and four chemical reactions and has been developed to target an
operating pressure of� 20bar and similar equivalence ratios as those explored in our database. Note that
no subgrid-scale TCI model has been used in this work to compensate for unresolved wrinkling and
numerical diffusion. The known stiff chemistry linked to oxy-methane combustion was dealt with a
similar exponential chemistry integration to that of Blanchard et al. (Blanchard et al., 2022). In all cases, a
fully tetrahedral mesh was used, albeit of different characteristic sizes depending on the dataset. As for the
convective terms, a Lax–Wendroff numerical scheme (Lax andWendroff, 1960)was used in all cases. The
σmodel, developed byNicoud et al. (Nicoud et al., 2011) is used tomodel the subgrid-scale stresses.More
information is given concerning the datasets in Sections 2.2 and 2.4.

2.2. Coarse LES database

The first LES database consists of 92 LES simulations of shear-coaxial injectors. The mesh resolution is
evaluated by the element thickness at the injector lip. On this under-resolved mesh, the reference length is
Δ0 � 100μmat the injector lip. This yields five tetrahedral cells at the flame-anchoring position, where the
highest mesh-resolution is required. For reference, simulations of a similar experimental test-case carried
out by Maestro et al. (Maestro et al., 2019) used a value of Δ0 ¼ 25μm. Chung et al. (Chung et al., 2021)
reported 30μm close to the walls, while Blanchard et al. (Blanchard et al., 2022) reported Δ0 ¼ 40μm,
albeit for a different rocket-engine experimental combustor. The mesh under-resolution was intentional
because of the limited computational resources available. To economize further in computational costs,
slip adiabatic walls were adopted, except “WALLTOP” where a no-slip condition with a coupled2 wall
law was applied (see Section 2.1). Each LES sample is propagated for Δt¼ 5ms of time, including the
ignition transient. This results on an average cost per sample of � 5000 CPU hours.

The numerical simulations which make up the LF database are labeled as points within a design-space
S ∈ℝ3. The dimensions ofS are given by: the recess length (lr), themixture-ratio (O=F), and the chamber
radius (dc). The limits of S are detailed in Table 1. A detailed explanation of how these are derived is
provided in (Zdybal et al., 2022). Finally, two different Latin Hypercube Samplings (LHS) (McKay et al.,
1979) using the enhanced stochastic evolutionary algorithm (ESE) (Jin et al., 2005) were conducted. The
first one (DS1), was designed to contain 100 samples, and the second (DS2) to contain 20 samples.
However, not all LES conducted over the sampled points reach the 5 ms milestone. This is because of
crashes of diverse nature which are beyond the interest of this work. The locations of the successful points
S, for example, those which reached the Δt¼ 5ms milestone, are highlighted in Figure 2a–2c. The
convective time for these successful simulations is estimated via the formula,

Table 1. Parameter range and reference values for the three parameters of the design of experiments

Parameter Symbol Range Reference

Recess-length lr 0–15 mm 0 mm
Chamber radius dc 6.7–13.41 mm 6.77 mm
Mixture-fraction O=F 2.6–2.94 2.62

2 In fact, the wall is modeled as a thin conductive wall with a constant temperature profile applied on the external surface.
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τconv ¼ lc
uc
,uc ¼ 1

Ωc

Z
Ωc

udΩ (5)

where u corresponds to the axial velocity component and Ωc the chamber volume, for example, for all x
beyond the injection plane, while lc constitutes the chamber length. From the LES time-averages of DS1
and DS2, an average convective time across the coarse datasets (τDS1[DS2conv ) is computed, obtaining
τDS1[DS2conv ¼ 0:8 ± 0:4ms. We hence consider the bulk of the LES converged for DS1 and DS2.

The top axis of each of the plots in Figures 2a–2c shows the histogram of the sampled points over the
abscissa. Because of the uneven distribution of the aforementioned crashes, the LHS property of the sets is
not verified in their final distribution. A sharp decrease in the density of samples is observed in Figure 2c
for dc ≥ 11mm, which can impact the performance of the surrogates overall in this region. After filtering

Figure 2. Joint plots of the points from the DOEs projected in 2D subspaces and consumption statistics
graph. Colored histograms of the abscissa are displayed on top. a) lr versusO=F, b)O=F versus dc, c) dc

versus lr, d) CPU hours consumed versus the number of tetrahedral cells in meshes used.
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the crashed simulations from DS1 and DS2, their respective run counts are 76 and 16, leading to a total of
∣DS1∣þ ∣DS2∣¼ 92 coarse LES samples. Finally, the cost of each sample from DS1 and DS2 is portrayed
in Figure 2d. Note that at similar grid resolutions, the cost scales almost linearly with the number of cells,
and thus, dc.

Two statistics on mesh quality have been estimated for the datasets involved. These are the tetrahedra
cell aspect ratio (QAR) and the minimum dihedral angle of the cell (θmin). The reader may found more
information on how these are computed in (Stimpson et al., 2007).We proceed to compute these for every
concerned grid via the pyvistamesh quality tool3 In Figures 3a and 3a,we show the distribution ofQAR and
θmin, respectively, for the all the datasets concerned, that is, DS1,…,DS4ð Þ. As it can be seen in Figure 3a,
a large proportion of the cells fall in theQAR ∈ 1:0,3:0½ � interval, which is considered to be the acceptable
range for tetrahedral meshes. Meanwhile, in Figure 3b, the θmin quantity histogram is presented. Note that
the ideal dihedral angle for equilateral tetrahedra cells (θideal ≈ 70:53o), is superimposed to aid in the
interpretation of the histogram. As we can see, the spread is quite large, with θmin reaching as little as 20o

for some cells. However, the large majority of the tetrahedra cells in the meshes concerned are contained
within the acceptable range interval (Stimpson et al., 2007) of θmin ∈ 40o,θideal½ �, fromwhich we conclude
that the grid quality used in the elaboration of our datasets is acceptable.

From these datasets DS1 and DS2, a collection of U-Nets were trained as emulators of the longitudinal

cut of mean quantities: the temperature field (Tð x!Þ, x!∈ℝ2), velocity4 u (uð x!Þ), mixture-fraction (Zð x!Þ),
oxygen mass fraction (YO2ð x!Þ) and velocity-u RMS Value (uRMSð x!Þ). The definition of Bilger(Bilger,
1989) is used for the mixture fraction, which for a O2/CH4 mixture yields a stoichiometric value of
Zst ¼ 0:2. More details on the derivation of these models are given in Section 2.6.

2.3. LF-LES data analysis

The fidelity of supervised learning regression models developed on numerically sourced data and in the
absence of physics-informed inductive biases, is directly related to the fidelity of the data they are based
on. For such reason, it is of paramount importance to audit the LES samples, or at least the associated data-
pipeline, as spurious structures may be present in the data, which are later distilled into the sought
surrogates.

In the database introduced in Section 2.2, several modeling simplifications were conducted to reduce
the computational cost per sample, notably: themesh-resolution, the chemical-scheme, the geometry5, the
numerical schemes, and the wall boundary condition, among others. With such simplifications, it is thus

Figure 3. Mesh quality measures statistics: a) Ensemble of datasets tetrahedral cells aspect ratio
histograms, and b) tetrahedra minimum dihedral angle.

3 The pyvista tool is a Python API of the well-known vTK toolkit [Schroeder et al., 2006], which resorts to the Verdict library
[Stimpson et al., 2007] for computing diverse mesh quality parameters.

4 Velocity-u corresponds to the axial-component of the velocity vector field in an Eulerian description of the flow-field.
5 A 30° sector was defined as geometry instead of a complete revolution.
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expected to obtain an LES of reduced quality. For instance, in Figure 4 instantaneous snapshots of the
temperature field, at two different refinements, are presented for the TUM reference case. The differences
between the fine mesh flame (Top), and the coarse one (Bottom), are evident. The coarse flame is much
more diffused and expands faster. In the following, we determine the relative impact of the mesh
resolution for the TUM reference case (Chemnitz et al., 2018).

To begin with, the wall heat flux was evaluated on different refinement levels for the baseline
configuration, that is, that of the aforementioned TUM experimental rocket combustor. The azimuth-
averaged wall heat-flux ( _Qwall) for different meshes is presented in Figure 5a, where Ncells denotes the
number of tetrahedral cells in the mesh. The negative values of _Qwall indicate heat is exiting the control-
volume. In addition, experimental measurements reported by Chemnitz et al. (Chemnitz et al., 2018) have
been superimposed in Figure 5a.We can clearly observe a large overestimation of _Qwall, by almost 400%,
in the coarser mesh with respect to experimental values. This mesh resolution is the one utilized in the
datasets DS1 and DS2 introduced in Section 2.2. However, increasing the mesh-resolution significantly
reduces _Qwall along the entire chamber. Moreover, it also modifies the shape of the valley located at

Figure 4.The instantaneous longitudinal cut of the temperature field at different levels of mesh resolution.
On top, a fine mesh is utilized (Δ0 � 50μm), while a coarse one (Δ0 � 100μm), is used for the bottom

image.

Figure 5. Relevant quantities of interest (QoIs) evolution along the injector axial dimension in a 30°
sector with parameters corresponding to the TUM reference case (Chemnitz et al. (Chemnitz et al., 2018).
For reference lr ¼ 0 mm, O=F¼ 2:62 and dc ¼ 6:77 mm, while lc¼ 96:67 mm designates the chambers’
length. a) Azimuthally and time-averaged wall-heat flux _Qwall for three different mesh sizes, a fine case

with an adjusted viscosity (μ) power-law and experimental measurements from Chemnitz et al. b)
Cross-section and time-averaged temperature solution (T xð Þ, full line) and cumulative heat release

(QHR xð Þ, dashed lines) for three different mesh size.
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� 10 mm of the origin (injection plane). This valley is normally linked to the location of the stagnation
point following the recirculation zone of the injection.

The red curve in Figure 5a corresponds to the same mesh resolution of the green curve (Δ0 � 50μm),
although the numerical simulation was carried out with a correction in the molecular viscosity power law
used by Maestro et al (Maestro et al., 2019) on the LES of the same experiment. They argue that the better
compromise forwall heat-flux evaluations is to fit themolecular viscosity,mass, and thermal diffusion terms
to that of amixture ofmixture-fractionZ¼ 0:7. This comes from the fact that themixture close to thewalls is
predominantly fuel-rich, given that the methane is injected through the annulus. Note that the perfect gas
implementation of AVBP used in this work is not equipped with a calculator for laminar coefficients over
mixture composition. Instead, a homogeneous laminar reference viscosity is considered in combination of a
power-law to account for temperature dependency. The net impact of the correction, seen on the red line, is a
further reduction in the wall heat-flux, with values matching those from the experiment for x≤ lc=3. For
x> lc=3, predicted _Qwall xð Þ increases at a greater speed than that of experimental values. This heat flux rise is
potentially caused by the misrepresentation of turbulent mixing in a thin axisymmetric volume, as
previously reported in a similar configuration by Chung et al. (Chung et al., 2021) and other axisymmetric
studies (Lapenna et al., 2018; Zips et al., 2017). Note that also a numerically thickened flame is expected
because of the enhanced thermal diffusion, resulting in a thicker time-averaged temperature field.

Figure 5b emphasizes the effects of the mesh resolution. In Figure 5b, the cross-section average
temperature evolution along the axis T xð Þ and the cumulative heat-release QHR xð Þ¼ R x

�∞

R
S

xð ÞHR η,y,zð ÞdSdη, are shown. We can see that the T xð Þ difference grows along the axis of the chamber
between the coarse mesh and the finer meshes. This trend is similarly followed by QHR xð Þ, indicating a
much larger reaction rate in the coarser domain. The larger reaction rate is motivated by the numerical
diffusion upstream, leading to greater dilatation and enhanced mixing downstream in the chamber.
Moreover, we can observe that the effect of modifying the molecular transport properties as already
mentioned by Maestro et al. (Maestro et al., 2019) (red line), has negligible effects in both the T xð Þ and
QHR xð Þ. The green (Δ0 � 50μm) and red (Δ0 � 50μm,μref ¼ μ Z¼ 0:7ð Þ) curves are superimposed. This
is because of the fact that, contrary to near-wall transport phenomena, the bulk of the flow is predom-
inantly driven by the turbulent mixing and less affected by the laminar diffusion processes.

The effects of the mesh resolution over the time-averaged fields are better seen in Figures 6a through
6b. In these, the fine mesh solutions (Δ0 � 50μm) are displayed on top, and the coarse ones (Δ0 � 100μm)
below. Also in Figure 6a time-averaged oxygen mass fraction field isolines YO2 ¼ 0:1,0:8 and the
stoichiometric line denoted by Zst have been superimposed. From the former, we can clearly observe
the longer penetration of the oxygen jet for the fine mesh as the YO2 ¼ 0:8 isoline reaches further
downstream. Furthermore, the difference in uRMS appears predominantly at the near-field, with a spurious
highly fluctuating structure developing at � 7:5mm for the coarse mesh and overall greater intensity for
X ≤ lc=3. Note that the location of this spurious structure coincides with that of the valley of _Qwall and the
crest in T xð Þ in Figures 5a and 5b and disappears when refining.

The results hereby shownmotivated the creation of twomore datasets ofHF samples, DS3 andDS4. To
serve for fine-tuning during the transfer-learning task, from models trained and tested on coarse LES
simulations. The details of this additional dataset are given in Section 2.4.

2.4. HF-LES dataset

The shortcomings evidenced on the coarse LES simulations scrutiny motivated the creation of an HF
dataset with greatermesh resolution. A uniform scaling factor of 0.5 is applied on both surface and volume
cells, which leads to Δ0 � 50μm, albeit to a much greater computational cost. As we do not focus on wall
transport phenomena in this work, we have not modified the molecular diffusion coefficients, nor the
laminar reference viscosity of the mixture with respect to the coarse base configuration. Moreover, this
would require knowing a priori the composition close to the walls throughout the database, which is not
attainable. Two LHS of 20 samples each are conducted to generate DS3 and DS4 over the same design-
space described in Table 1. As detailed in Section 2.7, the DS3 samples are meant for training and
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validation,meanwhile, theDS4 ones are reserved as a test dataset. In a similar fashion toDS1 andDS2, the
sampled points have been included in Figure 2a through 2c, as well as their computational cost included in
Figure 2d.

To save computing resources, the injectors are ignited for 2 ms of simulated time in a coarse mesh and
later interpolated to the finer one and continued until 6 ms of total simulated time is achieved. Note that, in
spite of this measure, the cost per sample may well reach 40,000 CPUhs, compared with <10,000 in DS1
and DS2. Of the original samples, only 12 reached the Δt¼ 6ms milestone for DS3, whereas 7 for DS4.
Following the convective time introduced in Eqn. (5), and average convective time for the HF-LES
datasets, DS3 and DS4 is obtained, yielding τDS3[DS4conv ¼ 0:95 ± 0:4ms. Thus, we regard the LES fromDS3
and DS4 as converged in terms of their time-averaged fields. In Table 2, a synthesis of the dataset count

Figure 6. Side-by-side comparison of two different levels of mesh-resolution for a) averaged temperature
field solution longitudinal cut with oxygen mass fraction isolines YO2 ¼ 0:1, 0:8 and stoichiometric line,
Zst superimposed. c) Velocity-u root mean squared (RMS) field longitudinal cut. The fine mesh solution,
Δ0 � 50μm is shown on top (N tet ¼ 1:02× 107), and below are displayed the solutions for the coarse case,
Δ0 � 100μm (N tet ¼ 9:9× 105) which corresponds to the resolution adopted in datasets DS1 andDS2. The

scale of the figures has been modified to simplify its visualization.

Table 2. Summary of LES datasets of shear coaxial injectors simulations. The sampled design-space in
all cases is detailed in Table 1

Dataset Count Resolution -Δ0 Avg. CPU hours

DS1 76 Low � 100μm 3699.47
DS2 16 Low � 100μm 3290.66
DS3 12 High � 50μm 23703.0
DS4 7 High � 50μm 22575.8
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and basic metrics is provided. The design-space from which the points have been sampled is detailed in
Table 1.

2.5. Transfer learning methodology

The transfer-learning strategy adopted in this work is that of inductive transfer learning with a network-
based transfer approach, also known as feature representation transfer. As described in Section 1.2, this
approach reuses part of a neural-network f S �ð Þ trained on a source domain DS to learn a new target task
T ¼DT , f T �ð Þ.

The problem at hand thus can be framed as, learning a data-drivenmodel (f T �ð Þ) fromHF-LES samples
(T ,yT ) by reusing the pre-trained model (f S �ð Þ) on coarse LF-LES samples (DS). The practical aspects of
such approach are better explained when visualizing the U-Net architecture. Figure 7 displays a schema of
the U-Net architecture being used. The input layer expects a tensor of four (4) channels, three are flat-
tensors embedding the normalized input quantitiesO=F, lr and dc, while the fourth is a one-hot encoding
tensor, ormask, delimiting the fluid region. The output layer returns a single channel with the normalized
predicted field, over a 128× 256 grid resolution.

The U-Net may be partitioned into twomajor zones: an encoding zone and a decoding one. The former
is composed of successive blocks of 2D convolutional, batch-normalization, and dropout6 layers. The
latter is composed of blocks of transposed 2D convolutional, upsampling, batch normalization, and
dropout layers. Leaky ReLU activation functions are used all across the different layers. Skip-connections
between encoding and decoding blocks are signaled by arrows in Figure 7.

As with any CNN, the encoding blocks decompose the input channels into feature-maps which are
higher-level representations of the information contained in the input. Through the skip-connections,
these are forwarded to the decoding blocks, which progressively recover the desired output. For the
transfer-learning task at hand, we can exploit the fact that both the low andHF samples have been obtained
from the same design-space. Hence, it is reasonable to think that the feature-maps recovered from the
LF-LESmodel (f S �ð Þ) encoding layers are shared by a potential HFmodel (f T �ð Þ). The principal difference
relies on how decoding layers process the feature-maps to recover the intended field.

Figure 7.U-Net architecture is being used. The input layer expects a tensor of four channels, each with of
128× 256. These channels correspond to the three normalized parameters O/F, lr and dc, and a one-hot
encoding tensor, the mask, which delimits the fluid region. The output layer returns a single channel

corresponding to the normalized predicted quantity with the same resolution. The arrows connecting the
encoding layers to the decoding ones are skip-connections.

6 The dropout layers are only required during training as a counter-overfitting measure [Chollet, 2017. They do not apply during
inference. In case dropout value is set to 0 then these are not considered during training.
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With this inmind, we split the collection of theU-Nets 486.337 trainable parameters in two sets: θF and
θft, such that the training over the HF model f T �ð Þ is defined by:

f T �ð Þ¼ pθF[θ∗ft �ð Þ∣θ
∗
ft ¼ argminθftL pθF[θft �ð Þ,XT ,YT

� �
(6)

where pθ �ð Þ is the U-Net, θF represent the reused source network parameters, θft the parameters to fine-tune
the HF dataset XT ,YT½ � via the loss functionL �ð Þ. θ∗ft identifies the already fine-tuned parameters. A priori,
during the transfer-learning, the θF parameters correspond to those of the encoding blocks, except the last
encoding convolutional layer. The tunable parameters θft in the first approach are a collection ofweights and
biases from the last encoding convolutional layer and decoding transposed convolutional layers.

2.6. Source models training

The LFMs, defined as sources of the transfer-learning process, are trained following the procedure detailed
in (Zdybal et al., 2022). The training and validation samples are drawn from LF samples belonging to DS1,
meanwhile, DS2 samples are reserved as test datasets. Input and outputs are normalized following,

zi ¼
xki �μix,S
σix,S

, qkj

h i
pq
¼

ykj

h i
pq
� μky,S

� �

σky,S
(7)

where zi is the normalized i-component of the input space with axes O=F, lr and dc. μix,S and σix,S are,
respectively, the mean and standard deviation of the i-component calculated over the parameters of the
DS1 samples. Similarly, the outputs fields j-th sample ykj ∈ℝ128× 256 are linearly scaled by their respective
standard deviations and means σky,S, μ

k
y,S. The superscript k is introduced to denote the k-th field-quantity.

The subscript S denotes it belongs to the source dataset DS1. The field quantities modeled are the time-
averaged temperature T , oxygen-mass fraction field YO2 , mixture-fraction Z, velocity-u component u, and
the velocity-u RMS value uRMS .

A linear combination of the standard mean-squared error loss (MSE) and gradient difference loss
(GDL) is defined as a loss function,

L y, ŷð Þ¼ αMSEMSE y, ŷð ÞþαGDLGDL y, ŷð Þ (8)

It isworth noticing that the loss is only considered on the fluid zone,which is signaled bypassing the one-
hot encoding tensor, ormask, to computeL �ð Þ over the region of interest. The training is conductedwith the
Adam optimization algorithm (Kingma and Ba, 2014) with a batch size of 16 over 500 epochs in all cases
involved, except for uRMS, where a batch size of 32was used.An exponential learning rate decay (LRDecay)
scheduler is also used to control the decrease of learning rate with the epoch number. To find the best
hyperparameters combination for performance over the validation set, a Bayesian search is conducted via
the wandb (Biewald, 2020) framework with a maximum number of � 250 different hyperparameters
configurations. Because of the limited number of samples, the performance metric is estimated over a
10-fold cross-validation. The performancemetric varies on the field quantity predicted. The best performing
models are introduced in Table 3, alongside their average performances over the 10-fold validation and test
datasets. The performance metric for T is the 10-fold validation average relative error Er,val, whereas for the
remaining quantities, it is the 10-fold validation average normalized error Enorm,val, defined by:

E
k
rel,DS ¼

1
NS

XNS

j

1
Sj

XNy

p¼0

XNx

q¼0

M j
� �

pq

∣ ykj
h i

pq
� ŷkj

h i
pq
∣

∣ ykj
h i

pq
∣

E
k
norm,DS ¼

1
NS

XNS

j

1
Sj

XNy

p¼0

XNx

q¼0

M j
� �

pq

∣ ykj
h i

pq
� ŷkj

h i
pq
∣

∣μky,S∣

(9)

Data-Centric Engineering e2-13

https://doi.org/10.1017/dce.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.56


where Nx ¼ 256, Ny ¼ 128. ykj

h i
pq

and ŷkj

h i
pq
are the p,q elements of the j-sample and predicted tensor,

respectively, on the datasetDS ofNs samples, over the k-th field. The quantity M j
� �

pq represents the one-

hot encoding tensor, or mask defining the fluid region where Sj ¼
PNy

p¼0

PNx
q¼0 M j

� �
pq is a mere count of

the number of fluid cells contained in it. The quantity μky,S, defined above, is introduced inEnorm to prevent

zero division errors in those fields which can be zero-valued, such as YO2 , Ξ, u and uRMS .

2.7. Target models training

The training of the HF models begins by initializing the networks, with the architecture depicted in
Figure 7 with the weights and biases of the best-performing networks from the LF-LES (source) task,
indicated in Table 3. The layers of theU-Net to fine-tune during the HF-LES (target) task are defined as an
additional discrete hyperparameter for the Bayesian hyperparameters’ optimization of the network. The
layers involved span from the last encoding layer to the output layer, passing through all the decoding
layers. The samples from DS3 are used for training and validation. In the meantime, those from DS4 are
guarded as test datasets, with the exclusive purpose of providing an unbiased performance estimation.
Because of the small size of DS3, it was chosen to proceed to calculate the performancemetrics, eitherErel

or Enorm, via a six-fold cross-validation scheme. Furthermore, the full training set is fixed as batch size.
Before training, both inputs and outputs in the training dataset are scaled following Eqn. (7) while

preserving μix,S, μ
k
y,S, σ

i
x,S and σ

k
y,S from the source dataset DS1. The hyperparameter optimization is carried

out with the corresponding performance metric of the field, and a maximum of 200 hyperparameter
combinations are tested per quantity. Each configuration is trained with a 1000 maximum epochs limit.
Similarly to the source model hyperparameters optimization, the performance metric to minimize is the
six-fold average relative error over the validation samples Erel,val, for the T field. Simultaneously, the six-
fold average normalized error over the validation set Enorm,val is chosen for the remaining fields to prevent
zero division. These performancemetrics are summarized in Table 4. The loss function corresponds to that
defined in Eqn. (8), identical to that of the source task. The remaining hyperparameters range for this task
are presented in Table 4. Bear in mind that during the hyperparameters’ optimization, these are uniformly
sampled from a discrete set a priori defined by its range and quantization, except for the initial learning rate
(Init LR in Table 4) which is sampled uniformly from a continuous real interval.

As shown in Table 4, the parameter β1 involved in the first momentum term update, that is, the running
average of gradients, of the Adam algorithm, has been added. In addition, dropout is considered, albeit
over two values, as a counter-overfitting measure in view of the limited number of samples available for

Table 3. Best-performing networks resulting from the Bayesian hyperparameters optimization. The
parameter values and the network performances over the validation and test dataset (DS2) are given

Parameter T YO2 Z u uRMS

Batch size 16 16 16 16 32
Initial LR 0.003388 0.004124 0.001861 0.003411 0.00562
LR Decay 0.98 0.98 0.98 0.98 0.98
Weight Decay 0.0 0.0 0.02 0.02 0.02
αGDL 70.0 40.0 40.0 100.0 55.0
Performances
Er,val 2.89% – – – –

Enorm,val 2.108% 2.955% 2.562% 3.292% 6.403%
Er,test 2.847% – – – –

Enorm,test 2.032% 2.793% 2.226% 3.006% 6.203%
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training. However, it is expected that the dropout layers might hinder convergence because of the
randomness added during the training process, in particular when the batch-size is small. Weight decay
is deemed necessary to prevent overfitting in all cases.

3. Results and analysis

The best-performing network configurations obtained from the Bayesian optimization of the hyperpara-
meters are introduced in Table 5. The configuration selectedminimizes the performancemetric detailed in
Table 4, within the set of probed configurations. Their average relative and normalized errors over the
training, validation, and test samples, where suitable, are given. Note that for these emulators, training,
and validation datasets are made of HF-LES samples drawn from the DS3 dataset. In the following of this

Table 4. The list of hyperparameters varied for the HF model learning, their preset intervals and
quantization for each of the field-quantities models provided

Description T YO2 Z u uRMS

Initial LR Range 0.001–0.01 0.001–0.01 0.001–0.01 0.001–0.01 0.001–0.01
LR Decay Range 0.96–0.99 0.96–0.99 0.96–0.99 0.96–0.99 0.96–0.99

Quantization 0.01 0.01 0.01 0.01 0.01
β1 Range 0.5–0.9 0.5–0.9 0.5–0.9 0.5–0.9 0.5–0.9

Quantization 0.1 0.1 0.1 0.1 0.1
Dropout Values [0, 0.01] [0, 0.01] [0, 0.01] [0, 0.01] [0, 0.01]
Weight Decay Range 0.1–0.3 0.1–0.3 0.1–0.3 0.1–0.3 0.1–0.3

Quantization 0.05 0.05 0.05 0.05 0.05
αGDL Range 50–100 50–100 50–100 50–100 50–100

Quantization 10 10 10 10 10
Performance Metric Erel,val Enorm,val Enorm,val Enorm,val Enorm,val

Table 5. Best-performing networks resulting from the Bayesian hyperparameters’ optimization for the
MFMs

Parameter T YO2 Z u uRMS

Trainable Parameters 91,921 91,921 91,921 91,921 91,921
Initial LR 0.00878587 0.00541211 0.00902745 0.00164691 0.00285097
β0 0.7 0.7 0.6 0.7 0.5
LR Decay 0.98 0.97 0.99 0.99 0.98
Weight Decay 0.1 0.1 0.1 0.15 0.1
Dropout 0 0.01 0 0.01 0.01
αGDL 80 80 60 50 80
Final Epochsa 1000 1000 1000 1000 1000
Performances
Erel,train 5.11% – – – –

Enorm,train 3.23% 4.65% 4.17% 5.22% 6.68%
Erel,val 6.99% – – – –

Enorm,val 4.42% 5.98% 5.80% 6.87% 8.87%
Erel,test 5.98% – – – –

Enorm,test 3.86% 5.12% 4.87% 6.06% 7.81%
aFinal Epochs is the number of epochs over which the training has been conducted until the convergence criteria for loss value (< 10�5) is fulfilled.
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text, this set of data-driven emulators will be referred to asMFMs, to differentiate them from those trained
on LF-LES datasets detailed in Table 3.

All the best-performing networks show a total number of trainable parameters (θft) of 91,921. Note that
the total number of parameters of the network is 486,337 (θF [θft). Of all the possibilities of layers
combinations explored for this fine-tuning task, ∣θft∣¼ 91,921 is the largest one in terms of trainable
parameters. This configuration involves the last encoding convolutional-layer and the ensemble of
transposed convolutional layers of the decoding side of the U-Net (see Figure 7). In fact, it was seen
that choosing a smaller set of layers had a detrimental effect on the performance of the MFM.

The number of samples for training available being small, weight decay was enforced to prevent
overfitting while dropout was kept optional. In Table 5 we see that for T and Z models use predominantly
weight decay whereas u, YO2 , and uRMS use a combination of both dropout and weight-decay. In all cases,
the weight-decay value is close to the lower end of the enabled range, as shown in Table 4. This may
indicate the chosen range for this hyperparameter is inadequate. Nonetheless, no significant evidence of
overfitting was observed in any of the models involved.

It is worth comparing the performances of the LF and MFMs, over their respective test datasets and
tasks, to verify if they attain similar scores. On the one hand, the LFMs task consists of predicting the
LF-LES solutions7: T , YO2 , u, Z, and uRMS from the normalized design-space coordinates zi. These
models have been trained consequently on LF-LES data, DS1, and evaluated in a separate test-dataset of
the same characteristics, DS2. On the other hand, the MF model tasks aim to predict the HF-LES
solutions from the normalized design-space coordinates, while being fine-tuned with HF-LES data,
DS3, and consequently evaluated over samples of the same characteristics, DS4. The scores of both
MFMs and LFMs over their respective test-datasets are summarized in Table 6. The LFMs show a
smaller error for their respective tasks compared with the multifidelity ones, although they both remain
low and in the same order of magnitude. A potential explanation for the larger errors seen in the
multifidelity task is the limited number of HF samples available for training which may result in poor
coverage of the design-space. Nevertheless, the core advantage of the transfer learning strategy lies in
the economy of CPU hours when creating the datasets. Conducting the training and testing purely on
sets of HF samples with the same count as DS1 and DS2, would have implied, approximately, an
additional � 1:4 million CPUhs.

It is worth noting that during the training of the U-Net, a linear combination of a mean squared error
(MSE), and gradient difference loss (GDL), as indicated in Eqn. 8. The approach hereby taken is therefore
purely data-driven, as no physics-based term has been added as a constraint to guide the training. While it
is reported in the literature that the inclusion of physics-informed inductive biases enhances the
performance of machine learning models in both interpolation and extrapolation in the low data regime
(Bermejo-Barbanoj et al., 2024; Choi, 2023; Cicirello, 2024; Cueto and Chinesta, 2023; Hernandez et al.,
2021; Jeon et al., 2024; Kim et al., 2022; Z.Wang et al., 2023), in this work we have not implemented any
physics-based constraint to guide the learning. The primary reason for this relies on practical grounds: for

Table 6. LF and MFMs performances comparison

Task

T YO2 Z u uRMS

Erel,test Enorm,test Enorm,test Enorm,test Enorm,test

Low-fidelitya 2.85% 2.79% 2.23% 3.01% 6.20%
Multifidelity 5.98% 5.12% 4.87% 6.06% 7.81%
aLFMs test dataset corresponds to DS2. TheErel,test andEnorm,test have been extracted fromTable 3.Meanwhile, for theMFMs the test dataset is DS4 and
the values have been drawn from Table 5.

7 In this context, we refer to solution as specific scalar-fields longitudinal cuts of the simulated domain.
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the present isolated average field prediction workflow, we have not found a suitable learning bias.
Moreover, many physics-based terms found in the literature are evaluated over the instantaneous state
values, as is the case of Thermodynamics Informed Neural Networks (Cueto and Chinesta, 2023). In
future works, we intend to adopt this avenue, however by shifting the focus from time-averaged
predictions to modeling the problem as a structured dynamical system.

3.1. MFMs benchmarking

The subsequent figures present a side-by-side comparison of the predictions of the MFMs and LFMs for
the different field-quantities involved. These are evaluated on an arbitrary sample of the HF test dataset
(DS4) with parameters: O=F¼ 2:81, lr ¼ 7:2mm and dc ¼ 7:3mm. The MF models are those detailed in
Table 5 whereas the LF have been used as source networks on the transfer-learning procedure and
explained in Section 2.6. Figure 8a displays on top the MF T prediction, with the LF one below. The
predicted YO2 ¼ 0:1,0:8½ � isolines have been superimposed as well as the stoichiometric line Zst, located at
Z¼ 0:2 for the O2�CH4 propellant couple.

It is evident that the MF flame shape is in line with what is seen in Figure 6a. The hot gases zone is
comparatively thinner, with an oxygen-jet penetrating further into the chamber, a sign of a smaller reaction
rate. Also, the Zst line is slightly less concave, indicating a longer flame overall. The change betweenMF
and LF is better seen in Figures 10a and 10b, where the difference between the estimated, Tpred ,YO2,pred ,
and the ground-truth fields Tgt,YO2,gt of the test sample are displayed. A strong red area, below the Zst line,
is shown in Figure 10a for LF. Similarly, the same area is marked in blue in Figure 10b. Comparatively, the
MFmodel error figures do not display this region, indicating that the transfer-learning provides the sought
correction.

Figures 9a and 9b show the y-averaged values of the MF, LF, and ground-truth (HF-LES∗) for T
and YO2 , respectively. The averages were calculated over the first dimension of the 128× 256 grids. In
these, the effect of the correction is evident, as we see the trend from the HF-LES∗ is recovered,
whereas the LF prediction largely overestimates it. The YO2 xð Þ plot shows also the HF-LES∗ values
are reconstructed correctly byMF, whereas LF largely underpredicts the oxygen content by the end of
the chamber.

The u and uRMS models estimation on the selected sample are plot in Figures 8b and 8c, respectively.
Their errors with respect to ground-truth are shown in Figures 10c and 10d. The predicted stoichiometric
line (Zst) has been added for guidance. Similarly to T and YO2 , the MFmodel shows positive results, with
an overall smaller velocity-u downstream in the chamber, consistent with the smaller temperature. The
velocity-u is also corrected appropriately at the recessed channel and in the near-field of the injection plane
(x� 0).

As for the uRMS , theMF indeed predicts less intense fluctuations at the near-field8 and in the first half of
the chamber. The error plot shown in Figure 10d accentuates this change. Furthermore, the near-axis
turbulence, observable as a high uRMS line in the proximity of the axis of the LF prediction in Figure 8c,
attenuates significantly for the MF prediction. These spurious fluctuations have been associated with the
boundary condition at the axis. Nonetheless, the stronger expansion in the chamber when utilizing coarse
resolutions, leads to a local acceleration of the flow and greater velocity gradients, increasing the turbulent
activity near the axis. The uRMS,pred �uRMS,gt field in Figure 10d shows also the MF model struggles with
the topology of the uRMS field in the near-field. In spite of providing an overall more accurate estimate than
LF, it still shows a complex error map in the near-field. A similar issue is seen in the T field MF
predictions. The near-field in shear-coaxial injectors is an intricate zone where multiple fluid structures of
different scales interact, thus yielding a complex local topology, characterized by high gradients.
Therefore, in future works, it could be beneficial to prioritize learning in this area through a locally
oriented loss function.

8As depicted later in Figure 12a, near field is referred to as the region of the chamber, in the vicinity of the injection plane, such
that x∈ 0,10doxð �. x and dox represent the axial coordinate and the oxidizer.
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Figures 11 and 12b are meant to show insight into the error distribution, both in the design-space but
also along the geometry of the injector. In Figure 11, the corresponding MFMs and LFMs, error metrics
for each sample of theMF test-dataset, DS4, are given as bar plots. The design-space coordinates, in terms
of (O=F, lr, dc) are provided for each of the samples to help identify patterns in the error distribution. The
MF model error metrics per sample are averaged over the six folds over which training was conducted.

Figure 8. Predictions of the MFM, shown on top and LFM below for the test dataset sample with
parameters:O=F¼ 2:8104, lr ¼ 7:2mm and dc ¼ 7:3mm. a) The time-averaged temperature field T with
YO2 ¼ 0:1,0:8 oxygen mass fraction isolines as well as the stoichiometric line Zst in white. b) The time-
averaged velocity-u (axial) component, u with the predicted stoichiometric line superimposed in

dashed-black lines. c) Velocity-u RMS field (uRMS) with the predicted stoichiometric line superimposed
in dashed-black lines. The figures’ aspect-ratio has been adjusted to ease visualization.
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The dataset averages are overlaid on each bar as dark circles. The error-bars of these dots show the
dispersion of the associated MF model error metric over the dataset DS4. These are meant to serve as a
reference for comparison.

When focusing the attention on the Erel,test T
� 	

, Enorm,test YO2

� 	
, and Enorm,test Z

� 	
, in many of the

samples displayed their respective errors are well in line with the dataset averages, or even below, with an
exception to the samples 2 (O=F : 2:61, lr : 4:23mm,dc : 9:90mm) and 6 (O=F : 2:77, lr : 5:39mm,
dc : 9:51mm), counting from the left. For sample 2, the models display a higher error than the dataset
average for the Erel,test T

� 	
, Enorm,test YO2

� 	
, and Enorm,test Z

� 	
quantities, whereas for 6 it is only observed

for Erel,test T
� 	

. Note that these two samples are located at the higher end of the dc axis, where only a few of
HF samples are available for training (DS3 dataset in Figure 2c). Meanwhile, samples
1 (O=F : 2:73, lr : 12:95mm,dc : 5:55mm), 2, and 7 (O=F : 2:74, lr : 13:98mm,dc : 7:88mm) display rela-
tive large values for Enorm,test uð Þ andEnorm,test uRMSð Þ. In particular, samples 1 and 7 have the largest values
of lr in DS4, close to the design-space edges, while sample 2 has large values of dc. These regions of the
design-space are characterized of having a low density of HF samples. Thus, we can indicate the models
performance decreases when traversing the limits of the design-space. Finally, in Figure 11 the LFMs
error metrics, calculated over theDS4 test dataset, have been added to show the reader their comparatively
poor performance. In all the metrics and samples involved the LFMs largely surpass the MFmodels error
metrics averages (black dots), as expected.

To study the distribution of the error across the different injector regions, four distinct regions,
common to the shear-coaxial injectors configurations present in the DS4 dataset, have been identified.
These are depicted in Figure 12a. The “Injector” corresponds to the area between the inlets and the
oxidizer post lip; the “Recess” denotes the area between the post lip and the injection plane; the “Near
Field,” the area between the injection plane and 10dox; and the “Chamber,” the remaining fluid area. For
each of these regions, the average local error metrics, across the test dataset DS4 have been calculated.
These metrics are displayed as bars in Figure 12b. To simplify the comparison, the dataset averages of
thesemetrics, are overlaid on each of the bars as dark dashed lines. ExceptEnorm,test T

� 	
, all metrics show

below-average errors at the “Injector” region. The large relative error of T at the injection is possibly
because of the fact that the lowest temperatures are seen in this area. Moreover, the “Chamber” zone is
also characterized by lower error metrics. This is expected as the field topology in the chamber area is
rather uniform, even for the uRMS field, as we previously showed in Figures 8a through 8c. However, the
“Recess” and “Near Field” areas show clearly larger than average metrics. This is in line to what was

Figure 9. Cross-section averaged of ground-truth and predictions of the: a) time-averaged temperature
field predictions and ground-truth and b) time-averaged oxygen mass-fraction predictions and ground-
truth. Dashed gray lines 0 indicating the position of third (lc=3) and two-thirds (lc=3) of the chamber-
length have been added for reference. The origin x¼ 0 corresponds to the location of the injection plane.
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Figure 10. Prediction errors between predictions (pred), and ground truth (gt), over the selected test
sample, for MF (top) and LF (bottom) on the: time-averaged temperature (T , a), oxygen mass fraction
(YO2 , b), and velocity-u (u, c), as well as the velocity-u RMS field (uRMS, d). The figures’ aspect-ratio has

been adjusted to ease visualization.
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detailed in Figures 10a–10d. The more complex local topology in these areas leads to higher local error.
Note that, many relevant structures linked to the mixing in shear-coaxial injectors develop in the “Near
Field” and “Recess.” Hence, this showcases the potential of directing the learning process through a
localized loss function, which ponders the information from these regions. Additionally, a diffusion
flame based loss, using themixture fraction field as sensor could be used as to better constrained the loss
in the area where the flame is located.

Figure 12. Localized MF models error metrics: a) Injector representative schematic highlighting the
locations of the regions identified. b) Bar plot showing the corresponding error metric, either Erel,test or

Enorm,test, per field for the different sectors identified.

Figure 11. MF models error metrics per field across the samples of the test-dataset DS4. The error
displayed per sample is estimated by averaging the errors from all the models obtained from the six folds
conducted during training. The dataset averages of the errors are indicated as black dots superimposed
over each bar. Also, the bars for each dot indicate the dispersion of the associated metric over DS4. For
reference, the error metrics calculated for the predictions of the LFMs over DS4 have been added.
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4. Analysis of the features preservation hypothesis

In Section 1.2 of the manuscript, it was stated that the main hypothesis of this work is, that the
relationships between inputs and outputs in the HF and LF datasets do not differ significantly, thus,
enabling the reuse, in particular, of the feature maps. In rigor, this hypothesis indicates that the feature
maps extracted in the encoding layers of theU-Net during the training for the LF task9, remain relevant for
the HF task10. This is briefly justified by the fact that both networks operate over the same input-space,
that is the design space composed of the normalized O=F, lr, and dc quantities. Shall both tasks not be
largely dissimilar, it is intuitive to think that the features learned in the source task, will remain relevant for
the target task. Thus, we set now to analyze this last statement.

We proceed by defining the functions yS z,hð Þ and yT z,hð Þ,

yS z,hð Þ¼ 1
S zð Þ

XNy

p¼0

XNx

q¼0

M zð Þ½ �pq qS,T z,hð Þ
h i

pq

yT z,hð Þ¼ 1
S zð Þ

XNy

p¼0

XNx

q¼0

M zð Þ½ �pq qT ,T z,hð Þ
h i

pq

(10)

where S zð Þ¼PNy

p¼0

PNx
q¼0 M zð Þ½ �pq is total sum of the mask, defining the fluid region, associated to the

design point identified by (normalized) design-space coordinates z∈D∈ℝ3. The quantities qS,T z,hð Þ½ �pq,
and qT ,T z,hð Þ½ �pq correspond to the pq-element of the normalized predicted tensor of the source, and target
U-Nets, respectively. Note that in this exercise we have focused only on the U-Nets which predict the
normalized temperature field, hence the overlineT superscript. Essentially, yS z,hð Þ, and yT z,hð Þ represent
the masked average normalized prediction of the average temperature field U-Nets, for the normalized
input z.

The quantity h∈ℍ represents the ensemble of encoded “hidden states” of interest, that is the features
(outputs) from the encoded layers that remained frozen during the transfer learning exercise. These are
comprised of the first 6 encoder convolutional layers, as can be in the diagram of Figure 7. For notation
convenience, we have stacked all the features (hj), regardless of their layer of origin, as a single vector
such that: h∈ℍ⊂ℝ226304.

The dimension of the hidden-states space of interest (226304) is considerably large, which hinders a
direct study on the relevance of each hidden state, separately.We propose to study the relative behavior of

the yS z,hð Þ and yT z,hð Þ functions w.r.t. to h. For such, we sample ∂yS

∂hi





zj
and ∂yT

∂hi





zj
, for all hi ¼ h½ �i and

zj ∈DS1[DS3. In this way we can compute statistics of the gradients of both functions across the

normalized input (or design)-space, which both U-Nets share. A total of � 21:5× 106 different values of
∂yS

∂hi





zj
and ∂yT

∂hi





zj
are computed, for each network, via automatic differentiation.

In Figure 13a we show the histograms of ∂y
S

∂hi





zj
, on the top, and ∂yT

∂hi





zj
, on the bottom. The histograms are

normalized so that the area covered equals to 1. The histograms are generated over 5000 bins. A priori,

both ∇h∈ℍyS ¼ ∂yS

∂hi





zj
and ∇h∈ℍyT ¼ ∂yT

∂hi





zj
show very similar distributions. Both U-Nets show a peak

around � 0, which indicates that in most cases the influence of a given feature hi (or hidden-state
coordinate) is small. This hints to the fact that only a small set of the network contributes when generating
a prediction, which is potential evidence of parsimony. Moreover, in both cases, the gradients values
decay rapidly. This is potentially because of the fact that L2 regularization (weight decay) was used to
limit gradient explosion. The most relevant difference between both histograms is thus the larger

9 Source task, following the transfer learning vocabulary.
10 Target task.

e2-22 Jose Felix Zapata Usandivaras et al.

https://doi.org/10.1017/dce.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.56


dispersion of values of the gradients on the target network, seen by the larger standard deviation of
∇h∈ℍyT (σ∇T ) compared with that of ∇h∈ℍyS (σ∇S ), both drawn in Figure 13a.

Meanwhile, Figure 13b shows a joint-histogram for both quantities:∇h∈ℍySn and∇h∈ℍyTn . The former
is shown on the x-axis, while the latter on the y-axis. The subscript n indicates that both variables shown
have been normalized by their respective mean and standard deviations. Note that both distributions in
Figure 13a had shown already amean value of approximately 0. As in Figure 13a, the bi-variate histogram
is normalized to have a total “volume” of 1, therefore approximating the probability density function
f ∇h∈ℍySn,∇h∈ℍyTn
� 	

. Contour values of f :, :ð Þ∈ 100,1,000,10,000½ � have been overlaid to ease the
interpretation of the figure.

Figure 13b shows an interesting phenomenon. The distribution of the gradients calculated on both
U-Nets, w.r.t. the reused features, over the shared design-space, appear to be correlated. Furthermore, the
oval-shape of the bi-variate distribution, alongside with its alignment on the first quadrant diagonal allow
to conclude about the relative behavior of∇h∈ℍySn and∇h∈ℍySn. For instance, shall we desire to calculate
the probability of a given feature to be relevant for the source network prediction, but irrelevant to the
target network one, we should estimate P j∇h∈ℍySnj>Γ∩j∇h∈ℍyTn j< ϵ

� 	
. Where Γ> > 0, while ε! 0.

This equates to integrate f ,ð Þ over the vicinity of the ∇h∈ℍyTn ¼ 0 line, but for regions with ∇h∈ℍySn >Γ
and∇h∈ℍySn < �Γ.What we can observe fromFigure 13b, is that the probability density rapidly decreases
along the∇h∈ℍyTn ¼ 0 direction. Thus, if we took Γ¼ 0:5σ∇S (the relevant feature on the source network),
we can see that the probability density function has approximately decreased by 2 orders of magnitude.
The same behavior is attained when we want to assess the probability of a feature being relevant on the
target network, but irrelevant on the source one, that is, P j∇h∈ℍySnj< ϵ∩j∇h∈ℍyTn j>Γ

� 	
.

However, following this probability density map, it appears to be more likely that features that are
relevant on the source network, to remain relevant on the target one. This behavior observed in the
bi-variate distribution allows us to partially conclude that the feature set reused, from one network to the
other, remains relevant when conducting a prediction for both tasks. Note however, that this is not equal to
state that the latent-space (or feature-space) that would be obtained by fine-tuning the encoder layers on
the target task, would be the same. We emphasize that the core hypothesis of our work is that the features
learned in the source task, remain relevant for the target task, which is what we have attempted to explain,
statistically, in Figure 13b.

Figure 13.Mean valuedU-Net outputs (T-models), feature gradients statistics. a) Histogram of gradients
on source network, expressed as a probability density, and b) joint histogram for gradients of source
network (x-axis) and target network (y-axis). In the latter, both variables have been normalized by their

respective statistical average and standard deviations.
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5. Conclusions & future work

A feature-transfer, network-based transfer learning approach has been put in place to develop data-driven
MFSMs for a shear-coaxial rocket engine injector operating on a GOx/Methane mixture. The ultimate
goal is to reduce the offline data generation cost for rendering suitable predictions. The models aim to
predict axial cuts of time-average LES fields, for example, the temperature, oxygen mass-fraction,
mixture-fraction, axial velocity component, and axial velocity RMS value. The analysis of mesh-
convergence on the reference injector configuration evidences the modeling errors on the under-resolved
LES. The coarse mesh solution is overly dissipative, with largely overpredicted heat-release rates,
resulting in greater downstream mixing and over-estimated reaction rates. Also, the penetration of the
oxygen-jet is under-estimated as a consequence of greater consumption rates.

Two coarse LES datasets, totaling 92 different shear-coaxial injector simulations, are readily available.
The Design of Experiments is performed over a 3D design-space comprising the: mixture-ratio (O=F),
recess-length of the oxidizer post (lr), and the chamber radius (dc). Two additional LES datasets of shear-
coaxial injectors, comprised of 12 and 7 samples, are created. The LES simulations are performed over a
much finer mesh, albeit at a larger cost per sample.

First, the coarse LES datasets are utilized to train and validate the sourcemodels of the time-averaged
field quantities: temperature, oxygen mass-fraction, mixture fraction, velocity-u component, and
velocity-u RMS. Second, the best-performing source models are retrained with the refined LES dataset,
while freezing the encoding convolutional layers. The resultingMFMs, even though trained on a reduced
set of high-resolution LES samples, show qualitative evidence of correcting the source models’ short-
comings. In effect, when evaluated over a test dataset, the multifidelity emulators predict a longer-flame,
thinner hot-gases area, and slower flame expansion. The right penetration of the oxygen jet appears to be
recovered, at least for the audited validation sample.

The analysis of the error distribution over the test samples indicates that theMFMs struggle close to the
edges of the design-space, where a lower density of HF samples is available for training. Moreover, a
study of the local error metrics highlighted that errors larger than average are attained on the recess and
near-field areas of the shear-coaxial injectors. This is caused by the relatively more complex topology of
the fields in these regions. Future works will address this issue by implementing a local loss term that
accents the contribution of these areas, thus locally reinforcing the learning.
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